Files
clang-p2996/compiler-rt/lib/xray/xray_interface_internal.h
Sebastian Kreutzer e738a5d8e3 Reapply " [XRay] Add support for instrumentation of DSOs on x86_64 (#90959)" (#113548)
This fixes remaining issues in my previous PR #90959.

Changes:
- Removed dependency on LLVM header in `xray_interface.cpp`
- Fixed XRay patching for some targets due to missing changes in
architecture-specific patching functions
- Addressed some remaining compiler warnings that I missed in the
previous patch
- Formatting

I have tested these changes on `x86_64` (natively), as well as
`ppc64le`, `aarch64` and `arm32` (cross-compiled and emulated using
qemu).

**Original description:**

This PR introduces shared library (DSO) support for XRay based on a
revised version of the implementation outlined in [this
RFC](https://discourse.llvm.org/t/rfc-upstreaming-dso-instrumentation-support-for-xray/73000).
The feature enables the patching and handling of events from DSOs,
supporting both libraries linked at startup or explicitly loaded, e.g.
via `dlopen`.
This patch adds the following:
- The `-fxray-shared` flag to enable the feature (turned off by default)
- A small runtime library that is linked into every instrumented DSO,
providing position-independent trampolines and code to register with the
main XRay runtime
- Changes to the XRay runtime to support management and patching of
multiple objects

These changes are fully backward compatible, i.e. running without
instrumented DSOs will produce identical traces (in terms of recorded
function IDs) to the previous implementation.

Due to my limited ability to test on other architectures, this feature
is only implemented and tested with x86_64. Extending support to other
architectures is fairly straightforward, requiring only a
position-independent implementation of the architecture-specific
trampoline implementation (see
`compiler-rt/lib/xray/xray_trampoline_x86_64.S` for reference).

This patch does not include any functionality to resolve function IDs
from DSOs for the provided logging/tracing modes. These modes still work
and will record calls from DSOs, but symbol resolution for these
functions in not available. Getting this to work properly requires
recording information about the loaded DSOs and should IMO be discussed
in a separate RFC, as there are mulitple feasible approaches.

---------

Co-authored-by: Sebastian Kreutzer <sebastian.kreutzer@tu-darmstadt.de>
2024-10-25 10:15:25 +02:00

151 lines
5.0 KiB
C++

//===-- xray_interface_internal.h -------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of the API functions. See also include/xray/xray_interface.h.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_INTERFACE_INTERNAL_H
#define XRAY_INTERFACE_INTERNAL_H
#include "sanitizer_common/sanitizer_platform.h"
#include "xray/xray_interface.h"
#include <cstddef>
#include <cstdint>
#include <utility>
extern "C" {
// The following functions have to be defined in assembler, on a per-platform
// basis. See xray_trampoline_*.S files for implementations.
extern void __xray_FunctionEntry();
extern void __xray_FunctionExit();
extern void __xray_FunctionTailExit();
extern void __xray_ArgLoggerEntry();
extern void __xray_CustomEvent();
extern void __xray_TypedEvent();
}
extern "C" {
struct XRaySledEntry {
#if SANITIZER_WORDSIZE == 64
uint64_t Address;
uint64_t Function;
unsigned char Kind;
unsigned char AlwaysInstrument;
unsigned char Version;
unsigned char Padding[13]; // Need 32 bytes
uint64_t function() const {
// The target address is relative to the location of the Function variable.
return reinterpret_cast<uint64_t>(&Function) + Function;
}
uint64_t address() const {
// The target address is relative to the location of the Address variable.
return reinterpret_cast<uint64_t>(&Address) + Address;
}
#elif SANITIZER_WORDSIZE == 32
uint32_t Address;
uint32_t Function;
unsigned char Kind;
unsigned char AlwaysInstrument;
unsigned char Version;
unsigned char Padding[5]; // Need 16 bytes
uint32_t function() const {
// The target address is relative to the location of the Function variable.
return reinterpret_cast<uint32_t>(&Function) + Function;
}
uint32_t address() const {
// The target address is relative to the location of the Address variable.
return reinterpret_cast<uint32_t>(&Address) + Address;
}
#else
#error "Unsupported word size."
#endif
};
struct XRayFunctionSledIndex {
const XRaySledEntry *Begin;
size_t Size;
// For an entry in the xray_fn_idx section, the address is relative to the
// location of the Begin variable.
const XRaySledEntry *fromPCRelative() const {
return reinterpret_cast<const XRaySledEntry *>(uintptr_t(&Begin) +
uintptr_t(Begin));
}
};
struct XRayTrampolines {
void (*EntryTrampoline)();
void (*ExitTrampoline)();
void (*TailExitTrampoline)();
void (*LogArgsTrampoline)();
XRayTrampolines() {
// These resolve to the definitions in the respective executable or DSO.
EntryTrampoline = __xray_FunctionEntry;
ExitTrampoline = __xray_FunctionExit;
TailExitTrampoline = __xray_FunctionTailExit;
LogArgsTrampoline = __xray_ArgLoggerEntry;
}
};
extern int32_t __xray_register_dso(const XRaySledEntry *SledsBegin,
const XRaySledEntry *SledsEnd,
const XRayFunctionSledIndex *FnIndexBegin,
const XRayFunctionSledIndex *FnIndexEnd,
XRayTrampolines Trampolines);
extern bool __xray_deregister_dso(int32_t ObjId);
}
namespace __xray {
constexpr uint32_t XRayNFnBits = 24;
constexpr uint32_t XRayNObjBits = 8;
constexpr uint32_t XRayFnBitMask = 0x00FFFFFF;
constexpr uint32_t XRayObjBitMask = 0xFF000000;
constexpr size_t XRayMaxFunctions = 1 << XRayNFnBits;
constexpr size_t XRayMaxObjects = 1 << XRayNObjBits;
inline int32_t MakePackedId(int32_t FnId, int32_t ObjId) {
return ((ObjId << XRayNFnBits) & XRayObjBitMask) | (FnId & XRayFnBitMask);
}
inline std::pair<int32_t, int32_t> UnpackId(int32_t PackedId) {
uint32_t ObjId = (PackedId & XRayObjBitMask) >> XRayNFnBits;
uint32_t FnId = PackedId & XRayFnBitMask;
return {ObjId, FnId};
}
struct XRaySledMap {
const XRaySledEntry *Sleds;
size_t Entries;
const XRayFunctionSledIndex *SledsIndex;
size_t Functions;
XRayTrampolines Trampolines;
bool FromDSO;
bool Loaded;
};
bool patchFunctionEntry(bool Enable, uint32_t FuncId, const XRaySledEntry &Sled,
const XRayTrampolines &Trampolines, bool LogArgs);
bool patchFunctionExit(bool Enable, uint32_t FuncId, const XRaySledEntry &Sled,
const XRayTrampolines &Trampolines);
bool patchFunctionTailExit(bool Enable, uint32_t FuncId,
const XRaySledEntry &Sled,
const XRayTrampolines &Trampolines);
bool patchCustomEvent(bool Enable, uint32_t FuncId, const XRaySledEntry &Sled);
bool patchTypedEvent(bool Enable, uint32_t FuncId, const XRaySledEntry &Sled);
} // namespace __xray
#endif