Files
clang-p2996/compiler-rt/lib/msan/msan_allocator.cc
Evgeniy Stepanov d3305afc75 Return memory to OS right after free (not in the async thread).
Summary:
In order to avoid starting a separate thread to return unused memory to
the system (the thread interferes with process startup on Android,
Zygota waits for all threads to exit before fork, but this thread never
exits), try to return it right after free.

Reviewers: eugenis

Subscribers: cryptoad, filcab, danalbert, kubabrecka, llvm-commits

Patch by Aleksey Shlyapnikov.

Differential Revision: https://reviews.llvm.org/D27003

llvm-svn: 288091
2016-11-29 00:22:50 +00:00

256 lines
8.6 KiB
C++

//===-- msan_allocator.cc --------------------------- ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemorySanitizer.
//
// MemorySanitizer allocator.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "msan.h"
#include "msan_allocator.h"
#include "msan_origin.h"
#include "msan_thread.h"
#include "msan_poisoning.h"
namespace __msan {
struct Metadata {
uptr requested_size;
};
struct MsanMapUnmapCallback {
void OnMap(uptr p, uptr size) const {}
void OnUnmap(uptr p, uptr size) const {
__msan_unpoison((void *)p, size);
// We are about to unmap a chunk of user memory.
// Mark the corresponding shadow memory as not needed.
ReleaseMemoryToOS(MEM_TO_SHADOW(p), size);
if (__msan_get_track_origins())
ReleaseMemoryToOS(MEM_TO_ORIGIN(p), size);
}
};
#if defined(__mips64)
static const uptr kMaxAllowedMallocSize = 2UL << 30;
static const uptr kRegionSizeLog = 20;
static const uptr kNumRegions = SANITIZER_MMAP_RANGE_SIZE >> kRegionSizeLog;
typedef TwoLevelByteMap<(kNumRegions >> 12), 1 << 12> ByteMap;
typedef CompactSizeClassMap SizeClassMap;
typedef SizeClassAllocator32<0, SANITIZER_MMAP_RANGE_SIZE, sizeof(Metadata),
SizeClassMap, kRegionSizeLog, ByteMap,
MsanMapUnmapCallback> PrimaryAllocator;
#elif defined(__x86_64__)
#if SANITIZER_LINUX && !defined(MSAN_LINUX_X86_64_OLD_MAPPING)
static const uptr kAllocatorSpace = 0x700000000000ULL;
#else
static const uptr kAllocatorSpace = 0x600000000000ULL;
#endif
static const uptr kMaxAllowedMallocSize = 8UL << 30;
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
static const uptr kSpaceBeg = kAllocatorSpace;
static const uptr kSpaceSize = 0x40000000000; // 4T.
static const uptr kMetadataSize = sizeof(Metadata);
typedef DefaultSizeClassMap SizeClassMap;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#elif defined(__powerpc64__)
static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
static const uptr kSpaceBeg = 0x300000000000;
static const uptr kSpaceSize = 0x020000000000; // 2T.
static const uptr kMetadataSize = sizeof(Metadata);
typedef DefaultSizeClassMap SizeClassMap;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#elif defined(__aarch64__)
static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
static const uptr kRegionSizeLog = 20;
static const uptr kNumRegions = SANITIZER_MMAP_RANGE_SIZE >> kRegionSizeLog;
typedef TwoLevelByteMap<(kNumRegions >> 12), 1 << 12> ByteMap;
typedef CompactSizeClassMap SizeClassMap;
typedef SizeClassAllocator32<0, SANITIZER_MMAP_RANGE_SIZE, sizeof(Metadata),
SizeClassMap, kRegionSizeLog, ByteMap,
MsanMapUnmapCallback> PrimaryAllocator;
#endif
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<MsanMapUnmapCallback> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
SecondaryAllocator> Allocator;
static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;
void MsanAllocatorInit() {
allocator.Init(
common_flags()->allocator_may_return_null,
common_flags()->allocator_release_to_os_interval_ms);
}
AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
}
void MsanThreadLocalMallocStorage::CommitBack() {
allocator.SwallowCache(GetAllocatorCache(this));
}
static void *MsanAllocate(StackTrace *stack, uptr size, uptr alignment,
bool zeroise) {
if (size > kMaxAllowedMallocSize) {
Report("WARNING: MemorySanitizer failed to allocate %p bytes\n",
(void *)size);
return allocator.ReturnNullOrDieOnBadRequest();
}
MsanThread *t = GetCurrentThread();
void *allocated;
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocated = allocator.Allocate(cache, size, alignment, false);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, size, alignment, false);
}
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
meta->requested_size = size;
if (zeroise) {
__msan_clear_and_unpoison(allocated, size);
} else if (flags()->poison_in_malloc) {
__msan_poison(allocated, size);
if (__msan_get_track_origins()) {
stack->tag = StackTrace::TAG_ALLOC;
Origin o = Origin::CreateHeapOrigin(stack);
__msan_set_origin(allocated, size, o.raw_id());
}
}
MSAN_MALLOC_HOOK(allocated, size);
return allocated;
}
void MsanDeallocate(StackTrace *stack, void *p) {
CHECK(p);
MSAN_FREE_HOOK(p);
Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
uptr size = meta->requested_size;
meta->requested_size = 0;
// This memory will not be reused by anyone else, so we are free to keep it
// poisoned.
if (flags()->poison_in_free) {
__msan_poison(p, size);
if (__msan_get_track_origins()) {
stack->tag = StackTrace::TAG_DEALLOC;
Origin o = Origin::CreateHeapOrigin(stack);
__msan_set_origin(p, size, o.raw_id());
}
}
MsanThread *t = GetCurrentThread();
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocator.Deallocate(cache, p);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocator.Deallocate(cache, p);
}
}
void *MsanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
if (CallocShouldReturnNullDueToOverflow(size, nmemb))
return allocator.ReturnNullOrDieOnBadRequest();
return MsanReallocate(stack, nullptr, nmemb * size, sizeof(u64), true);
}
void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size,
uptr alignment, bool zeroise) {
if (!old_p)
return MsanAllocate(stack, new_size, alignment, zeroise);
if (!new_size) {
MsanDeallocate(stack, old_p);
return nullptr;
}
Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
uptr old_size = meta->requested_size;
uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
if (new_size <= actually_allocated_size) {
// We are not reallocating here.
meta->requested_size = new_size;
if (new_size > old_size) {
if (zeroise) {
__msan_clear_and_unpoison((char *)old_p + old_size,
new_size - old_size);
} else if (flags()->poison_in_malloc) {
stack->tag = StackTrace::TAG_ALLOC;
PoisonMemory((char *)old_p + old_size, new_size - old_size, stack);
}
}
return old_p;
}
uptr memcpy_size = Min(new_size, old_size);
void *new_p = MsanAllocate(stack, new_size, alignment, zeroise);
// Printf("realloc: old_size %zd new_size %zd\n", old_size, new_size);
if (new_p) {
CopyMemory(new_p, old_p, memcpy_size, stack);
MsanDeallocate(stack, old_p);
}
return new_p;
}
static uptr AllocationSize(const void *p) {
if (!p) return 0;
const void *beg = allocator.GetBlockBegin(p);
if (beg != p) return 0;
Metadata *b = (Metadata *)allocator.GetMetaData(p);
return b->requested_size;
}
} // namespace __msan
using namespace __msan;
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() { return 1; }
uptr __sanitizer_get_unmapped_bytes() { return 1; }
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }