They can be simplified to reshape ops if outer_dims_perm is an identity permutation. The revision adds a `isIdentityPermutation` method to IndexingUtils.
289 lines
11 KiB
C++
289 lines
11 KiB
C++
//===- FoldIntoPackAndUnpackPatterns.cpp ----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
namespace mlir {
|
|
namespace tensor {
|
|
namespace {
|
|
|
|
static bool areAllConstantIntValue(ArrayRef<OpFoldResult> ofrs, int64_t value) {
|
|
return llvm::all_of(
|
|
ofrs, [&](OpFoldResult ofr) { return isConstantIntValue(ofr, value); });
|
|
}
|
|
|
|
/// Packing one-dimensional tensor can be expressed as an expand shape op.
|
|
struct SimplifyPackToExpandShape : public OpRewritePattern<PackOp> {
|
|
using OpRewritePattern<PackOp>::OpRewritePattern;
|
|
|
|
Value insertExpand(RewriterBase &rewriter, Location loc, Value operand,
|
|
Type newOperandType, ArrayAttr reassociation) const {
|
|
if (operand.getType() == newOperandType)
|
|
return operand;
|
|
return rewriter.create<tensor::ExpandShapeOp>(loc, newOperandType, operand,
|
|
reassociation);
|
|
}
|
|
|
|
LogicalResult matchAndRewrite(PackOp packOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (packOp.getPaddingValue())
|
|
return rewriter.notifyMatchFailure(packOp, "expects no padding value");
|
|
|
|
auto outerDimsPerm = packOp.getOuterDimsPerm();
|
|
if (!outerDimsPerm.empty() && !isIdentityPermutation(outerDimsPerm)) {
|
|
return rewriter.notifyMatchFailure(
|
|
packOp,
|
|
"expects outer_dims_perm is empty or an identity permutation");
|
|
}
|
|
|
|
RankedTensorType sourceType = packOp.getSourceType();
|
|
RankedTensorType destType = packOp.getDestType();
|
|
ArrayRef<int64_t> dimsPos = packOp.getInnerDimsPos();
|
|
if (dimsPos.size() != 1 || (dimsPos[0] + 1 != sourceType.getRank())) {
|
|
return rewriter.notifyMatchFailure(
|
|
packOp, "expects packing at the innermost dimension");
|
|
}
|
|
|
|
auto reassociation =
|
|
getReassociationIndicesForReshape(sourceType, destType);
|
|
if (!reassociation)
|
|
return failure();
|
|
Value expanded = insertExpand(
|
|
rewriter, packOp.getLoc(), packOp.getSource(), destType,
|
|
getReassociationIndicesAttribute(rewriter, *reassociation));
|
|
rewriter.replaceOp(packOp, expanded);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct SimplifyUnPackToCollapseShape : public OpRewritePattern<UnPackOp> {
|
|
using OpRewritePattern<UnPackOp>::OpRewritePattern;
|
|
|
|
Value insertCollapse(RewriterBase &rewriter, Location loc, Value operand,
|
|
Type newOperandType, ArrayAttr reassociation) const {
|
|
if (operand.getType() == newOperandType)
|
|
return operand;
|
|
return rewriter.create<tensor::CollapseShapeOp>(loc, newOperandType,
|
|
operand, reassociation);
|
|
}
|
|
|
|
LogicalResult matchAndRewrite(UnPackOp unpackOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto outerDimsPerm = unpackOp.getOuterDimsPerm();
|
|
if (!outerDimsPerm.empty() && !isIdentityPermutation(outerDimsPerm)) {
|
|
return rewriter.notifyMatchFailure(
|
|
unpackOp,
|
|
"expects outer_dims_perm is empty or an identity permutation");
|
|
}
|
|
|
|
RankedTensorType sourceType = unpackOp.getSourceType();
|
|
RankedTensorType destType = unpackOp.getDestType();
|
|
if (!sourceType.hasStaticShape() || !destType.hasStaticShape())
|
|
return rewriter.notifyMatchFailure(unpackOp, "expects static shapes");
|
|
|
|
ArrayRef<int64_t> dimsPos = unpackOp.getInnerDimsPos();
|
|
if (dimsPos.size() != 1 || (dimsPos[0] + 1 != destType.getRank())) {
|
|
return rewriter.notifyMatchFailure(
|
|
unpackOp, "expects unpacking at the innermost dimension");
|
|
}
|
|
|
|
auto reassociation =
|
|
getReassociationIndicesForReshape(sourceType, destType);
|
|
if (!reassociation)
|
|
return failure();
|
|
Value collapsed = insertCollapse(
|
|
rewriter, unpackOp.getLoc(), unpackOp.getSource(), destType,
|
|
getReassociationIndicesAttribute(rewriter, *reassociation));
|
|
rewriter.replaceOp(unpackOp, collapsed);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Fold a `pad` -> `pack` into `pack` if they have the same padding values and
|
|
/// the pad op has zero low paddings, or if `pack` has no padding values.
|
|
struct FoldPadWithPackOp : public OpRewritePattern<PackOp> {
|
|
using OpRewritePattern<PackOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(PackOp packOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto padOp = packOp.getSource().getDefiningOp<PadOp>();
|
|
|
|
if (!padOp || padOp.getNofold() || !padOp.hasZeroLowPad())
|
|
return failure();
|
|
|
|
Value constantPaddingValue = padOp.getConstantPaddingValue();
|
|
if (!constantPaddingValue)
|
|
return failure();
|
|
|
|
if (auto paddingValue = packOp.getPaddingValue())
|
|
if (!isEqualConstantIntOrValue(paddingValue, constantPaddingValue))
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<PackOp>(
|
|
packOp, padOp.getSource(), packOp.getDest(), packOp.getInnerDimsPos(),
|
|
packOp.getMixedTiles(), constantPaddingValue,
|
|
packOp.getOuterDimsPerm());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Fold a `unpack` -> `extract_slice` into the `unpack` since it already
|
|
/// has extract_slice semantics.
|
|
struct FoldUnpackWithExtractSliceOp : public OpRewritePattern<ExtractSliceOp> {
|
|
using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto unpackOp = sliceOp.getSource().getDefiningOp<UnPackOp>();
|
|
if (!unpackOp)
|
|
return failure();
|
|
|
|
if (sliceOp.getResultType().getRank() != unpackOp.getDestType().getRank()) {
|
|
return rewriter.notifyMatchFailure(
|
|
sliceOp, "rank-reduced folding is not supported");
|
|
}
|
|
|
|
// Check all offsets are zeros, and all strides are ones.
|
|
if (!areAllConstantIntValue(sliceOp.getMixedOffsets(), 0) ||
|
|
!areAllConstantIntValue(sliceOp.getMixedStrides(), 1)) {
|
|
return rewriter.notifyMatchFailure(
|
|
sliceOp, "expects offsets to be 0s and strides to be 1s");
|
|
}
|
|
|
|
// Create a new empty output tensor.
|
|
Type elementType = unpackOp.getDestType().getElementType();
|
|
Value output = rewriter.create<EmptyOp>(
|
|
sliceOp.getLoc(), sliceOp.getMixedSizes(), elementType);
|
|
rewriter.replaceOpWithNewOp<UnPackOp>(
|
|
sliceOp, unpackOp.getSource(), output, unpackOp.getInnerDimsPos(),
|
|
unpackOp.getMixedTiles(), unpackOp.getOuterDimsPerm());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Fold 'pack' -> 'transpose' into 'pack' since 'pack' already has transpose
|
|
/// semantics.
|
|
struct FoldProducerPackWithConsumerLinalgTransposeOp
|
|
: public OpRewritePattern<linalg::TransposeOp> {
|
|
using OpRewritePattern<linalg::TransposeOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(linalg::TransposeOp transposeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto packOp = transposeOp.getOperand(0).getDefiningOp<PackOp>();
|
|
|
|
if (!packOp)
|
|
return failure();
|
|
|
|
auto innerDimsPos = packOp.getInnerDimsPos();
|
|
auto mixedInnerTiles = packOp.getMixedTiles();
|
|
auto outerDimsPerm = packOp.getOuterDimsPerm();
|
|
auto transposePerm = transposeOp.getPermutation();
|
|
SmallVector<int64_t> newOuterDimsPermVec;
|
|
SmallVector<int64_t> newInnerDimsPosVec;
|
|
SmallVector<OpFoldResult> newMixedInnerTilesVec;
|
|
int64_t srcRank = packOp.getSourceRank();
|
|
|
|
// Process transpose operation for non-tiled outer dimensions
|
|
for (unsigned int i = 0; i < srcRank; ++i) {
|
|
int64_t remappedPosition = transposePerm[i];
|
|
|
|
// If tensor.pack has outer_dims_perm attribute, then consider it during
|
|
// index remapping.
|
|
if (!outerDimsPerm.empty()) {
|
|
if (transposePerm[i] >= srcRank) {
|
|
return rewriter.notifyMatchFailure(
|
|
transposeOp,
|
|
"Cannot fold in tensor.pack if a tile dimension was transposed "
|
|
"with a non-tile dimension in linalg.transpose.");
|
|
}
|
|
remappedPosition = outerDimsPerm[remappedPosition];
|
|
}
|
|
|
|
newOuterDimsPermVec.push_back(remappedPosition);
|
|
}
|
|
|
|
// Process transpose operation for tiled inner dimensions
|
|
for (unsigned int i = srcRank; i < transposePerm.size(); ++i) {
|
|
int64_t remappedPosition = transposePerm[i] - srcRank;
|
|
newMixedInnerTilesVec.push_back(mixedInnerTiles[remappedPosition]);
|
|
newInnerDimsPosVec.push_back(innerDimsPos[remappedPosition]);
|
|
}
|
|
|
|
Value output = packOp.createDestinationTensor(
|
|
rewriter, transposeOp.getLoc(), packOp.getSource(),
|
|
newMixedInnerTilesVec, newInnerDimsPosVec, newOuterDimsPermVec);
|
|
|
|
rewriter.replaceOpWithNewOp<PackOp>(
|
|
transposeOp, packOp.getSource(), output, newInnerDimsPosVec,
|
|
newMixedInnerTilesVec, packOp.getPaddingValue(), newOuterDimsPermVec);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Fold 'transpose' -> 'pack' into 'pack' since 'pack' already has transpose
|
|
/// semantics.
|
|
struct FoldConsumerPackWithProducerLinalgTransposeOp
|
|
: public OpRewritePattern<PackOp> {
|
|
using OpRewritePattern<PackOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(PackOp packOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto transposeOp = packOp.getSource().getDefiningOp<linalg::TransposeOp>();
|
|
|
|
if (!transposeOp)
|
|
return failure();
|
|
|
|
auto transposePermutation = transposeOp.getPermutation();
|
|
auto outerDimsPerm = packOp.getOuterDimsPerm();
|
|
auto innerDimsPos = packOp.getInnerDimsPos();
|
|
SmallVector<int64_t> newInnerDimsPosVec;
|
|
SmallVector<int64_t> newOuterDimsPermVec =
|
|
llvm::to_vector(transposePermutation);
|
|
|
|
if (!outerDimsPerm.empty())
|
|
applyPermutationToVector(newOuterDimsPermVec, outerDimsPerm);
|
|
|
|
// Can't use applyPermutationToVector for newInnerDimsPosVec since input and
|
|
// permutation rank won't necessarily be equal in all cases.
|
|
for (auto dim : innerDimsPos)
|
|
newInnerDimsPosVec.push_back(transposePermutation[dim]);
|
|
|
|
Value output = packOp.createDestinationTensor(
|
|
rewriter, packOp.getLoc(), transposeOp.getOperand(0),
|
|
packOp.getMixedTiles(), newInnerDimsPosVec, newOuterDimsPermVec);
|
|
|
|
rewriter.replaceOpWithNewOp<PackOp>(
|
|
packOp, transposeOp.getOperand(0), output, newInnerDimsPosVec,
|
|
packOp.getMixedTiles(), packOp.getPaddingValue(), newOuterDimsPermVec);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void populateFoldIntoPackAndUnpackPatterns(RewritePatternSet &patterns) {
|
|
patterns.insert<FoldUnpackWithExtractSliceOp, FoldPadWithPackOp,
|
|
FoldProducerPackWithConsumerLinalgTransposeOp,
|
|
FoldConsumerPackWithProducerLinalgTransposeOp>(
|
|
patterns.getContext());
|
|
}
|
|
|
|
void populateSimplifyPackAndUnpackPatterns(RewritePatternSet &patterns) {
|
|
patterns.add<SimplifyPackToExpandShape, SimplifyUnPackToCollapseShape>(
|
|
patterns.getContext());
|
|
}
|
|
|
|
} // namespace tensor
|
|
} // namespace mlir
|