Files
clang-p2996/llvm/lib/Target/WebAssembly/WebAssemblyInstrSIMD.td
Thomas Lively 972d7d514b [WebAssembly] Use named operands to identify loads and stores
Summary:
Uses the named operands tablegen feature to look up the indices of
offset, address, and p2align operands for all load and store
instructions. This replaces brittle, incorrect logic for identifying
loads and store when eliminating frame indices, which previously
crashed on bulk-memory ops. It also cleans up the SetP2Alignment pass.

Reviewers: aheejin, dschuff

Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D59007

llvm-svn: 355770
2019-03-09 04:31:37 +00:00

709 lines
31 KiB
TableGen

// WebAssemblyInstrSIMD.td - WebAssembly SIMD codegen support -*- tablegen -*-//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// WebAssembly SIMD operand code-gen constructs.
///
//===----------------------------------------------------------------------===//
// Instructions requiring HasSIMD128 and the simd128 prefix byte
multiclass SIMD_I<dag oops_r, dag iops_r, dag oops_s, dag iops_s,
list<dag> pattern_r, string asmstr_r = "",
string asmstr_s = "", bits<32> simdop = -1> {
defm "" : I<oops_r, iops_r, oops_s, iops_s, pattern_r, asmstr_r, asmstr_s,
!or(0xfd00, !and(0xff, simdop))>,
Requires<[HasSIMD128]>;
}
defm "" : ARGUMENT<V128, v16i8>;
defm "" : ARGUMENT<V128, v8i16>;
defm "" : ARGUMENT<V128, v4i32>;
defm "" : ARGUMENT<V128, v2i64>;
defm "" : ARGUMENT<V128, v4f32>;
defm "" : ARGUMENT<V128, v2f64>;
// Constrained immediate argument types
foreach SIZE = [8, 16] in
def ImmI#SIZE : ImmLeaf<i32,
"return -(1 << ("#SIZE#" - 1)) <= Imm && Imm < (1 << ("#SIZE#" - 1));"
>;
foreach SIZE = [2, 4, 8, 16, 32] in
def LaneIdx#SIZE : ImmLeaf<i32, "return 0 <= Imm && Imm < "#SIZE#";">;
//===----------------------------------------------------------------------===//
// Load and store
//===----------------------------------------------------------------------===//
// Load: v128.load
multiclass SIMDLoad<ValueType vec_t> {
let mayLoad = 1, UseNamedOperandTable = 1 in
defm LOAD_#vec_t :
SIMD_I<(outs V128:$dst), (ins P2Align:$p2align, offset32_op:$off, I32:$addr),
(outs), (ins P2Align:$p2align, offset32_op:$off), [],
"v128.load\t$dst, ${off}(${addr})$p2align",
"v128.load\t$off$p2align", 0>;
}
foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in {
defm "" : SIMDLoad<vec_t>;
// Def load and store patterns from WebAssemblyInstrMemory.td for vector types
def : LoadPatNoOffset<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatImmOff<vec_t, load, regPlusImm, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatImmOff<vec_t, load, or_is_add, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatGlobalAddr<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatExternalSym<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatOffsetOnly<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatGlobalAddrOffOnly<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
def : LoadPatExternSymOffOnly<vec_t, load, !cast<NI>("LOAD_"#vec_t)>;
}
// Store: v128.store
multiclass SIMDStore<ValueType vec_t> {
let mayStore = 1, UseNamedOperandTable = 1 in
defm STORE_#vec_t :
SIMD_I<(outs), (ins P2Align:$p2align, offset32_op:$off, I32:$addr, V128:$vec),
(outs), (ins P2Align:$p2align, offset32_op:$off), [],
"v128.store\t${off}(${addr})$p2align, $vec",
"v128.store\t$off$p2align", 1>;
}
foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in {
defm "" : SIMDStore<vec_t>;
// Def load and store patterns from WebAssemblyInstrMemory.td for vector types
def : StorePatNoOffset<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
def : StorePatImmOff<vec_t, store, regPlusImm, !cast<NI>("STORE_"#vec_t)>;
def : StorePatImmOff<vec_t, store, or_is_add, !cast<NI>("STORE_"#vec_t)>;
def : StorePatGlobalAddr<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
def : StorePatExternalSym<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
def : StorePatOffsetOnly<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
def : StorePatGlobalAddrOffOnly<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
def : StorePatExternSymOffOnly<vec_t, store, !cast<NI>("STORE_"#vec_t)>;
}
//===----------------------------------------------------------------------===//
// Constructing SIMD values
//===----------------------------------------------------------------------===//
// Constant: v128.const
multiclass ConstVec<ValueType vec_t, dag ops, dag pat, string args> {
let isMoveImm = 1, isReMaterializable = 1,
Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
defm CONST_V128_#vec_t : SIMD_I<(outs V128:$dst), ops, (outs), ops,
[(set V128:$dst, (vec_t pat))],
"v128.const\t$dst, "#args,
"v128.const\t"#args, 2>;
}
defm "" : ConstVec<v16i8,
(ins vec_i8imm_op:$i0, vec_i8imm_op:$i1,
vec_i8imm_op:$i2, vec_i8imm_op:$i3,
vec_i8imm_op:$i4, vec_i8imm_op:$i5,
vec_i8imm_op:$i6, vec_i8imm_op:$i7,
vec_i8imm_op:$i8, vec_i8imm_op:$i9,
vec_i8imm_op:$iA, vec_i8imm_op:$iB,
vec_i8imm_op:$iC, vec_i8imm_op:$iD,
vec_i8imm_op:$iE, vec_i8imm_op:$iF),
(build_vector ImmI8:$i0, ImmI8:$i1, ImmI8:$i2, ImmI8:$i3,
ImmI8:$i4, ImmI8:$i5, ImmI8:$i6, ImmI8:$i7,
ImmI8:$i8, ImmI8:$i9, ImmI8:$iA, ImmI8:$iB,
ImmI8:$iC, ImmI8:$iD, ImmI8:$iE, ImmI8:$iF),
!strconcat("$i0, $i1, $i2, $i3, $i4, $i5, $i6, $i7, ",
"$i8, $i9, $iA, $iB, $iC, $iD, $iE, $iF")>;
defm "" : ConstVec<v8i16,
(ins vec_i16imm_op:$i0, vec_i16imm_op:$i1,
vec_i16imm_op:$i2, vec_i16imm_op:$i3,
vec_i16imm_op:$i4, vec_i16imm_op:$i5,
vec_i16imm_op:$i6, vec_i16imm_op:$i7),
(build_vector
ImmI16:$i0, ImmI16:$i1, ImmI16:$i2, ImmI16:$i3,
ImmI16:$i4, ImmI16:$i5, ImmI16:$i6, ImmI16:$i7),
"$i0, $i1, $i2, $i3, $i4, $i5, $i6, $i7">;
let IsCanonical = 1 in
defm "" : ConstVec<v4i32,
(ins vec_i32imm_op:$i0, vec_i32imm_op:$i1,
vec_i32imm_op:$i2, vec_i32imm_op:$i3),
(build_vector (i32 imm:$i0), (i32 imm:$i1),
(i32 imm:$i2), (i32 imm:$i3)),
"$i0, $i1, $i2, $i3">;
defm "" : ConstVec<v2i64,
(ins vec_i64imm_op:$i0, vec_i64imm_op:$i1),
(build_vector (i64 imm:$i0), (i64 imm:$i1)),
"$i0, $i1">;
defm "" : ConstVec<v4f32,
(ins f32imm_op:$i0, f32imm_op:$i1,
f32imm_op:$i2, f32imm_op:$i3),
(build_vector (f32 fpimm:$i0), (f32 fpimm:$i1),
(f32 fpimm:$i2), (f32 fpimm:$i3)),
"$i0, $i1, $i2, $i3">;
defm "" : ConstVec<v2f64,
(ins f64imm_op:$i0, f64imm_op:$i1),
(build_vector (f64 fpimm:$i0), (f64 fpimm:$i1)),
"$i0, $i1">;
// Shuffle lanes: shuffle
defm SHUFFLE :
SIMD_I<(outs V128:$dst),
(ins V128:$x, V128:$y,
vec_i8imm_op:$m0, vec_i8imm_op:$m1,
vec_i8imm_op:$m2, vec_i8imm_op:$m3,
vec_i8imm_op:$m4, vec_i8imm_op:$m5,
vec_i8imm_op:$m6, vec_i8imm_op:$m7,
vec_i8imm_op:$m8, vec_i8imm_op:$m9,
vec_i8imm_op:$mA, vec_i8imm_op:$mB,
vec_i8imm_op:$mC, vec_i8imm_op:$mD,
vec_i8imm_op:$mE, vec_i8imm_op:$mF),
(outs),
(ins
vec_i8imm_op:$m0, vec_i8imm_op:$m1,
vec_i8imm_op:$m2, vec_i8imm_op:$m3,
vec_i8imm_op:$m4, vec_i8imm_op:$m5,
vec_i8imm_op:$m6, vec_i8imm_op:$m7,
vec_i8imm_op:$m8, vec_i8imm_op:$m9,
vec_i8imm_op:$mA, vec_i8imm_op:$mB,
vec_i8imm_op:$mC, vec_i8imm_op:$mD,
vec_i8imm_op:$mE, vec_i8imm_op:$mF),
[],
"v8x16.shuffle\t$dst, $x, $y, "#
"$m0, $m1, $m2, $m3, $m4, $m5, $m6, $m7, "#
"$m8, $m9, $mA, $mB, $mC, $mD, $mE, $mF",
"v8x16.shuffle\t"#
"$m0, $m1, $m2, $m3, $m4, $m5, $m6, $m7, "#
"$m8, $m9, $mA, $mB, $mC, $mD, $mE, $mF",
3>;
// Shuffles after custom lowering
def wasm_shuffle_t : SDTypeProfile<1, 18, []>;
def wasm_shuffle : SDNode<"WebAssemblyISD::SHUFFLE", wasm_shuffle_t>;
foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in {
def : Pat<(vec_t (wasm_shuffle (vec_t V128:$x), (vec_t V128:$y),
(i32 LaneIdx32:$m0), (i32 LaneIdx32:$m1),
(i32 LaneIdx32:$m2), (i32 LaneIdx32:$m3),
(i32 LaneIdx32:$m4), (i32 LaneIdx32:$m5),
(i32 LaneIdx32:$m6), (i32 LaneIdx32:$m7),
(i32 LaneIdx32:$m8), (i32 LaneIdx32:$m9),
(i32 LaneIdx32:$mA), (i32 LaneIdx32:$mB),
(i32 LaneIdx32:$mC), (i32 LaneIdx32:$mD),
(i32 LaneIdx32:$mE), (i32 LaneIdx32:$mF))),
(vec_t (SHUFFLE (vec_t V128:$x), (vec_t V128:$y),
(i32 LaneIdx32:$m0), (i32 LaneIdx32:$m1),
(i32 LaneIdx32:$m2), (i32 LaneIdx32:$m3),
(i32 LaneIdx32:$m4), (i32 LaneIdx32:$m5),
(i32 LaneIdx32:$m6), (i32 LaneIdx32:$m7),
(i32 LaneIdx32:$m8), (i32 LaneIdx32:$m9),
(i32 LaneIdx32:$mA), (i32 LaneIdx32:$mB),
(i32 LaneIdx32:$mC), (i32 LaneIdx32:$mD),
(i32 LaneIdx32:$mE), (i32 LaneIdx32:$mF)))>;
}
// Create vector with identical lanes: splat
def splat2 : PatFrag<(ops node:$x), (build_vector node:$x, node:$x)>;
def splat4 : PatFrag<(ops node:$x), (build_vector
node:$x, node:$x, node:$x, node:$x)>;
def splat8 : PatFrag<(ops node:$x), (build_vector
node:$x, node:$x, node:$x, node:$x,
node:$x, node:$x, node:$x, node:$x)>;
def splat16 : PatFrag<(ops node:$x), (build_vector
node:$x, node:$x, node:$x, node:$x,
node:$x, node:$x, node:$x, node:$x,
node:$x, node:$x, node:$x, node:$x,
node:$x, node:$x, node:$x, node:$x)>;
multiclass Splat<ValueType vec_t, string vec, WebAssemblyRegClass reg_t,
PatFrag splat_pat, bits<32> simdop> {
// Prefer splats over v128.const for const splats (65 is lowest that works)
let AddedComplexity = 65 in
defm SPLAT_#vec_t : SIMD_I<(outs V128:$dst), (ins reg_t:$x), (outs), (ins),
[(set (vec_t V128:$dst), (splat_pat reg_t:$x))],
vec#".splat\t$dst, $x", vec#".splat", simdop>;
}
defm "" : Splat<v16i8, "i8x16", I32, splat16, 4>;
defm "" : Splat<v8i16, "i16x8", I32, splat8, 8>;
defm "" : Splat<v4i32, "i32x4", I32, splat4, 12>;
defm "" : Splat<v2i64, "i64x2", I64, splat2, 15>;
defm "" : Splat<v4f32, "f32x4", F32, splat4, 18>;
defm "" : Splat<v2f64, "f64x2", F64, splat2, 21>;
// scalar_to_vector leaves high lanes undefined, so can be a splat
class ScalarSplatPat<ValueType vec_t, ValueType lane_t,
WebAssemblyRegClass reg_t> :
Pat<(vec_t (scalar_to_vector (lane_t reg_t:$x))),
(!cast<Instruction>("SPLAT_"#vec_t) reg_t:$x)>;
def : ScalarSplatPat<v16i8, i32, I32>;
def : ScalarSplatPat<v8i16, i32, I32>;
def : ScalarSplatPat<v4i32, i32, I32>;
def : ScalarSplatPat<v2i64, i64, I64>;
def : ScalarSplatPat<v4f32, f32, F32>;
def : ScalarSplatPat<v2f64, f64, F64>;
//===----------------------------------------------------------------------===//
// Accessing lanes
//===----------------------------------------------------------------------===//
// Extract lane as a scalar: extract_lane / extract_lane_s / extract_lane_u
multiclass ExtractLane<ValueType vec_t, string vec, ImmLeaf imm_t,
WebAssemblyRegClass reg_t, bits<32> simdop,
string suffix = "", SDNode extract = vector_extract> {
defm EXTRACT_LANE_#vec_t#suffix :
SIMD_I<(outs reg_t:$dst), (ins V128:$vec, vec_i8imm_op:$idx),
(outs), (ins vec_i8imm_op:$idx),
[(set reg_t:$dst, (extract (vec_t V128:$vec), (i32 imm_t:$idx)))],
vec#".extract_lane"#suffix#"\t$dst, $vec, $idx",
vec#".extract_lane"#suffix#"\t$idx", simdop>;
}
multiclass ExtractPat<ValueType lane_t, int mask> {
def _s : PatFrag<(ops node:$vec, node:$idx),
(i32 (sext_inreg
(i32 (vector_extract
node:$vec,
node:$idx
)),
lane_t
))>;
def _u : PatFrag<(ops node:$vec, node:$idx),
(i32 (and
(i32 (vector_extract
node:$vec,
node:$idx
)),
(i32 mask)
))>;
}
defm extract_i8x16 : ExtractPat<i8, 0xff>;
defm extract_i16x8 : ExtractPat<i16, 0xffff>;
multiclass ExtractLaneExtended<string sign, bits<32> baseInst> {
defm "" : ExtractLane<v16i8, "i8x16", LaneIdx16, I32, baseInst, sign,
!cast<PatFrag>("extract_i8x16"#sign)>;
defm "" : ExtractLane<v8i16, "i16x8", LaneIdx8, I32, !add(baseInst, 4), sign,
!cast<PatFrag>("extract_i16x8"#sign)>;
}
defm "" : ExtractLaneExtended<"_s", 5>;
let Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
defm "" : ExtractLaneExtended<"_u", 6>;
defm "" : ExtractLane<v4i32, "i32x4", LaneIdx4, I32, 13>;
defm "" : ExtractLane<v2i64, "i64x2", LaneIdx2, I64, 16>;
defm "" : ExtractLane<v4f32, "f32x4", LaneIdx4, F32, 19>;
defm "" : ExtractLane<v2f64, "f64x2", LaneIdx2, F64, 22>;
// It would be more conventional to use unsigned extracts, but v8
// doesn't implement them yet
def : Pat<(i32 (vector_extract (v16i8 V128:$vec), (i32 LaneIdx16:$idx))),
(EXTRACT_LANE_v16i8_s V128:$vec, (i32 LaneIdx16:$idx))>;
def : Pat<(i32 (vector_extract (v8i16 V128:$vec), (i32 LaneIdx8:$idx))),
(EXTRACT_LANE_v8i16_s V128:$vec, (i32 LaneIdx8:$idx))>;
// Lower undef lane indices to zero
def : Pat<(and (i32 (vector_extract (v16i8 V128:$vec), undef)), (i32 0xff)),
(EXTRACT_LANE_v16i8_u V128:$vec, 0)>;
def : Pat<(and (i32 (vector_extract (v8i16 V128:$vec), undef)), (i32 0xffff)),
(EXTRACT_LANE_v8i16_u V128:$vec, 0)>;
def : Pat<(i32 (vector_extract (v16i8 V128:$vec), undef)),
(EXTRACT_LANE_v16i8_u V128:$vec, 0)>;
def : Pat<(i32 (vector_extract (v8i16 V128:$vec), undef)),
(EXTRACT_LANE_v8i16_u V128:$vec, 0)>;
def : Pat<(sext_inreg (i32 (vector_extract (v16i8 V128:$vec), undef)), i8),
(EXTRACT_LANE_v16i8_s V128:$vec, 0)>;
def : Pat<(sext_inreg (i32 (vector_extract (v8i16 V128:$vec), undef)), i16),
(EXTRACT_LANE_v8i16_s V128:$vec, 0)>;
def : Pat<(vector_extract (v4i32 V128:$vec), undef),
(EXTRACT_LANE_v4i32 V128:$vec, 0)>;
def : Pat<(vector_extract (v2i64 V128:$vec), undef),
(EXTRACT_LANE_v2i64 V128:$vec, 0)>;
def : Pat<(vector_extract (v4f32 V128:$vec), undef),
(EXTRACT_LANE_v4f32 V128:$vec, 0)>;
def : Pat<(vector_extract (v2f64 V128:$vec), undef),
(EXTRACT_LANE_v2f64 V128:$vec, 0)>;
// Replace lane value: replace_lane
multiclass ReplaceLane<ValueType vec_t, string vec, ImmLeaf imm_t,
WebAssemblyRegClass reg_t, ValueType lane_t,
bits<32> simdop> {
defm REPLACE_LANE_#vec_t :
SIMD_I<(outs V128:$dst), (ins V128:$vec, vec_i8imm_op:$idx, reg_t:$x),
(outs), (ins vec_i8imm_op:$idx),
[(set V128:$dst, (vector_insert
(vec_t V128:$vec), (lane_t reg_t:$x), (i32 imm_t:$idx)))],
vec#".replace_lane\t$dst, $vec, $idx, $x",
vec#".replace_lane\t$idx", simdop>;
}
defm "" : ReplaceLane<v16i8, "i8x16", LaneIdx16, I32, i32, 7>;
defm "" : ReplaceLane<v8i16, "i16x8", LaneIdx8, I32, i32, 11>;
defm "" : ReplaceLane<v4i32, "i32x4", LaneIdx4, I32, i32, 14>;
defm "" : ReplaceLane<v2i64, "i64x2", LaneIdx2, I64, i64, 17>;
defm "" : ReplaceLane<v4f32, "f32x4", LaneIdx4, F32, f32, 20>;
defm "" : ReplaceLane<v2f64, "f64x2", LaneIdx2, F64, f64, 23>;
// Lower undef lane indices to zero
def : Pat<(vector_insert (v16i8 V128:$vec), I32:$x, undef),
(REPLACE_LANE_v16i8 V128:$vec, 0, I32:$x)>;
def : Pat<(vector_insert (v8i16 V128:$vec), I32:$x, undef),
(REPLACE_LANE_v8i16 V128:$vec, 0, I32:$x)>;
def : Pat<(vector_insert (v4i32 V128:$vec), I32:$x, undef),
(REPLACE_LANE_v4i32 V128:$vec, 0, I32:$x)>;
def : Pat<(vector_insert (v2i64 V128:$vec), I64:$x, undef),
(REPLACE_LANE_v2i64 V128:$vec, 0, I64:$x)>;
def : Pat<(vector_insert (v4f32 V128:$vec), F32:$x, undef),
(REPLACE_LANE_v4f32 V128:$vec, 0, F32:$x)>;
def : Pat<(vector_insert (v2f64 V128:$vec), F64:$x, undef),
(REPLACE_LANE_v2f64 V128:$vec, 0, F64:$x)>;
//===----------------------------------------------------------------------===//
// Comparisons
//===----------------------------------------------------------------------===//
multiclass SIMDCondition<ValueType vec_t, ValueType out_t, string vec,
string name, CondCode cond, bits<32> simdop> {
defm _#vec_t :
SIMD_I<(outs V128:$dst), (ins V128:$lhs, V128:$rhs), (outs), (ins),
[(set (out_t V128:$dst),
(setcc (vec_t V128:$lhs), (vec_t V128:$rhs), cond)
)],
vec#"."#name#"\t$dst, $lhs, $rhs", vec#"."#name, simdop>;
}
multiclass SIMDConditionInt<string name, CondCode cond, bits<32> baseInst> {
defm "" : SIMDCondition<v16i8, v16i8, "i8x16", name, cond, baseInst>;
defm "" : SIMDCondition<v8i16, v8i16, "i16x8", name, cond,
!add(baseInst, 10)>;
defm "" : SIMDCondition<v4i32, v4i32, "i32x4", name, cond,
!add(baseInst, 20)>;
}
multiclass SIMDConditionFP<string name, CondCode cond, bits<32> baseInst> {
defm "" : SIMDCondition<v4f32, v4i32, "f32x4", name, cond, baseInst>;
defm "" : SIMDCondition<v2f64, v2i64, "f64x2", name, cond,
!add(baseInst, 6)>;
}
// Equality: eq
let isCommutable = 1 in {
defm EQ : SIMDConditionInt<"eq", SETEQ, 24>;
defm EQ : SIMDConditionFP<"eq", SETOEQ, 64>;
} // isCommutable = 1
// Non-equality: ne
let isCommutable = 1 in {
defm NE : SIMDConditionInt<"ne", SETNE, 25>;
defm NE : SIMDConditionFP<"ne", SETUNE, 65>;
} // isCommutable = 1
// Less than: lt_s / lt_u / lt
defm LT_S : SIMDConditionInt<"lt_s", SETLT, 26>;
defm LT_U : SIMDConditionInt<"lt_u", SETULT, 27>;
defm LT : SIMDConditionFP<"lt", SETOLT, 66>;
// Greater than: gt_s / gt_u / gt
defm GT_S : SIMDConditionInt<"gt_s", SETGT, 28>;
defm GT_U : SIMDConditionInt<"gt_u", SETUGT, 29>;
defm GT : SIMDConditionFP<"gt", SETOGT, 67>;
// Less than or equal: le_s / le_u / le
defm LE_S : SIMDConditionInt<"le_s", SETLE, 30>;
defm LE_U : SIMDConditionInt<"le_u", SETULE, 31>;
defm LE : SIMDConditionFP<"le", SETOLE, 68>;
// Greater than or equal: ge_s / ge_u / ge
defm GE_S : SIMDConditionInt<"ge_s", SETGE, 32>;
defm GE_U : SIMDConditionInt<"ge_u", SETUGE, 33>;
defm GE : SIMDConditionFP<"ge", SETOGE, 69>;
// Lower float comparisons that don't care about NaN to standard WebAssembly
// float comparisons. These instructions are generated in the target-independent
// expansion of unordered comparisons and ordered ne.
def : Pat<(v4i32 (seteq (v4f32 V128:$lhs), (v4f32 V128:$rhs))),
(v4i32 (EQ_v4f32 (v4f32 V128:$lhs), (v4f32 V128:$rhs)))>;
def : Pat<(v4i32 (setne (v4f32 V128:$lhs), (v4f32 V128:$rhs))),
(v4i32 (NE_v4f32 (v4f32 V128:$lhs), (v4f32 V128:$rhs)))>;
def : Pat<(v2i64 (seteq (v2f64 V128:$lhs), (v2f64 V128:$rhs))),
(v2i64 (EQ_v2f64 (v2f64 V128:$lhs), (v2f64 V128:$rhs)))>;
def : Pat<(v2i64 (setne (v2f64 V128:$lhs), (v2f64 V128:$rhs))),
(v2i64 (NE_v2f64 (v2f64 V128:$lhs), (v2f64 V128:$rhs)))>;
//===----------------------------------------------------------------------===//
// Bitwise operations
//===----------------------------------------------------------------------===//
multiclass SIMDBinary<ValueType vec_t, string vec, SDNode node, string name,
bits<32> simdop> {
defm _#vec_t : SIMD_I<(outs V128:$dst), (ins V128:$lhs, V128:$rhs),
(outs), (ins),
[(set (vec_t V128:$dst),
(node (vec_t V128:$lhs), (vec_t V128:$rhs))
)],
vec#"."#name#"\t$dst, $lhs, $rhs", vec#"."#name,
simdop>;
}
multiclass SIMDBitwise<SDNode node, string name, bits<32> simdop> {
defm "" : SIMDBinary<v16i8, "v128", node, name, simdop>;
defm "" : SIMDBinary<v8i16, "v128", node, name, simdop>;
defm "" : SIMDBinary<v4i32, "v128", node, name, simdop>;
defm "" : SIMDBinary<v2i64, "v128", node, name, simdop>;
}
multiclass SIMDUnary<ValueType vec_t, string vec, SDNode node, string name,
bits<32> simdop> {
defm _#vec_t : SIMD_I<(outs V128:$dst), (ins V128:$vec), (outs), (ins),
[(set (vec_t V128:$dst),
(vec_t (node (vec_t V128:$vec)))
)],
vec#"."#name#"\t$dst, $vec", vec#"."#name, simdop>;
}
// Bitwise logic: v128.not
foreach vec_t = [v16i8, v8i16, v4i32, v2i64] in
defm NOT: SIMDUnary<vec_t, "v128", vnot, "not", 76>;
// Bitwise logic: v128.and / v128.or / v128.xor
let isCommutable = 1 in {
defm AND : SIMDBitwise<and, "and", 77>;
defm OR : SIMDBitwise<or, "or", 78>;
defm XOR : SIMDBitwise<xor, "xor", 79>;
} // isCommutable = 1
// Bitwise select: v128.bitselect
foreach vec_t = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in
defm BITSELECT_#vec_t :
SIMD_I<(outs V128:$dst), (ins V128:$v1, V128:$v2, V128:$c), (outs), (ins),
[(set (vec_t V128:$dst),
(vec_t (int_wasm_bitselect
(vec_t V128:$v1), (vec_t V128:$v2), (vec_t V128:$c)
))
)],
"v128.bitselect\t$dst, $v1, $v2, $c", "v128.bitselect", 80>;
// Bitselect is equivalent to (c & v1) | (~c & v2)
foreach vec_t = [v16i8, v8i16, v4i32, v2i64] in
def : Pat<(vec_t (or (and (vec_t V128:$c), (vec_t V128:$v1)),
(and (vnot V128:$c), (vec_t V128:$v2)))),
(!cast<Instruction>("BITSELECT_"#vec_t)
V128:$v1, V128:$v2, V128:$c)>;
//===----------------------------------------------------------------------===//
// Integer unary arithmetic
//===----------------------------------------------------------------------===//
multiclass SIMDUnaryInt<SDNode node, string name, bits<32> baseInst> {
defm "" : SIMDUnary<v16i8, "i8x16", node, name, baseInst>;
defm "" : SIMDUnary<v8i16, "i16x8", node, name, !add(baseInst, 17)>;
defm "" : SIMDUnary<v4i32, "i32x4", node, name, !add(baseInst, 34)>;
defm "" : SIMDUnary<v2i64, "i64x2", node, name, !add(baseInst, 51)>;
}
multiclass SIMDReduceVec<ValueType vec_t, string vec, SDNode op, string name,
bits<32> simdop> {
defm _#vec_t : SIMD_I<(outs I32:$dst), (ins V128:$vec), (outs), (ins),
[(set I32:$dst, (i32 (op (vec_t V128:$vec))))],
vec#"."#name#"\t$dst, $vec", vec#"."#name, simdop>;
}
multiclass SIMDReduce<SDNode op, string name, bits<32> baseInst> {
defm "" : SIMDReduceVec<v16i8, "i8x16", op, name, baseInst>;
defm "" : SIMDReduceVec<v8i16, "i16x8", op, name, !add(baseInst, 17)>;
defm "" : SIMDReduceVec<v4i32, "i32x4", op, name, !add(baseInst, 34)>;
defm "" : SIMDReduceVec<v2i64, "i64x2", op, name, !add(baseInst, 51)>;
}
// Integer vector negation
def ivneg : PatFrag<(ops node:$in), (sub immAllZerosV, node:$in)>;
// Integer negation: neg
defm NEG : SIMDUnaryInt<ivneg, "neg", 81>;
// Any lane true: any_true
defm ANYTRUE : SIMDReduce<int_wasm_anytrue, "any_true", 82>;
// All lanes true: all_true
defm ALLTRUE : SIMDReduce<int_wasm_alltrue, "all_true", 83>;
//===----------------------------------------------------------------------===//
// Bit shifts
//===----------------------------------------------------------------------===//
multiclass SIMDShift<ValueType vec_t, string vec, SDNode node, dag shift_vec,
string name, bits<32> simdop> {
defm _#vec_t : SIMD_I<(outs V128:$dst), (ins V128:$vec, I32:$x),
(outs), (ins),
[(set (vec_t V128:$dst),
(node V128:$vec, (vec_t shift_vec)))],
vec#"."#name#"\t$dst, $vec, $x", vec#"."#name, simdop>;
}
multiclass SIMDShiftInt<SDNode node, string name, bits<32> baseInst> {
defm "" : SIMDShift<v16i8, "i8x16", node, (splat16 I32:$x), name, baseInst>;
defm "" : SIMDShift<v8i16, "i16x8", node, (splat8 I32:$x), name,
!add(baseInst, 17)>;
defm "" : SIMDShift<v4i32, "i32x4", node, (splat4 I32:$x), name,
!add(baseInst, 34)>;
defm "" : SIMDShift<v2i64, "i64x2", node, (splat2 (i64 (zext I32:$x))),
name, !add(baseInst, 51)>;
}
// Left shift by scalar: shl
defm SHL : SIMDShiftInt<shl, "shl", 84>;
// Right shift by scalar: shr_s / shr_u
defm SHR_S : SIMDShiftInt<sra, "shr_s", 85>;
defm SHR_U : SIMDShiftInt<srl, "shr_u", 86>;
// Truncate i64 shift operands to i32s
foreach shifts = [[shl, SHL_v2i64], [sra, SHR_S_v2i64], [srl, SHR_U_v2i64]] in
def : Pat<(v2i64 (shifts[0] (v2i64 V128:$vec), (v2i64 (splat2 I64:$x)))),
(v2i64 (shifts[1] (v2i64 V128:$vec), (I32_WRAP_I64 I64:$x)))>;
// 2xi64 shifts with constant shift amounts are custom lowered to avoid wrapping
def wasm_shift_t : SDTypeProfile<1, 2,
[SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisVT<2, i32>]
>;
def wasm_shl : SDNode<"WebAssemblyISD::VEC_SHL", wasm_shift_t>;
def wasm_shr_s : SDNode<"WebAssemblyISD::VEC_SHR_S", wasm_shift_t>;
def wasm_shr_u : SDNode<"WebAssemblyISD::VEC_SHR_U", wasm_shift_t>;
foreach shifts = [[wasm_shl, SHL_v2i64],
[wasm_shr_s, SHR_S_v2i64],
[wasm_shr_u, SHR_U_v2i64]] in
def : Pat<(v2i64 (shifts[0] (v2i64 V128:$vec), I32:$x)),
(v2i64 (shifts[1] (v2i64 V128:$vec), I32:$x))>;
//===----------------------------------------------------------------------===//
// Integer binary arithmetic
//===----------------------------------------------------------------------===//
multiclass SIMDBinaryIntSmall<SDNode node, string name, bits<32> baseInst> {
defm "" : SIMDBinary<v16i8, "i8x16", node, name, baseInst>;
defm "" : SIMDBinary<v8i16, "i16x8", node, name, !add(baseInst, 17)>;
}
multiclass SIMDBinaryIntNoI64x2<SDNode node, string name, bits<32> baseInst> {
defm "" : SIMDBinaryIntSmall<node, name, baseInst>;
defm "" : SIMDBinary<v4i32, "i32x4", node, name, !add(baseInst, 34)>;
}
multiclass SIMDBinaryInt<SDNode node, string name, bits<32> baseInst> {
defm "" : SIMDBinaryIntNoI64x2<node, name, baseInst>;
defm "" : SIMDBinary<v2i64, "i64x2", node, name, !add(baseInst, 51)>;
}
// Integer addition: add / add_saturate_s / add_saturate_u
let isCommutable = 1 in {
defm ADD : SIMDBinaryInt<add, "add", 87>;
defm ADD_SAT_S : SIMDBinaryIntSmall<saddsat, "add_saturate_s", 88>;
defm ADD_SAT_U : SIMDBinaryIntSmall<uaddsat, "add_saturate_u", 89>;
} // isCommutable = 1
// Integer subtraction: sub / sub_saturate_s / sub_saturate_u
defm SUB : SIMDBinaryInt<sub, "sub", 90>;
defm SUB_SAT_S :
SIMDBinaryIntSmall<int_wasm_sub_saturate_signed, "sub_saturate_s", 91>;
defm SUB_SAT_U :
SIMDBinaryIntSmall<int_wasm_sub_saturate_unsigned, "sub_saturate_u", 92>;
// Integer multiplication: mul
defm MUL : SIMDBinaryIntNoI64x2<mul, "mul", 93>;
//===----------------------------------------------------------------------===//
// Floating-point unary arithmetic
//===----------------------------------------------------------------------===//
multiclass SIMDUnaryFP<SDNode node, string name, bits<32> baseInst> {
defm "" : SIMDUnary<v4f32, "f32x4", node, name, baseInst>;
defm "" : SIMDUnary<v2f64, "f64x2", node, name, !add(baseInst, 11)>;
}
// Absolute value: abs
defm ABS : SIMDUnaryFP<fabs, "abs", 149>;
// Negation: neg
defm NEG : SIMDUnaryFP<fneg, "neg", 150>;
// Square root: sqrt
let Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
defm SQRT : SIMDUnaryFP<fsqrt, "sqrt", 151>;
//===----------------------------------------------------------------------===//
// Floating-point binary arithmetic
//===----------------------------------------------------------------------===//
multiclass SIMDBinaryFP<SDNode node, string name, bits<32> baseInst> {
defm "" : SIMDBinary<v4f32, "f32x4", node, name, baseInst>;
defm "" : SIMDBinary<v2f64, "f64x2", node, name, !add(baseInst, 11)>;
}
// Addition: add
let isCommutable = 1 in
defm ADD : SIMDBinaryFP<fadd, "add", 154>;
// Subtraction: sub
defm SUB : SIMDBinaryFP<fsub, "sub", 155>;
// Multiplication: mul
let isCommutable = 1 in
defm MUL : SIMDBinaryFP<fmul, "mul", 156>;
// Division: div
let Predicates = [HasSIMD128, HasUnimplementedSIMD128] in
defm DIV : SIMDBinaryFP<fdiv, "div", 157>;
// NaN-propagating minimum: min
defm MIN : SIMDBinaryFP<fminimum, "min", 158>;
// NaN-propagating maximum: max
defm MAX : SIMDBinaryFP<fmaximum, "max", 159>;
//===----------------------------------------------------------------------===//
// Conversions
//===----------------------------------------------------------------------===//
multiclass SIMDConvert<ValueType vec_t, ValueType arg_t, SDNode op,
string name, bits<32> simdop> {
defm op#_#vec_t#_#arg_t :
SIMD_I<(outs V128:$dst), (ins V128:$vec), (outs), (ins),
[(set (vec_t V128:$dst), (vec_t (op (arg_t V128:$vec))))],
name#"\t$dst, $vec", name, simdop>;
}
// Integer to floating point: convert
defm "" : SIMDConvert<v4f32, v4i32, sint_to_fp, "f32x4.convert_i32x4_s", 175>;
defm "" : SIMDConvert<v4f32, v4i32, uint_to_fp, "f32x4.convert_i32x4_u", 176>;
defm "" : SIMDConvert<v2f64, v2i64, sint_to_fp, "f64x2.convert_i64x2_s", 177>;
defm "" : SIMDConvert<v2f64, v2i64, uint_to_fp, "f64x2.convert_i64x2_u", 178>;
// Floating point to integer with saturation: trunc_sat
defm "" : SIMDConvert<v4i32, v4f32, fp_to_sint, "i32x4.trunc_sat_f32x4_s", 171>;
defm "" : SIMDConvert<v4i32, v4f32, fp_to_uint, "i32x4.trunc_sat_f32x4_u", 172>;
defm "" : SIMDConvert<v2i64, v2f64, fp_to_sint, "i64x2.trunc_sat_f64x2_s", 173>;
defm "" : SIMDConvert<v2i64, v2f64, fp_to_uint, "i64x2.trunc_sat_f64x2_u", 174>;
// Lower llvm.wasm.trunc.saturate.* to saturating instructions
def : Pat<(v4i32 (int_wasm_trunc_saturate_signed (v4f32 V128:$src))),
(fp_to_sint_v4i32_v4f32 (v4f32 V128:$src))>;
def : Pat<(v4i32 (int_wasm_trunc_saturate_unsigned (v4f32 V128:$src))),
(fp_to_uint_v4i32_v4f32 (v4f32 V128:$src))>;
def : Pat<(v2i64 (int_wasm_trunc_saturate_signed (v2f64 V128:$src))),
(fp_to_sint_v2i64_v2f64 (v2f64 V128:$src))>;
def : Pat<(v2i64 (int_wasm_trunc_saturate_unsigned (v2f64 V128:$src))),
(fp_to_uint_v2i64_v2f64 (v2f64 V128:$src))>;
// Bitcasts are nops
// Matching bitcast t1 to t1 causes strange errors, so avoid repeating types
foreach t1 = [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64] in
foreach t2 = !foldl(
[]<ValueType>, [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
acc, cur, !if(!eq(!cast<string>(t1), !cast<string>(cur)),
acc, !listconcat(acc, [cur])
)
) in
def : Pat<(t1 (bitconvert (t2 V128:$v))), (t1 V128:$v)>;