Files
clang-p2996/lldb/source/Plugins/Disassembler/llvm/DisassemblerLLVMC.cpp
Zachary Turner bf9a77305f Move classes from Core -> Utility.
This moves the following classes from Core -> Utility.

ConstString
Error
RegularExpression
Stream
StreamString

The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes.  So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.

Differential Revision: https://reviews.llvm.org/D29427

llvm-svn: 293941
2017-02-02 21:39:50 +00:00

1376 lines
44 KiB
C++

//===-- DisassemblerLLVMC.cpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Project includes
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCDisassembler/MCExternalSymbolizer.h"
#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
// Other libraries and framework includes
#include "DisassemblerLLVMC.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/RegularExpression.h"
using namespace lldb;
using namespace lldb_private;
class InstructionLLVMC : public lldb_private::Instruction {
public:
InstructionLLVMC(DisassemblerLLVMC &disasm,
const lldb_private::Address &address,
AddressClass addr_class)
: Instruction(address, addr_class),
m_disasm_wp(std::static_pointer_cast<DisassemblerLLVMC>(
disasm.shared_from_this())),
m_does_branch(eLazyBoolCalculate), m_has_delay_slot(eLazyBoolCalculate),
m_is_call(eLazyBoolCalculate), m_is_valid(false),
m_using_file_addr(false) {}
~InstructionLLVMC() override = default;
bool DoesBranch() override {
if (m_does_branch == eLazyBoolCalculate) {
std::shared_ptr<DisassemblerLLVMC> disasm_sp(GetDisassembler());
if (disasm_sp) {
disasm_sp->Lock(this, NULL);
DataExtractor data;
if (m_opcode.GetData(data)) {
bool is_alternate_isa;
lldb::addr_t pc = m_address.GetFileAddress();
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr =
GetDisasmToUse(is_alternate_isa);
const uint8_t *opcode_data = data.GetDataStart();
const size_t opcode_data_len = data.GetByteSize();
llvm::MCInst inst;
const size_t inst_size =
mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
// Be conservative, if we didn't understand the instruction, say it
// might branch...
if (inst_size == 0)
m_does_branch = eLazyBoolYes;
else {
const bool can_branch = mc_disasm_ptr->CanBranch(inst);
if (can_branch)
m_does_branch = eLazyBoolYes;
else
m_does_branch = eLazyBoolNo;
}
}
disasm_sp->Unlock();
}
}
return m_does_branch == eLazyBoolYes;
}
bool HasDelaySlot() override {
if (m_has_delay_slot == eLazyBoolCalculate) {
std::shared_ptr<DisassemblerLLVMC> disasm_sp(GetDisassembler());
if (disasm_sp) {
disasm_sp->Lock(this, NULL);
DataExtractor data;
if (m_opcode.GetData(data)) {
bool is_alternate_isa;
lldb::addr_t pc = m_address.GetFileAddress();
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr =
GetDisasmToUse(is_alternate_isa);
const uint8_t *opcode_data = data.GetDataStart();
const size_t opcode_data_len = data.GetByteSize();
llvm::MCInst inst;
const size_t inst_size =
mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
// if we didn't understand the instruction, say it doesn't have a
// delay slot...
if (inst_size == 0)
m_has_delay_slot = eLazyBoolNo;
else {
const bool has_delay_slot = mc_disasm_ptr->HasDelaySlot(inst);
if (has_delay_slot)
m_has_delay_slot = eLazyBoolYes;
else
m_has_delay_slot = eLazyBoolNo;
}
}
disasm_sp->Unlock();
}
}
return m_has_delay_slot == eLazyBoolYes;
}
DisassemblerLLVMC::LLVMCDisassembler *GetDisasmToUse(bool &is_alternate_isa) {
is_alternate_isa = false;
std::shared_ptr<DisassemblerLLVMC> disasm_sp(GetDisassembler());
if (disasm_sp) {
if (disasm_sp->m_alternate_disasm_ap.get() != NULL) {
const AddressClass address_class = GetAddressClass();
if (address_class == eAddressClassCodeAlternateISA) {
is_alternate_isa = true;
return disasm_sp->m_alternate_disasm_ap.get();
}
}
return disasm_sp->m_disasm_ap.get();
}
return nullptr;
}
size_t Decode(const lldb_private::Disassembler &disassembler,
const lldb_private::DataExtractor &data,
lldb::offset_t data_offset) override {
// All we have to do is read the opcode which can be easy for some
// architectures
bool got_op = false;
std::shared_ptr<DisassemblerLLVMC> disasm_sp(GetDisassembler());
if (disasm_sp) {
const ArchSpec &arch = disasm_sp->GetArchitecture();
const lldb::ByteOrder byte_order = data.GetByteOrder();
const uint32_t min_op_byte_size = arch.GetMinimumOpcodeByteSize();
const uint32_t max_op_byte_size = arch.GetMaximumOpcodeByteSize();
if (min_op_byte_size == max_op_byte_size) {
// Fixed size instructions, just read that amount of data.
if (!data.ValidOffsetForDataOfSize(data_offset, min_op_byte_size))
return false;
switch (min_op_byte_size) {
case 1:
m_opcode.SetOpcode8(data.GetU8(&data_offset), byte_order);
got_op = true;
break;
case 2:
m_opcode.SetOpcode16(data.GetU16(&data_offset), byte_order);
got_op = true;
break;
case 4:
m_opcode.SetOpcode32(data.GetU32(&data_offset), byte_order);
got_op = true;
break;
case 8:
m_opcode.SetOpcode64(data.GetU64(&data_offset), byte_order);
got_op = true;
break;
default:
m_opcode.SetOpcodeBytes(data.PeekData(data_offset, min_op_byte_size),
min_op_byte_size);
got_op = true;
break;
}
}
if (!got_op) {
bool is_alternate_isa = false;
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr =
GetDisasmToUse(is_alternate_isa);
const llvm::Triple::ArchType machine = arch.GetMachine();
if (machine == llvm::Triple::arm || machine == llvm::Triple::thumb) {
if (machine == llvm::Triple::thumb || is_alternate_isa) {
uint32_t thumb_opcode = data.GetU16(&data_offset);
if ((thumb_opcode & 0xe000) != 0xe000 ||
((thumb_opcode & 0x1800u) == 0)) {
m_opcode.SetOpcode16(thumb_opcode, byte_order);
m_is_valid = true;
} else {
thumb_opcode <<= 16;
thumb_opcode |= data.GetU16(&data_offset);
m_opcode.SetOpcode16_2(thumb_opcode, byte_order);
m_is_valid = true;
}
} else {
m_opcode.SetOpcode32(data.GetU32(&data_offset), byte_order);
m_is_valid = true;
}
} else {
// The opcode isn't evenly sized, so we need to actually use the llvm
// disassembler to parse it and get the size.
uint8_t *opcode_data =
const_cast<uint8_t *>(data.PeekData(data_offset, 1));
const size_t opcode_data_len = data.BytesLeft(data_offset);
const addr_t pc = m_address.GetFileAddress();
llvm::MCInst inst;
disasm_sp->Lock(this, NULL);
const size_t inst_size =
mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
disasm_sp->Unlock();
if (inst_size == 0)
m_opcode.Clear();
else {
m_opcode.SetOpcodeBytes(opcode_data, inst_size);
m_is_valid = true;
}
}
}
return m_opcode.GetByteSize();
}
return 0;
}
void AppendComment(std::string &description) {
if (m_comment.empty())
m_comment.swap(description);
else {
m_comment.append(", ");
m_comment.append(description);
}
}
void CalculateMnemonicOperandsAndComment(
const lldb_private::ExecutionContext *exe_ctx) override {
DataExtractor data;
const AddressClass address_class = GetAddressClass();
if (m_opcode.GetData(data)) {
std::string out_string;
std::string comment_string;
std::shared_ptr<DisassemblerLLVMC> disasm_sp(GetDisassembler());
if (disasm_sp) {
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr;
if (address_class == eAddressClassCodeAlternateISA)
mc_disasm_ptr = disasm_sp->m_alternate_disasm_ap.get();
else
mc_disasm_ptr = disasm_sp->m_disasm_ap.get();
lldb::addr_t pc = m_address.GetFileAddress();
m_using_file_addr = true;
const bool data_from_file = disasm_sp->m_data_from_file;
bool use_hex_immediates = true;
Disassembler::HexImmediateStyle hex_style = Disassembler::eHexStyleC;
if (exe_ctx) {
Target *target = exe_ctx->GetTargetPtr();
if (target) {
use_hex_immediates = target->GetUseHexImmediates();
hex_style = target->GetHexImmediateStyle();
if (!data_from_file) {
const lldb::addr_t load_addr = m_address.GetLoadAddress(target);
if (load_addr != LLDB_INVALID_ADDRESS) {
pc = load_addr;
m_using_file_addr = false;
}
}
}
}
disasm_sp->Lock(this, exe_ctx);
const uint8_t *opcode_data = data.GetDataStart();
const size_t opcode_data_len = data.GetByteSize();
llvm::MCInst inst;
size_t inst_size =
mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
if (inst_size > 0) {
mc_disasm_ptr->SetStyle(use_hex_immediates, hex_style);
mc_disasm_ptr->PrintMCInst(inst, out_string, comment_string);
if (!comment_string.empty()) {
AppendComment(comment_string);
}
}
disasm_sp->Unlock();
if (inst_size == 0) {
m_comment.assign("unknown opcode");
inst_size = m_opcode.GetByteSize();
StreamString mnemonic_strm;
lldb::offset_t offset = 0;
lldb::ByteOrder byte_order = data.GetByteOrder();
switch (inst_size) {
case 1: {
const uint8_t uval8 = data.GetU8(&offset);
m_opcode.SetOpcode8(uval8, byte_order);
m_opcode_name.assign(".byte");
mnemonic_strm.Printf("0x%2.2x", uval8);
} break;
case 2: {
const uint16_t uval16 = data.GetU16(&offset);
m_opcode.SetOpcode16(uval16, byte_order);
m_opcode_name.assign(".short");
mnemonic_strm.Printf("0x%4.4x", uval16);
} break;
case 4: {
const uint32_t uval32 = data.GetU32(&offset);
m_opcode.SetOpcode32(uval32, byte_order);
m_opcode_name.assign(".long");
mnemonic_strm.Printf("0x%8.8x", uval32);
} break;
case 8: {
const uint64_t uval64 = data.GetU64(&offset);
m_opcode.SetOpcode64(uval64, byte_order);
m_opcode_name.assign(".quad");
mnemonic_strm.Printf("0x%16.16" PRIx64, uval64);
} break;
default:
if (inst_size == 0)
return;
else {
const uint8_t *bytes = data.PeekData(offset, inst_size);
if (bytes == NULL)
return;
m_opcode_name.assign(".byte");
m_opcode.SetOpcodeBytes(bytes, inst_size);
mnemonic_strm.Printf("0x%2.2x", bytes[0]);
for (uint32_t i = 1; i < inst_size; ++i)
mnemonic_strm.Printf(" 0x%2.2x", bytes[i]);
}
break;
}
m_mnemonics = mnemonic_strm.GetString();
return;
} else {
if (m_does_branch == eLazyBoolCalculate) {
const bool can_branch = mc_disasm_ptr->CanBranch(inst);
if (can_branch)
m_does_branch = eLazyBoolYes;
else
m_does_branch = eLazyBoolNo;
}
}
static RegularExpression s_regex(
llvm::StringRef("[ \t]*([^ ^\t]+)[ \t]*([^ ^\t].*)?"));
RegularExpression::Match matches(3);
if (s_regex.Execute(out_string, &matches)) {
matches.GetMatchAtIndex(out_string.c_str(), 1, m_opcode_name);
matches.GetMatchAtIndex(out_string.c_str(), 2, m_mnemonics);
}
}
}
}
bool IsValid() const { return m_is_valid; }
bool UsingFileAddress() const { return m_using_file_addr; }
size_t GetByteSize() const { return m_opcode.GetByteSize(); }
std::shared_ptr<DisassemblerLLVMC> GetDisassembler() {
return m_disasm_wp.lock();
}
static llvm::StringRef::const_iterator
ConsumeWhitespace(llvm::StringRef::const_iterator osi,
llvm::StringRef::const_iterator ose) {
while (osi != ose) {
switch (*osi) {
default:
return osi;
case ' ':
case '\t':
break;
}
++osi;
}
return osi;
}
static std::pair<bool, llvm::StringRef::const_iterator>
ConsumeChar(llvm::StringRef::const_iterator osi, const char c,
llvm::StringRef::const_iterator ose) {
bool found = false;
osi = ConsumeWhitespace(osi, ose);
if (osi != ose && *osi == c) {
found = true;
++osi;
}
return std::make_pair(found, osi);
}
static std::pair<Operand, llvm::StringRef::const_iterator>
ParseRegisterName(llvm::StringRef::const_iterator osi,
llvm::StringRef::const_iterator ose) {
Operand ret;
ret.m_type = Operand::Type::Register;
std::string str;
osi = ConsumeWhitespace(osi, ose);
while (osi != ose) {
if (*osi >= '0' && *osi <= '9') {
if (str.empty()) {
return std::make_pair(Operand(), osi);
} else {
str.push_back(*osi);
}
} else if (*osi >= 'a' && *osi <= 'z') {
str.push_back(*osi);
} else {
switch (*osi) {
default:
if (str.empty()) {
return std::make_pair(Operand(), osi);
} else {
ret.m_register = ConstString(str);
return std::make_pair(ret, osi);
}
case '%':
if (!str.empty()) {
return std::make_pair(Operand(), osi);
}
break;
}
}
++osi;
}
ret.m_register = ConstString(str);
return std::make_pair(ret, osi);
}
static std::pair<Operand, llvm::StringRef::const_iterator>
ParseImmediate(llvm::StringRef::const_iterator osi,
llvm::StringRef::const_iterator ose) {
Operand ret;
ret.m_type = Operand::Type::Immediate;
std::string str;
bool is_hex = false;
osi = ConsumeWhitespace(osi, ose);
while (osi != ose) {
if (*osi >= '0' && *osi <= '9') {
str.push_back(*osi);
} else if (*osi >= 'a' && *osi <= 'f') {
if (is_hex) {
str.push_back(*osi);
} else {
return std::make_pair(Operand(), osi);
}
} else {
switch (*osi) {
default:
if (str.empty()) {
return std::make_pair(Operand(), osi);
} else {
ret.m_immediate = strtoull(str.c_str(), nullptr, 0);
return std::make_pair(ret, osi);
}
case 'x':
if (!str.compare("0")) {
is_hex = true;
str.push_back(*osi);
} else {
return std::make_pair(Operand(), osi);
}
break;
case '#':
case '$':
if (!str.empty()) {
return std::make_pair(Operand(), osi);
}
break;
case '-':
if (str.empty()) {
ret.m_negative = true;
} else {
return std::make_pair(Operand(), osi);
}
}
}
++osi;
}
ret.m_immediate = strtoull(str.c_str(), nullptr, 0);
return std::make_pair(ret, osi);
}
// -0x5(%rax,%rax,2)
static std::pair<Operand, llvm::StringRef::const_iterator>
ParseIntelIndexedAccess(llvm::StringRef::const_iterator osi,
llvm::StringRef::const_iterator ose) {
std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
ParseImmediate(osi, ose);
if (offset_and_iterator.first.IsValid()) {
osi = offset_and_iterator.second;
}
bool found = false;
std::tie(found, osi) = ConsumeChar(osi, '(', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
ParseRegisterName(osi, ose);
if (base_and_iterator.first.IsValid()) {
osi = base_and_iterator.second;
} else {
return std::make_pair(Operand(), osi);
}
std::tie(found, osi) = ConsumeChar(osi, ',', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
std::pair<Operand, llvm::StringRef::const_iterator> index_and_iterator =
ParseRegisterName(osi, ose);
if (index_and_iterator.first.IsValid()) {
osi = index_and_iterator.second;
} else {
return std::make_pair(Operand(), osi);
}
std::tie(found, osi) = ConsumeChar(osi, ',', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
std::pair<Operand, llvm::StringRef::const_iterator>
multiplier_and_iterator = ParseImmediate(osi, ose);
if (index_and_iterator.first.IsValid()) {
osi = index_and_iterator.second;
} else {
return std::make_pair(Operand(), osi);
}
std::tie(found, osi) = ConsumeChar(osi, ')', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
Operand product;
product.m_type = Operand::Type::Product;
product.m_children.push_back(index_and_iterator.first);
product.m_children.push_back(multiplier_and_iterator.first);
Operand index;
index.m_type = Operand::Type::Sum;
index.m_children.push_back(base_and_iterator.first);
index.m_children.push_back(product);
if (offset_and_iterator.first.IsValid()) {
Operand offset;
offset.m_type = Operand::Type::Sum;
offset.m_children.push_back(offset_and_iterator.first);
offset.m_children.push_back(index);
Operand deref;
deref.m_type = Operand::Type::Dereference;
deref.m_children.push_back(offset);
return std::make_pair(deref, osi);
} else {
Operand deref;
deref.m_type = Operand::Type::Dereference;
deref.m_children.push_back(index);
return std::make_pair(deref, osi);
}
}
// -0x10(%rbp)
static std::pair<Operand, llvm::StringRef::const_iterator>
ParseIntelDerefAccess(llvm::StringRef::const_iterator osi,
llvm::StringRef::const_iterator ose) {
std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
ParseImmediate(osi, ose);
if (offset_and_iterator.first.IsValid()) {
osi = offset_and_iterator.second;
}
bool found = false;
std::tie(found, osi) = ConsumeChar(osi, '(', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
ParseRegisterName(osi, ose);
if (base_and_iterator.first.IsValid()) {
osi = base_and_iterator.second;
} else {
return std::make_pair(Operand(), osi);
}
std::tie(found, osi) = ConsumeChar(osi, ')', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
if (offset_and_iterator.first.IsValid()) {
Operand offset;
offset.m_type = Operand::Type::Sum;
offset.m_children.push_back(offset_and_iterator.first);
offset.m_children.push_back(base_and_iterator.first);
Operand deref;
deref.m_type = Operand::Type::Dereference;
deref.m_children.push_back(offset);
return std::make_pair(deref, osi);
} else {
Operand deref;
deref.m_type = Operand::Type::Dereference;
deref.m_children.push_back(base_and_iterator.first);
return std::make_pair(deref, osi);
}
}
// [sp, #8]!
static std::pair<Operand, llvm::StringRef::const_iterator>
ParseARMOffsetAccess(llvm::StringRef::const_iterator osi,
llvm::StringRef::const_iterator ose) {
bool found = false;
std::tie(found, osi) = ConsumeChar(osi, '[', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
ParseRegisterName(osi, ose);
if (base_and_iterator.first.IsValid()) {
osi = base_and_iterator.second;
} else {
return std::make_pair(Operand(), osi);
}
std::tie(found, osi) = ConsumeChar(osi, ',', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
ParseImmediate(osi, ose);
if (offset_and_iterator.first.IsValid()) {
osi = offset_and_iterator.second;
}
std::tie(found, osi) = ConsumeChar(osi, ']', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
Operand offset;
offset.m_type = Operand::Type::Sum;
offset.m_children.push_back(offset_and_iterator.first);
offset.m_children.push_back(base_and_iterator.first);
Operand deref;
deref.m_type = Operand::Type::Dereference;
deref.m_children.push_back(offset);
return std::make_pair(deref, osi);
}
// [sp]
static std::pair<Operand, llvm::StringRef::const_iterator>
ParseARMDerefAccess(llvm::StringRef::const_iterator osi,
llvm::StringRef::const_iterator ose) {
bool found = false;
std::tie(found, osi) = ConsumeChar(osi, '[', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
ParseRegisterName(osi, ose);
if (base_and_iterator.first.IsValid()) {
osi = base_and_iterator.second;
} else {
return std::make_pair(Operand(), osi);
}
std::tie(found, osi) = ConsumeChar(osi, ']', ose);
if (!found) {
return std::make_pair(Operand(), osi);
}
Operand deref;
deref.m_type = Operand::Type::Dereference;
deref.m_children.push_back(base_and_iterator.first);
return std::make_pair(deref, osi);
}
static void DumpOperand(const Operand &op, Stream &s) {
switch (op.m_type) {
case Operand::Type::Dereference:
s.PutCString("*");
DumpOperand(op.m_children[0], s);
break;
case Operand::Type::Immediate:
if (op.m_negative) {
s.PutCString("-");
}
s.PutCString(llvm::to_string(op.m_immediate));
break;
case Operand::Type::Invalid:
s.PutCString("Invalid");
break;
case Operand::Type::Product:
s.PutCString("(");
DumpOperand(op.m_children[0], s);
s.PutCString("*");
DumpOperand(op.m_children[1], s);
s.PutCString(")");
break;
case Operand::Type::Register:
s.PutCString(op.m_register.AsCString());
break;
case Operand::Type::Sum:
s.PutCString("(");
DumpOperand(op.m_children[0], s);
s.PutCString("+");
DumpOperand(op.m_children[1], s);
s.PutCString(")");
break;
}
}
bool ParseOperands(
llvm::SmallVectorImpl<Instruction::Operand> &operands) override {
const char *operands_string = GetOperands(nullptr);
if (!operands_string) {
return false;
}
llvm::StringRef operands_ref(operands_string);
llvm::StringRef::const_iterator osi = operands_ref.begin();
llvm::StringRef::const_iterator ose = operands_ref.end();
while (osi != ose) {
Operand operand;
llvm::StringRef::const_iterator iter;
if ((std::tie(operand, iter) = ParseIntelIndexedAccess(osi, ose),
operand.IsValid()) ||
(std::tie(operand, iter) = ParseIntelDerefAccess(osi, ose),
operand.IsValid()) ||
(std::tie(operand, iter) = ParseARMOffsetAccess(osi, ose),
operand.IsValid()) ||
(std::tie(operand, iter) = ParseARMDerefAccess(osi, ose),
operand.IsValid()) ||
(std::tie(operand, iter) = ParseRegisterName(osi, ose),
operand.IsValid()) ||
(std::tie(operand, iter) = ParseImmediate(osi, ose),
operand.IsValid())) {
osi = iter;
operands.push_back(operand);
} else {
return false;
}
std::pair<bool, llvm::StringRef::const_iterator> found_and_iter =
ConsumeChar(osi, ',', ose);
if (found_and_iter.first) {
osi = found_and_iter.second;
}
osi = ConsumeWhitespace(osi, ose);
}
DisassemblerSP disasm_sp = m_disasm_wp.lock();
if (disasm_sp && operands.size() > 1) {
// TODO tie this into the MC Disassembler's notion of clobbers.
switch (disasm_sp->GetArchitecture().GetMachine()) {
default:
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
operands[operands.size() - 1].m_clobbered = true;
break;
case llvm::Triple::arm:
operands[0].m_clobbered = true;
break;
}
}
if (Log *log =
lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)) {
StreamString ss;
ss.Printf("[%s] expands to %zu operands:\n", operands_string,
operands.size());
for (const Operand &operand : operands) {
ss.PutCString(" ");
DumpOperand(operand, ss);
ss.PutCString("\n");
}
log->PutString(ss.GetString());
}
return true;
}
bool IsCall() override {
if (m_is_call == eLazyBoolCalculate) {
std::shared_ptr<DisassemblerLLVMC> disasm_sp(GetDisassembler());
if (disasm_sp) {
disasm_sp->Lock(this, NULL);
DataExtractor data;
if (m_opcode.GetData(data)) {
bool is_alternate_isa;
lldb::addr_t pc = m_address.GetFileAddress();
DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr =
GetDisasmToUse(is_alternate_isa);
const uint8_t *opcode_data = data.GetDataStart();
const size_t opcode_data_len = data.GetByteSize();
llvm::MCInst inst;
const size_t inst_size =
mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
if (inst_size == 0) {
m_is_call = eLazyBoolNo;
} else {
if (mc_disasm_ptr->IsCall(inst))
m_is_call = eLazyBoolYes;
else
m_is_call = eLazyBoolNo;
}
}
disasm_sp->Unlock();
}
}
return m_is_call == eLazyBoolYes;
}
protected:
std::weak_ptr<DisassemblerLLVMC> m_disasm_wp;
LazyBool m_does_branch;
LazyBool m_has_delay_slot;
LazyBool m_is_call;
bool m_is_valid;
bool m_using_file_addr;
};
DisassemblerLLVMC::LLVMCDisassembler::LLVMCDisassembler(
const char *triple, const char *cpu, const char *features_str,
unsigned flavor, DisassemblerLLVMC &owner)
: m_is_valid(true) {
std::string Error;
const llvm::Target *curr_target =
llvm::TargetRegistry::lookupTarget(triple, Error);
if (!curr_target) {
m_is_valid = false;
return;
}
m_instr_info_ap.reset(curr_target->createMCInstrInfo());
m_reg_info_ap.reset(curr_target->createMCRegInfo(triple));
m_subtarget_info_ap.reset(
curr_target->createMCSubtargetInfo(triple, cpu, features_str));
std::unique_ptr<llvm::MCRegisterInfo> reg_info(
curr_target->createMCRegInfo(triple));
m_asm_info_ap.reset(curr_target->createMCAsmInfo(*reg_info, triple));
if (m_instr_info_ap.get() == NULL || m_reg_info_ap.get() == NULL ||
m_subtarget_info_ap.get() == NULL || m_asm_info_ap.get() == NULL) {
m_is_valid = false;
return;
}
m_context_ap.reset(
new llvm::MCContext(m_asm_info_ap.get(), m_reg_info_ap.get(), 0));
m_disasm_ap.reset(curr_target->createMCDisassembler(
*m_subtarget_info_ap.get(), *m_context_ap.get()));
if (m_disasm_ap.get() && m_context_ap.get()) {
std::unique_ptr<llvm::MCRelocationInfo> RelInfo(
curr_target->createMCRelocationInfo(triple, *m_context_ap.get()));
if (!RelInfo) {
m_is_valid = false;
return;
}
std::unique_ptr<llvm::MCSymbolizer> symbolizer_up(
curr_target->createMCSymbolizer(
triple, NULL, DisassemblerLLVMC::SymbolLookupCallback,
(void *)&owner, m_context_ap.get(), std::move(RelInfo)));
m_disasm_ap->setSymbolizer(std::move(symbolizer_up));
unsigned asm_printer_variant;
if (flavor == ~0U)
asm_printer_variant = m_asm_info_ap->getAssemblerDialect();
else {
asm_printer_variant = flavor;
}
m_instr_printer_ap.reset(curr_target->createMCInstPrinter(
llvm::Triple{triple}, asm_printer_variant, *m_asm_info_ap.get(),
*m_instr_info_ap.get(), *m_reg_info_ap.get()));
if (m_instr_printer_ap.get() == NULL) {
m_disasm_ap.reset();
m_is_valid = false;
}
} else
m_is_valid = false;
}
DisassemblerLLVMC::LLVMCDisassembler::~LLVMCDisassembler() = default;
uint64_t DisassemblerLLVMC::LLVMCDisassembler::GetMCInst(
const uint8_t *opcode_data, size_t opcode_data_len, lldb::addr_t pc,
llvm::MCInst &mc_inst) {
llvm::ArrayRef<uint8_t> data(opcode_data, opcode_data_len);
llvm::MCDisassembler::DecodeStatus status;
uint64_t new_inst_size;
status = m_disasm_ap->getInstruction(mc_inst, new_inst_size, data, pc,
llvm::nulls(), llvm::nulls());
if (status == llvm::MCDisassembler::Success)
return new_inst_size;
else
return 0;
}
void DisassemblerLLVMC::LLVMCDisassembler::PrintMCInst(
llvm::MCInst &mc_inst, std::string &inst_string,
std::string &comments_string) {
llvm::raw_string_ostream inst_stream(inst_string);
llvm::raw_string_ostream comments_stream(comments_string);
m_instr_printer_ap->setCommentStream(comments_stream);
m_instr_printer_ap->printInst(&mc_inst, inst_stream, llvm::StringRef(),
*m_subtarget_info_ap);
m_instr_printer_ap->setCommentStream(llvm::nulls());
comments_stream.flush();
static std::string g_newlines("\r\n");
for (size_t newline_pos = 0;
(newline_pos = comments_string.find_first_of(g_newlines, newline_pos)) !=
comments_string.npos;
/**/) {
comments_string.replace(comments_string.begin() + newline_pos,
comments_string.begin() + newline_pos + 1, 1, ' ');
}
}
void DisassemblerLLVMC::LLVMCDisassembler::SetStyle(
bool use_hex_immed, HexImmediateStyle hex_style) {
m_instr_printer_ap->setPrintImmHex(use_hex_immed);
switch (hex_style) {
case eHexStyleC:
m_instr_printer_ap->setPrintHexStyle(llvm::HexStyle::C);
break;
case eHexStyleAsm:
m_instr_printer_ap->setPrintHexStyle(llvm::HexStyle::Asm);
break;
}
}
bool DisassemblerLLVMC::LLVMCDisassembler::CanBranch(llvm::MCInst &mc_inst) {
return m_instr_info_ap->get(mc_inst.getOpcode())
.mayAffectControlFlow(mc_inst, *m_reg_info_ap.get());
}
bool DisassemblerLLVMC::LLVMCDisassembler::HasDelaySlot(llvm::MCInst &mc_inst) {
return m_instr_info_ap->get(mc_inst.getOpcode()).hasDelaySlot();
}
bool DisassemblerLLVMC::LLVMCDisassembler::IsCall(llvm::MCInst &mc_inst) {
return m_instr_info_ap->get(mc_inst.getOpcode()).isCall();
}
DisassemblerLLVMC::DisassemblerLLVMC(const ArchSpec &arch,
const char *flavor_string)
: Disassembler(arch, flavor_string), m_exe_ctx(NULL), m_inst(NULL),
m_data_from_file(false) {
if (!FlavorValidForArchSpec(arch, m_flavor.c_str())) {
m_flavor.assign("default");
}
unsigned flavor = ~0U;
llvm::Triple triple = arch.GetTriple();
// So far the only supported flavor is "intel" on x86. The base class will
// set this
// correctly coming in.
if (triple.getArch() == llvm::Triple::x86 ||
triple.getArch() == llvm::Triple::x86_64) {
if (m_flavor == "intel") {
flavor = 1;
} else if (m_flavor == "att") {
flavor = 0;
}
}
ArchSpec thumb_arch(arch);
if (triple.getArch() == llvm::Triple::arm) {
std::string thumb_arch_name(thumb_arch.GetTriple().getArchName().str());
// Replace "arm" with "thumb" so we get all thumb variants correct
if (thumb_arch_name.size() > 3) {
thumb_arch_name.erase(0, 3);
thumb_arch_name.insert(0, "thumb");
} else {
thumb_arch_name = "thumbv8.2a";
}
thumb_arch.GetTriple().setArchName(llvm::StringRef(thumb_arch_name));
}
// If no sub architecture specified then use the most recent arm architecture
// so the
// disassembler will return all instruction. Without it we will see a lot of
// unknow opcode
// in case the code uses instructions which are not available in the oldest
// arm version
// (used when no sub architecture is specified)
if (triple.getArch() == llvm::Triple::arm &&
triple.getSubArch() == llvm::Triple::NoSubArch)
triple.setArchName("armv8.2a");
const char *triple_str = triple.getTriple().c_str();
// ARM Cortex M0-M7 devices only execute thumb instructions
if (arch.IsAlwaysThumbInstructions()) {
triple_str = thumb_arch.GetTriple().getTriple().c_str();
}
const char *cpu = "";
switch (arch.GetCore()) {
case ArchSpec::eCore_mips32:
case ArchSpec::eCore_mips32el:
cpu = "mips32";
break;
case ArchSpec::eCore_mips32r2:
case ArchSpec::eCore_mips32r2el:
cpu = "mips32r2";
break;
case ArchSpec::eCore_mips32r3:
case ArchSpec::eCore_mips32r3el:
cpu = "mips32r3";
break;
case ArchSpec::eCore_mips32r5:
case ArchSpec::eCore_mips32r5el:
cpu = "mips32r5";
break;
case ArchSpec::eCore_mips32r6:
case ArchSpec::eCore_mips32r6el:
cpu = "mips32r6";
break;
case ArchSpec::eCore_mips64:
case ArchSpec::eCore_mips64el:
cpu = "mips64";
break;
case ArchSpec::eCore_mips64r2:
case ArchSpec::eCore_mips64r2el:
cpu = "mips64r2";
break;
case ArchSpec::eCore_mips64r3:
case ArchSpec::eCore_mips64r3el:
cpu = "mips64r3";
break;
case ArchSpec::eCore_mips64r5:
case ArchSpec::eCore_mips64r5el:
cpu = "mips64r5";
break;
case ArchSpec::eCore_mips64r6:
case ArchSpec::eCore_mips64r6el:
cpu = "mips64r6";
break;
default:
cpu = "";
break;
}
std::string features_str = "";
if (triple.getArch() == llvm::Triple::mips ||
triple.getArch() == llvm::Triple::mipsel ||
triple.getArch() == llvm::Triple::mips64 ||
triple.getArch() == llvm::Triple::mips64el) {
uint32_t arch_flags = arch.GetFlags();
if (arch_flags & ArchSpec::eMIPSAse_msa)
features_str += "+msa,";
if (arch_flags & ArchSpec::eMIPSAse_dsp)
features_str += "+dsp,";
if (arch_flags & ArchSpec::eMIPSAse_dspr2)
features_str += "+dspr2,";
}
m_disasm_ap.reset(new LLVMCDisassembler(triple_str, cpu, features_str.c_str(),
flavor, *this));
if (!m_disasm_ap->IsValid()) {
// We use m_disasm_ap.get() to tell whether we are valid or not, so if this
// isn't good for some reason,
// we reset it, and then we won't be valid and FindPlugin will fail and we
// won't get used.
m_disasm_ap.reset();
}
llvm::Triple::ArchType llvm_arch = triple.getArch();
// For arm CPUs that can execute arm or thumb instructions, also create a
// thumb instruction disassembler.
if (llvm_arch == llvm::Triple::arm) {
std::string thumb_triple(thumb_arch.GetTriple().getTriple());
m_alternate_disasm_ap.reset(
new LLVMCDisassembler(thumb_triple.c_str(), "", "", flavor, *this));
if (!m_alternate_disasm_ap->IsValid()) {
m_disasm_ap.reset();
m_alternate_disasm_ap.reset();
}
} else if (llvm_arch == llvm::Triple::mips ||
llvm_arch == llvm::Triple::mipsel ||
llvm_arch == llvm::Triple::mips64 ||
llvm_arch == llvm::Triple::mips64el) {
/* Create alternate disassembler for MIPS16 and microMIPS */
uint32_t arch_flags = arch.GetFlags();
if (arch_flags & ArchSpec::eMIPSAse_mips16)
features_str += "+mips16,";
else if (arch_flags & ArchSpec::eMIPSAse_micromips)
features_str += "+micromips,";
m_alternate_disasm_ap.reset(new LLVMCDisassembler(
triple_str, cpu, features_str.c_str(), flavor, *this));
if (!m_alternate_disasm_ap->IsValid()) {
m_disasm_ap.reset();
m_alternate_disasm_ap.reset();
}
}
}
DisassemblerLLVMC::~DisassemblerLLVMC() = default;
Disassembler *DisassemblerLLVMC::CreateInstance(const ArchSpec &arch,
const char *flavor) {
if (arch.GetTriple().getArch() != llvm::Triple::UnknownArch) {
std::unique_ptr<DisassemblerLLVMC> disasm_ap(
new DisassemblerLLVMC(arch, flavor));
if (disasm_ap.get() && disasm_ap->IsValid())
return disasm_ap.release();
}
return NULL;
}
size_t DisassemblerLLVMC::DecodeInstructions(const Address &base_addr,
const DataExtractor &data,
lldb::offset_t data_offset,
size_t num_instructions,
bool append, bool data_from_file) {
if (!append)
m_instruction_list.Clear();
if (!IsValid())
return 0;
m_data_from_file = data_from_file;
uint32_t data_cursor = data_offset;
const size_t data_byte_size = data.GetByteSize();
uint32_t instructions_parsed = 0;
Address inst_addr(base_addr);
while (data_cursor < data_byte_size &&
instructions_parsed < num_instructions) {
AddressClass address_class = eAddressClassCode;
if (m_alternate_disasm_ap.get() != NULL)
address_class = inst_addr.GetAddressClass();
InstructionSP inst_sp(
new InstructionLLVMC(*this, inst_addr, address_class));
if (!inst_sp)
break;
uint32_t inst_size = inst_sp->Decode(*this, data, data_cursor);
if (inst_size == 0)
break;
m_instruction_list.Append(inst_sp);
data_cursor += inst_size;
inst_addr.Slide(inst_size);
instructions_parsed++;
}
return data_cursor - data_offset;
}
void DisassemblerLLVMC::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
"Disassembler that uses LLVM MC to disassemble "
"i386, x86_64, ARM, and ARM64.",
CreateInstance);
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
}
void DisassemblerLLVMC::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
ConstString DisassemblerLLVMC::GetPluginNameStatic() {
static ConstString g_name("llvm-mc");
return g_name;
}
int DisassemblerLLVMC::OpInfoCallback(void *disassembler, uint64_t pc,
uint64_t offset, uint64_t size,
int tag_type, void *tag_bug) {
return static_cast<DisassemblerLLVMC *>(disassembler)
->OpInfo(pc, offset, size, tag_type, tag_bug);
}
const char *DisassemblerLLVMC::SymbolLookupCallback(void *disassembler,
uint64_t value,
uint64_t *type, uint64_t pc,
const char **name) {
return static_cast<DisassemblerLLVMC *>(disassembler)
->SymbolLookup(value, type, pc, name);
}
bool DisassemblerLLVMC::FlavorValidForArchSpec(
const lldb_private::ArchSpec &arch, const char *flavor) {
llvm::Triple triple = arch.GetTriple();
if (flavor == NULL || strcmp(flavor, "default") == 0)
return true;
if (triple.getArch() == llvm::Triple::x86 ||
triple.getArch() == llvm::Triple::x86_64) {
if (strcmp(flavor, "intel") == 0 || strcmp(flavor, "att") == 0)
return true;
else
return false;
} else
return false;
}
int DisassemblerLLVMC::OpInfo(uint64_t PC, uint64_t Offset, uint64_t Size,
int tag_type, void *tag_bug) {
switch (tag_type) {
default:
break;
case 1:
memset(tag_bug, 0, sizeof(::LLVMOpInfo1));
break;
}
return 0;
}
const char *DisassemblerLLVMC::SymbolLookup(uint64_t value, uint64_t *type_ptr,
uint64_t pc, const char **name) {
if (*type_ptr) {
if (m_exe_ctx && m_inst) {
// std::string remove_this_prior_to_checkin;
Target *target = m_exe_ctx ? m_exe_ctx->GetTargetPtr() : NULL;
Address value_so_addr;
Address pc_so_addr;
if (m_inst->UsingFileAddress()) {
ModuleSP module_sp(m_inst->GetAddress().GetModule());
if (module_sp) {
module_sp->ResolveFileAddress(value, value_so_addr);
module_sp->ResolveFileAddress(pc, pc_so_addr);
}
} else if (target && !target->GetSectionLoadList().IsEmpty()) {
target->GetSectionLoadList().ResolveLoadAddress(value, value_so_addr);
target->GetSectionLoadList().ResolveLoadAddress(pc, pc_so_addr);
}
SymbolContext sym_ctx;
const uint32_t resolve_scope =
eSymbolContextFunction | eSymbolContextSymbol;
if (pc_so_addr.IsValid() && pc_so_addr.GetModule()) {
pc_so_addr.GetModule()->ResolveSymbolContextForAddress(
pc_so_addr, resolve_scope, sym_ctx);
}
if (value_so_addr.IsValid() && value_so_addr.GetSection()) {
StreamString ss;
bool format_omitting_current_func_name = false;
if (sym_ctx.symbol || sym_ctx.function) {
AddressRange range;
if (sym_ctx.GetAddressRange(resolve_scope, 0, false, range) &&
range.GetBaseAddress().IsValid() &&
range.ContainsLoadAddress(value_so_addr, target)) {
format_omitting_current_func_name = true;
}
}
// If the "value" address (the target address we're symbolicating)
// is inside the same SymbolContext as the current instruction pc
// (pc_so_addr), don't print the full function name - just print it
// with DumpStyleNoFunctionName style, e.g. "<+36>".
if (format_omitting_current_func_name) {
value_so_addr.Dump(&ss, target, Address::DumpStyleNoFunctionName,
Address::DumpStyleSectionNameOffset);
} else {
value_so_addr.Dump(
&ss, target,
Address::DumpStyleResolvedDescriptionNoFunctionArguments,
Address::DumpStyleSectionNameOffset);
}
if (!ss.GetString().empty()) {
// If Address::Dump returned a multi-line description, most commonly
// seen when we
// have multiple levels of inlined functions at an address, only show
// the first line.
std::string str = ss.GetString();
size_t first_eol_char = str.find_first_of("\r\n");
if (first_eol_char != std::string::npos) {
str.erase(first_eol_char);
}
m_inst->AppendComment(str);
}
}
}
}
*type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
*name = NULL;
return NULL;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
ConstString DisassemblerLLVMC::GetPluginName() { return GetPluginNameStatic(); }
uint32_t DisassemblerLLVMC::GetPluginVersion() { return 1; }