Files
clang-p2996/lldb/source/Plugins/ExpressionParser/Clang/ClangExpressionParser.cpp
Zachary Turner bf9a77305f Move classes from Core -> Utility.
This moves the following classes from Core -> Utility.

ConstString
Error
RegularExpression
Stream
StreamString

The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes.  So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.

Differential Revision: https://reviews.llvm.org/D29427

llvm-svn: 293941
2017-02-02 21:39:50 +00:00

987 lines
35 KiB
C++

//===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/Basic/DiagnosticIDs.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Edit/Commit.h"
#include "clang/Edit/EditedSource.h"
#include "clang/Edit/EditsReceiver.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseAST.h"
#include "clang/Rewrite/Core/Rewriter.h"
#include "clang/Rewrite/Frontend/FrontendActions.h"
#include "clang/Sema/SemaConsumer.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/TargetSelect.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wglobal-constructors"
#include "llvm/ExecutionEngine/MCJIT.h"
#pragma clang diagnostic pop
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Signals.h"
// Project includes
#include "ClangDiagnostic.h"
#include "ClangExpressionParser.h"
#include "ClangASTSource.h"
#include "ClangExpressionDeclMap.h"
#include "ClangExpressionHelper.h"
#include "ClangModulesDeclVendor.h"
#include "ClangPersistentVariables.h"
#include "IRForTarget.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StringList.h"
#include "lldb/Expression/IRDynamicChecks.h"
#include "lldb/Expression/IRExecutionUnit.h"
#include "lldb/Expression/IRInterpreter.h"
#include "lldb/Host/File.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/ThreadPlanCallFunction.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
using namespace clang;
using namespace llvm;
using namespace lldb_private;
//===----------------------------------------------------------------------===//
// Utility Methods for Clang
//===----------------------------------------------------------------------===//
class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
ClangModulesDeclVendor &m_decl_vendor;
ClangPersistentVariables &m_persistent_vars;
StreamString m_error_stream;
bool m_has_errors = false;
public:
LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
ClangPersistentVariables &persistent_vars)
: m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {}
void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
const clang::Module * /*null*/) override {
std::vector<ConstString> string_path;
for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) {
string_path.push_back(ConstString(component.first->getName()));
}
StreamString error_stream;
ClangModulesDeclVendor::ModuleVector exported_modules;
if (!m_decl_vendor.AddModule(string_path, &exported_modules,
m_error_stream)) {
m_has_errors = true;
}
for (ClangModulesDeclVendor::ModuleID module : exported_modules) {
m_persistent_vars.AddHandLoadedClangModule(module);
}
}
bool hasErrors() { return m_has_errors; }
llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
};
class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
public:
ClangDiagnosticManagerAdapter()
: m_passthrough(new clang::TextDiagnosticBuffer) {}
ClangDiagnosticManagerAdapter(
const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough)
: m_passthrough(passthrough) {}
void ResetManager(DiagnosticManager *manager = nullptr) {
m_manager = manager;
}
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const clang::Diagnostic &Info) {
if (m_manager) {
llvm::SmallVector<char, 32> diag_str;
Info.FormatDiagnostic(diag_str);
diag_str.push_back('\0');
const char *data = diag_str.data();
lldb_private::DiagnosticSeverity severity;
bool make_new_diagnostic = true;
switch (DiagLevel) {
case DiagnosticsEngine::Level::Fatal:
case DiagnosticsEngine::Level::Error:
severity = eDiagnosticSeverityError;
break;
case DiagnosticsEngine::Level::Warning:
severity = eDiagnosticSeverityWarning;
break;
case DiagnosticsEngine::Level::Remark:
case DiagnosticsEngine::Level::Ignored:
severity = eDiagnosticSeverityRemark;
break;
case DiagnosticsEngine::Level::Note:
m_manager->AppendMessageToDiagnostic(data);
make_new_diagnostic = false;
}
if (make_new_diagnostic) {
ClangDiagnostic *new_diagnostic =
new ClangDiagnostic(data, severity, Info.getID());
m_manager->AddDiagnostic(new_diagnostic);
// Don't store away warning fixits, since the compiler doesn't have
// enough
// context in an expression for the warning to be useful.
// FIXME: Should we try to filter out FixIts that apply to our generated
// code, and not the user's expression?
if (severity == eDiagnosticSeverityError) {
size_t num_fixit_hints = Info.getNumFixItHints();
for (size_t i = 0; i < num_fixit_hints; i++) {
const clang::FixItHint &fixit = Info.getFixItHint(i);
if (!fixit.isNull())
new_diagnostic->AddFixitHint(fixit);
}
}
}
}
m_passthrough->HandleDiagnostic(DiagLevel, Info);
}
void FlushDiagnostics(DiagnosticsEngine &Diags) {
m_passthrough->FlushDiagnostics(Diags);
}
DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
return new ClangDiagnosticManagerAdapter(m_passthrough);
}
clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); }
private:
DiagnosticManager *m_manager = nullptr;
std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough;
};
//===----------------------------------------------------------------------===//
// Implementation of ClangExpressionParser
//===----------------------------------------------------------------------===//
ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope,
Expression &expr,
bool generate_debug_info)
: ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
m_code_generator(), m_pp_callbacks(nullptr) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
// We can't compile expressions without a target. So if the exe_scope is null
// or doesn't have a target,
// then we just need to get out of here. I'll lldb_assert and not make any of
// the compiler objects since
// I can't return errors directly from the constructor. Further calls will
// check if the compiler was made and
// bag out if it wasn't.
if (!exe_scope) {
lldb_assert(exe_scope, "Can't make an expression parser with a null scope.",
__FUNCTION__, __FILE__, __LINE__);
return;
}
lldb::TargetSP target_sp;
target_sp = exe_scope->CalculateTarget();
if (!target_sp) {
lldb_assert(target_sp.get(),
"Can't make an expression parser with a null target.",
__FUNCTION__, __FILE__, __LINE__);
return;
}
// 1. Create a new compiler instance.
m_compiler.reset(new CompilerInstance());
lldb::LanguageType frame_lang =
expr.Language(); // defaults to lldb::eLanguageTypeUnknown
bool overridden_target_opts = false;
lldb_private::LanguageRuntime *lang_rt = nullptr;
std::string abi;
ArchSpec target_arch;
target_arch = target_sp->GetArchitecture();
const auto target_machine = target_arch.GetMachine();
// If the expression is being evaluated in the context of an existing
// stack frame, we introspect to see if the language runtime is available.
lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
// Make sure the user hasn't provided a preferred execution language
// with `expression --language X -- ...`
if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
frame_lang = frame_sp->GetLanguage();
if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
lang_rt = process_sp->GetLanguageRuntime(frame_lang);
if (log)
log->Printf("Frame has language of type %s",
Language::GetNameForLanguageType(frame_lang));
}
// 2. Configure the compiler with a set of default options that are
// appropriate
// for most situations.
if (target_arch.IsValid()) {
std::string triple = target_arch.GetTriple().str();
m_compiler->getTargetOpts().Triple = triple;
if (log)
log->Printf("Using %s as the target triple",
m_compiler->getTargetOpts().Triple.c_str());
} else {
// If we get here we don't have a valid target and just have to guess.
// Sometimes this will be ok to just use the host target triple (when we
// evaluate say "2+3", but other
// expressions like breakpoint conditions and other things that _are_ target
// specific really shouldn't just be
// using the host triple. In such a case the language runtime should expose
// an overridden options set (3),
// below.
m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
if (log)
log->Printf("Using default target triple of %s",
m_compiler->getTargetOpts().Triple.c_str());
}
// Now add some special fixes for known architectures:
// Any arm32 iOS environment, but not on arm64
if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
m_compiler->getTargetOpts().ABI = "apcs-gnu";
}
// Supported subsets of x86
if (target_machine == llvm::Triple::x86 ||
target_machine == llvm::Triple::x86_64) {
m_compiler->getTargetOpts().Features.push_back("+sse");
m_compiler->getTargetOpts().Features.push_back("+sse2");
}
// Set the target CPU to generate code for.
// This will be empty for any CPU that doesn't really need to make a special
// CPU string.
m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
// Set the target ABI
abi = GetClangTargetABI(target_arch);
if (!abi.empty())
m_compiler->getTargetOpts().ABI = abi;
// 3. Now allow the runtime to provide custom configuration options for the
// target.
// In this case, a specialized language runtime is available and we can query
// it for extra options.
// For 99% of use cases, this will not be needed and should be provided when
// basic platform detection is not enough.
if (lang_rt)
overridden_target_opts =
lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
if (overridden_target_opts)
if (log) {
log->Debug(
"Using overridden target options for the expression evaluation");
auto opts = m_compiler->getTargetOpts();
log->Debug("Triple: '%s'", opts.Triple.c_str());
log->Debug("CPU: '%s'", opts.CPU.c_str());
log->Debug("FPMath: '%s'", opts.FPMath.c_str());
log->Debug("ABI: '%s'", opts.ABI.c_str());
log->Debug("LinkerVersion: '%s'", opts.LinkerVersion.c_str());
StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
StringList::LogDump(log, opts.Features, "Features");
StringList::LogDump(log, opts.Reciprocals, "Reciprocals");
}
// 4. Create and install the target on the compiler.
m_compiler->createDiagnostics();
auto target_info = TargetInfo::CreateTargetInfo(
m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
if (log) {
log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign());
log->Printf("Target datalayout string: '%s'",
target_info->getDataLayout().getStringRepresentation().c_str());
log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str());
log->Printf("Target vector alignment: %d",
target_info->getMaxVectorAlign());
}
m_compiler->setTarget(target_info);
assert(m_compiler->hasTarget());
// 5. Set language options.
lldb::LanguageType language = expr.Language();
switch (language) {
case lldb::eLanguageTypeC:
case lldb::eLanguageTypeC89:
case lldb::eLanguageTypeC99:
case lldb::eLanguageTypeC11:
// FIXME: the following language option is a temporary workaround,
// to "ask for C, get C++."
// For now, the expression parser must use C++ anytime the
// language is a C family language, because the expression parser
// uses features of C++ to capture values.
m_compiler->getLangOpts().CPlusPlus = true;
break;
case lldb::eLanguageTypeObjC:
m_compiler->getLangOpts().ObjC1 = true;
m_compiler->getLangOpts().ObjC2 = true;
// FIXME: the following language option is a temporary workaround,
// to "ask for ObjC, get ObjC++" (see comment above).
m_compiler->getLangOpts().CPlusPlus = true;
break;
case lldb::eLanguageTypeC_plus_plus:
case lldb::eLanguageTypeC_plus_plus_11:
case lldb::eLanguageTypeC_plus_plus_14:
m_compiler->getLangOpts().CPlusPlus11 = true;
m_compiler->getHeaderSearchOpts().UseLibcxx = true;
LLVM_FALLTHROUGH;
case lldb::eLanguageTypeC_plus_plus_03:
m_compiler->getLangOpts().CPlusPlus = true;
// FIXME: the following language option is a temporary workaround,
// to "ask for C++, get ObjC++". Apple hopes to remove this requirement
// on non-Apple platforms, but for now it is needed.
m_compiler->getLangOpts().ObjC1 = true;
break;
case lldb::eLanguageTypeObjC_plus_plus:
case lldb::eLanguageTypeUnknown:
default:
m_compiler->getLangOpts().ObjC1 = true;
m_compiler->getLangOpts().ObjC2 = true;
m_compiler->getLangOpts().CPlusPlus = true;
m_compiler->getLangOpts().CPlusPlus11 = true;
m_compiler->getHeaderSearchOpts().UseLibcxx = true;
break;
}
m_compiler->getLangOpts().Bool = true;
m_compiler->getLangOpts().WChar = true;
m_compiler->getLangOpts().Blocks = true;
m_compiler->getLangOpts().DebuggerSupport =
true; // Features specifically for debugger clients
if (expr.DesiredResultType() == Expression::eResultTypeId)
m_compiler->getLangOpts().DebuggerCastResultToId = true;
m_compiler->getLangOpts().CharIsSigned =
ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
.CharIsSignedByDefault();
// Spell checking is a nice feature, but it ends up completing a
// lot of types that we didn't strictly speaking need to complete.
// As a result, we spend a long time parsing and importing debug
// information.
m_compiler->getLangOpts().SpellChecking = false;
if (process_sp && m_compiler->getLangOpts().ObjC1) {
if (process_sp->GetObjCLanguageRuntime()) {
if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() ==
ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX,
VersionTuple(10, 7));
else
m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
VersionTuple(10, 7));
if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing())
m_compiler->getLangOpts().DebuggerObjCLiteral = true;
}
}
m_compiler->getLangOpts().ThreadsafeStatics = false;
m_compiler->getLangOpts().AccessControl =
false; // Debuggers get universal access
m_compiler->getLangOpts().DollarIdents =
true; // $ indicates a persistent variable name
// Set CodeGen options
m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
m_compiler->getCodeGenOpts().InstrumentFunctions = false;
m_compiler->getCodeGenOpts().DisableFPElim = true;
m_compiler->getCodeGenOpts().OmitLeafFramePointer = false;
if (generate_debug_info)
m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
else
m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
// Disable some warnings.
m_compiler->getDiagnostics().setSeverityForGroup(
clang::diag::Flavor::WarningOrError, "unused-value",
clang::diag::Severity::Ignored, SourceLocation());
m_compiler->getDiagnostics().setSeverityForGroup(
clang::diag::Flavor::WarningOrError, "odr",
clang::diag::Severity::Ignored, SourceLocation());
// Inform the target of the language options
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
m_compiler->getTarget().adjust(m_compiler->getLangOpts());
// 6. Set up the diagnostic buffer for reporting errors
m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter);
// 7. Set up the source management objects inside the compiler
clang::FileSystemOptions file_system_options;
m_file_manager.reset(new clang::FileManager(file_system_options));
if (!m_compiler->hasSourceManager())
m_compiler->createSourceManager(*m_file_manager.get());
m_compiler->createFileManager();
m_compiler->createPreprocessor(TU_Complete);
if (ClangModulesDeclVendor *decl_vendor =
target_sp->GetClangModulesDeclVendor()) {
ClangPersistentVariables *clang_persistent_vars =
llvm::cast<ClangPersistentVariables>(
target_sp->GetPersistentExpressionStateForLanguage(
lldb::eLanguageTypeC));
std::unique_ptr<PPCallbacks> pp_callbacks(
new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars));
m_pp_callbacks =
static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
}
// 8. Most of this we get from the CompilerInstance, but we
// also want to give the context an ExternalASTSource.
m_selector_table.reset(new SelectorTable());
m_builtin_context.reset(new Builtin::Context());
std::unique_ptr<clang::ASTContext> ast_context(
new ASTContext(m_compiler->getLangOpts(), m_compiler->getSourceManager(),
m_compiler->getPreprocessor().getIdentifierTable(),
*m_selector_table.get(), *m_builtin_context.get()));
ast_context->InitBuiltinTypes(m_compiler->getTarget());
ClangExpressionHelper *type_system_helper =
dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
if (decl_map) {
llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source(
decl_map->CreateProxy());
decl_map->InstallASTContext(ast_context.get());
ast_context->setExternalSource(ast_source);
}
m_ast_context.reset(
new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str()));
m_ast_context->setASTContext(ast_context.get());
m_compiler->setASTContext(ast_context.release());
std::string module_name("$__lldb_module");
m_llvm_context.reset(new LLVMContext());
m_code_generator.reset(CreateLLVMCodeGen(
m_compiler->getDiagnostics(), module_name,
m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
m_compiler->getCodeGenOpts(), *m_llvm_context));
}
ClangExpressionParser::~ClangExpressionParser() {}
unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
ClangDiagnosticManagerAdapter *adapter =
static_cast<ClangDiagnosticManagerAdapter *>(
m_compiler->getDiagnostics().getClient());
clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough();
diag_buf->FlushDiagnostics(m_compiler->getDiagnostics());
adapter->ResetManager(&diagnostic_manager);
const char *expr_text = m_expr.Text();
clang::SourceManager &source_mgr = m_compiler->getSourceManager();
bool created_main_file = false;
if (m_compiler->getCodeGenOpts().getDebugInfo() ==
codegenoptions::FullDebugInfo) {
int temp_fd = -1;
llvm::SmallString<PATH_MAX> result_path;
FileSpec tmpdir_file_spec;
if (HostInfo::GetLLDBPath(lldb::ePathTypeLLDBTempSystemDir,
tmpdir_file_spec)) {
tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
std::string temp_source_path = tmpdir_file_spec.GetPath();
llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
} else {
llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
}
if (temp_fd != -1) {
lldb_private::File file(temp_fd, true);
const size_t expr_text_len = strlen(expr_text);
size_t bytes_written = expr_text_len;
if (file.Write(expr_text, bytes_written).Success()) {
if (bytes_written == expr_text_len) {
file.Close();
source_mgr.setMainFileID(
source_mgr.createFileID(m_file_manager->getFile(result_path),
SourceLocation(), SrcMgr::C_User));
created_main_file = true;
}
}
}
}
if (!created_main_file) {
std::unique_ptr<MemoryBuffer> memory_buffer =
MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__);
source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
}
diag_buf->BeginSourceFile(m_compiler->getLangOpts(),
&m_compiler->getPreprocessor());
ClangExpressionHelper *type_system_helper =
dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
ASTConsumer *ast_transformer =
type_system_helper->ASTTransformer(m_code_generator.get());
if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap())
decl_map->InstallCodeGenerator(m_code_generator.get());
if (ast_transformer) {
ast_transformer->Initialize(m_compiler->getASTContext());
ParseAST(m_compiler->getPreprocessor(), ast_transformer,
m_compiler->getASTContext());
} else {
m_code_generator->Initialize(m_compiler->getASTContext());
ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(),
m_compiler->getASTContext());
}
diag_buf->EndSourceFile();
unsigned num_errors = diag_buf->getNumErrors();
if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
num_errors++;
diagnostic_manager.PutString(eDiagnosticSeverityError,
"while importing modules:");
diagnostic_manager.AppendMessageToDiagnostic(
m_pp_callbacks->getErrorString());
}
if (!num_errors) {
if (type_system_helper->DeclMap() &&
!type_system_helper->DeclMap()->ResolveUnknownTypes()) {
diagnostic_manager.Printf(eDiagnosticSeverityError,
"Couldn't infer the type of a variable");
num_errors++;
}
}
if (!num_errors) {
type_system_helper->CommitPersistentDecls();
}
adapter->ResetManager();
return num_errors;
}
std::string
ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
std::string abi;
if (target_arch.IsMIPS()) {
switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
case ArchSpec::eMIPSABI_N64:
abi = "n64";
break;
case ArchSpec::eMIPSABI_N32:
abi = "n32";
break;
case ArchSpec::eMIPSABI_O32:
abi = "o32";
break;
default:
break;
}
}
return abi;
}
bool ClangExpressionParser::RewriteExpression(
DiagnosticManager &diagnostic_manager) {
clang::SourceManager &source_manager = m_compiler->getSourceManager();
clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
nullptr);
clang::edit::Commit commit(editor);
clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
class RewritesReceiver : public edit::EditsReceiver {
Rewriter &rewrite;
public:
RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
void insert(SourceLocation loc, StringRef text) override {
rewrite.InsertText(loc, text);
}
void replace(CharSourceRange range, StringRef text) override {
rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
}
};
RewritesReceiver rewrites_receiver(rewriter);
const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
size_t num_diags = diagnostics.size();
if (num_diags == 0)
return false;
for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) {
const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag);
if (diagnostic && diagnostic->HasFixIts()) {
for (const FixItHint &fixit : diagnostic->FixIts()) {
// This is cobbed from clang::Rewrite::FixItRewriter.
if (fixit.CodeToInsert.empty()) {
if (fixit.InsertFromRange.isValid()) {
commit.insertFromRange(fixit.RemoveRange.getBegin(),
fixit.InsertFromRange, /*afterToken=*/false,
fixit.BeforePreviousInsertions);
} else
commit.remove(fixit.RemoveRange);
} else {
if (fixit.RemoveRange.isTokenRange() ||
fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
else
commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
/*afterToken=*/false, fixit.BeforePreviousInsertions);
}
}
}
}
// FIXME - do we want to try to propagate specific errors here?
if (!commit.isCommitable())
return false;
else if (!editor.commit(commit))
return false;
// Now play all the edits, and stash the result in the diagnostic manager.
editor.applyRewrites(rewrites_receiver);
RewriteBuffer &main_file_buffer =
rewriter.getEditBuffer(source_manager.getMainFileID());
std::string fixed_expression;
llvm::raw_string_ostream out_stream(fixed_expression);
main_file_buffer.write(out_stream);
out_stream.flush();
diagnostic_manager.SetFixedExpression(fixed_expression);
return true;
}
static bool FindFunctionInModule(ConstString &mangled_name,
llvm::Module *module, const char *orig_name) {
for (const auto &func : module->getFunctionList()) {
const StringRef &name = func.getName();
if (name.find(orig_name) != StringRef::npos) {
mangled_name.SetString(name);
return true;
}
}
return false;
}
lldb_private::Error ClangExpressionParser::PrepareForExecution(
lldb::addr_t &func_addr, lldb::addr_t &func_end,
lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
bool &can_interpret, ExecutionPolicy execution_policy) {
func_addr = LLDB_INVALID_ADDRESS;
func_end = LLDB_INVALID_ADDRESS;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
lldb_private::Error err;
std::unique_ptr<llvm::Module> llvm_module_ap(
m_code_generator->ReleaseModule());
if (!llvm_module_ap.get()) {
err.SetErrorToGenericError();
err.SetErrorString("IR doesn't contain a module");
return err;
}
ConstString function_name;
if (execution_policy != eExecutionPolicyTopLevel) {
// Find the actual name of the function (it's often mangled somehow)
if (!FindFunctionInModule(function_name, llvm_module_ap.get(),
m_expr.FunctionName())) {
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't find %s() in the module",
m_expr.FunctionName());
return err;
} else {
if (log)
log->Printf("Found function %s for %s", function_name.AsCString(),
m_expr.FunctionName());
}
}
SymbolContext sc;
if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
} else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
sc.target_sp = target_sp;
}
LLVMUserExpression::IRPasses custom_passes;
{
auto lang = m_expr.Language();
if (log)
log->Printf("%s - Currrent expression language is %s\n", __FUNCTION__,
Language::GetNameForLanguageType(lang));
lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
if (process_sp && lang != lldb::eLanguageTypeUnknown) {
auto runtime = process_sp->GetLanguageRuntime(lang);
if (runtime)
runtime->GetIRPasses(custom_passes);
}
}
if (custom_passes.EarlyPasses) {
if (log)
log->Printf("%s - Running Early IR Passes from LanguageRuntime on "
"expression module '%s'",
__FUNCTION__, m_expr.FunctionName());
custom_passes.EarlyPasses->run(*llvm_module_ap);
}
execution_unit_sp.reset(
new IRExecutionUnit(m_llvm_context, // handed off here
llvm_module_ap, // handed off here
function_name, exe_ctx.GetTargetSP(), sc,
m_compiler->getTargetOpts().Features));
ClangExpressionHelper *type_system_helper =
dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
ClangExpressionDeclMap *decl_map =
type_system_helper->DeclMap(); // result can be NULL
if (decl_map) {
Stream *error_stream = NULL;
Target *target = exe_ctx.GetTargetPtr();
error_stream = target->GetDebugger().GetErrorFile().get();
IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
*execution_unit_sp, *error_stream,
function_name.AsCString());
bool ir_can_run =
ir_for_target.runOnModule(*execution_unit_sp->GetModule());
if (!ir_can_run) {
err.SetErrorString(
"The expression could not be prepared to run in the target");
return err;
}
Process *process = exe_ctx.GetProcessPtr();
if (execution_policy != eExecutionPolicyAlways &&
execution_policy != eExecutionPolicyTopLevel) {
lldb_private::Error interpret_error;
bool interpret_function_calls =
!process ? false : process->CanInterpretFunctionCalls();
can_interpret = IRInterpreter::CanInterpret(
*execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
interpret_error, interpret_function_calls);
if (!can_interpret && execution_policy == eExecutionPolicyNever) {
err.SetErrorStringWithFormat("Can't run the expression locally: %s",
interpret_error.AsCString());
return err;
}
}
if (!process && execution_policy == eExecutionPolicyAlways) {
err.SetErrorString("Expression needed to run in the target, but the "
"target can't be run");
return err;
}
if (!process && execution_policy == eExecutionPolicyTopLevel) {
err.SetErrorString("Top-level code needs to be inserted into a runnable "
"target, but the target can't be run");
return err;
}
if (execution_policy == eExecutionPolicyAlways ||
(execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
if (m_expr.NeedsValidation() && process) {
if (!process->GetDynamicCheckers()) {
DynamicCheckerFunctions *dynamic_checkers =
new DynamicCheckerFunctions();
DiagnosticManager install_diagnostics;
if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
if (install_diagnostics.Diagnostics().size())
err.SetErrorString("couldn't install checkers, unknown error");
else
err.SetErrorString(install_diagnostics.GetString().c_str());
return err;
}
process->SetDynamicCheckers(dynamic_checkers);
if (log)
log->Printf("== [ClangUserExpression::Evaluate] Finished "
"installing dynamic checkers ==");
}
IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(),
function_name.AsCString());
llvm::Module *module = execution_unit_sp->GetModule();
if (!module || !ir_dynamic_checks.runOnModule(*module)) {
err.SetErrorToGenericError();
err.SetErrorString("Couldn't add dynamic checks to the expression");
return err;
}
if (custom_passes.LatePasses) {
if (log)
log->Printf("%s - Running Late IR Passes from LanguageRuntime on "
"expression module '%s'",
__FUNCTION__, m_expr.FunctionName());
custom_passes.LatePasses->run(*module);
}
}
}
if (execution_policy == eExecutionPolicyAlways ||
execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
}
} else {
execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
}
return err;
}
lldb_private::Error ClangExpressionParser::RunStaticInitializers(
lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
lldb_private::Error err;
lldbassert(execution_unit_sp.get());
lldbassert(exe_ctx.HasThreadScope());
if (!execution_unit_sp.get()) {
err.SetErrorString(
"can't run static initializers for a NULL execution unit");
return err;
}
if (!exe_ctx.HasThreadScope()) {
err.SetErrorString("can't run static initializers without a thread");
return err;
}
std::vector<lldb::addr_t> static_initializers;
execution_unit_sp->GetStaticInitializers(static_initializers);
for (lldb::addr_t static_initializer : static_initializers) {
EvaluateExpressionOptions options;
lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
llvm::ArrayRef<lldb::addr_t>(), options));
DiagnosticManager execution_errors;
lldb::ExpressionResults results =
exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
exe_ctx, call_static_initializer, options, execution_errors);
if (results != lldb::eExpressionCompleted) {
err.SetErrorStringWithFormat("couldn't run static initializer: %s",
execution_errors.GetString().c_str());
return err;
}
}
return err;
}