Files
clang-p2996/flang/lib/Optimizer/OpenMP/MapInfoFinalization.cpp
Akash Banerjee 9ba41031de [OpenMP]Update use_device_clause lowering (#101703)
This patch updates the use_device_ptr and use_device_addr clauses to use
the mapInfoOps for lowering. This allows all the types that are handle
by the map clauses such as derived types to also be supported by the
use_device_clauses.

This is patch 1/2 in a series of patches.

Co-authored-by: Raghu Maddhipatla raghu.maddhipatla@amd.com
2024-09-04 12:35:44 +01:00

312 lines
14 KiB
C++

//===- MapInfoFinalization.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// \file
/// An OpenMP dialect related pass for FIR/HLFIR which performs some
/// pre-processing of MapInfoOp's after the module has been lowered to
/// finalize them.
///
/// For example, it expands MapInfoOp's containing descriptor related
/// types (fir::BoxType's) into multiple MapInfoOp's containing the parent
/// descriptor and pointer member components for individual mapping,
/// treating the descriptor type as a record type for later lowering in the
/// OpenMP dialect.
///
/// The pass also adds MapInfoOp's that are members of a parent object but are
/// not directly used in the body of a target region to its BlockArgument list
/// to maintain consistency across all MapInfoOp's tied to a region directly or
/// indirectly via a parent object.
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/OpenMP/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include <iterator>
namespace flangomp {
#define GEN_PASS_DEF_MAPINFOFINALIZATIONPASS
#include "flang/Optimizer/OpenMP/Passes.h.inc"
} // namespace flangomp
namespace {
class MapInfoFinalizationPass
: public flangomp::impl::MapInfoFinalizationPassBase<
MapInfoFinalizationPass> {
/// Tracks any intermediate function/subroutine local allocations we
/// generate for the descriptors of box type dummy arguments, so that
/// we can retrieve it for subsequent reuses within the functions
/// scope
std::map</*descriptor opaque pointer=*/void *,
/*corresponding local alloca=*/fir::AllocaOp>
localBoxAllocas;
void genDescriptorMemberMaps(mlir::omp::MapInfoOp op,
fir::FirOpBuilder &builder,
mlir::Operation *target) {
mlir::Location loc = op.getLoc();
mlir::Value descriptor = op.getVarPtr();
// If we enter this function, but the mapped type itself is not the
// descriptor, then it's likely the address of the descriptor so we
// must retrieve the descriptor SSA.
if (!fir::isTypeWithDescriptor(op.getVarType())) {
if (auto addrOp = mlir::dyn_cast_if_present<fir::BoxAddrOp>(
op.getVarPtr().getDefiningOp())) {
descriptor = addrOp.getVal();
}
}
// The fir::BoxOffsetOp only works with !fir.ref<!fir.box<...>> types, as
// allowing it to access non-reference box operations can cause some
// problematic SSA IR. However, in the case of assumed shape's the type
// is not a !fir.ref, in these cases to retrieve the appropriate
// !fir.ref<!fir.box<...>> to access the data we need to map we must
// perform an alloca and then store to it and retrieve the data from the new
// alloca.
if (mlir::isa<fir::BaseBoxType>(descriptor.getType())) {
// If we have already created a local allocation for this BoxType,
// we must be sure to re-use it so that we end up with the same
// allocations being utilised for the same descriptor across all map uses,
// this prevents runtime issues such as not appropriately releasing or
// deleting all mapped data.
auto find = localBoxAllocas.find(descriptor.getAsOpaquePointer());
if (find != localBoxAllocas.end()) {
builder.create<fir::StoreOp>(loc, descriptor, find->second);
descriptor = find->second;
} else {
mlir::OpBuilder::InsertPoint insPt = builder.saveInsertionPoint();
mlir::Block *allocaBlock = builder.getAllocaBlock();
assert(allocaBlock && "No alloca block found for this top level op");
builder.setInsertionPointToStart(allocaBlock);
auto alloca = builder.create<fir::AllocaOp>(loc, descriptor.getType());
builder.restoreInsertionPoint(insPt);
builder.create<fir::StoreOp>(loc, descriptor, alloca);
localBoxAllocas[descriptor.getAsOpaquePointer()] = alloca;
descriptor = alloca;
}
}
mlir::Value baseAddrAddr = builder.create<fir::BoxOffsetOp>(
loc, descriptor, fir::BoxFieldAttr::base_addr);
// Member of the descriptor pointing at the allocated data
mlir::Value baseAddr = builder.create<mlir::omp::MapInfoOp>(
loc, baseAddrAddr.getType(), descriptor,
mlir::TypeAttr::get(llvm::cast<mlir::omp::PointerLikeType>(
fir::unwrapRefType(baseAddrAddr.getType()))
.getElementType()),
baseAddrAddr, /*members=*/mlir::SmallVector<mlir::Value>{},
/*member_index=*/mlir::DenseIntElementsAttr{}, op.getBounds(),
builder.getIntegerAttr(builder.getIntegerType(64, false),
op.getMapType().value()),
builder.getAttr<mlir::omp::VariableCaptureKindAttr>(
mlir::omp::VariableCaptureKind::ByRef),
/*name=*/builder.getStringAttr(""),
/*partial_map=*/builder.getBoolAttr(false));
// TODO: map the addendum segment of the descriptor, similarly to the
// above base address/data pointer member.
auto addOperands = [&](mlir::OperandRange &operandsArr,
mlir::MutableOperandRange &mutableOpRange,
auto directiveOp) {
llvm::SmallVector<mlir::Value> newMapOps;
for (size_t i = 0; i < operandsArr.size(); ++i) {
if (operandsArr[i] == op) {
// Push new implicit maps generated for the descriptor.
newMapOps.push_back(baseAddr);
// for TargetOp's which have IsolatedFromAbove we must align the
// new additional map operand with an appropriate BlockArgument,
// as the printing and later processing currently requires a 1:1
// mapping of BlockArgs to MapInfoOp's at the same placement in
// each array (BlockArgs and MapOperands).
if (directiveOp) {
directiveOp.getRegion().insertArgument(i, baseAddr.getType(), loc);
}
}
newMapOps.push_back(operandsArr[i]);
}
mutableOpRange.assign(newMapOps);
};
if (auto mapClauseOwner =
llvm::dyn_cast<mlir::omp::MapClauseOwningOpInterface>(target)) {
mlir::OperandRange mapOperandsArr = mapClauseOwner.getMapVars();
mlir::MutableOperandRange mapMutableOpRange =
mapClauseOwner.getMapVarsMutable();
mlir::omp::TargetOp targetOp =
llvm::dyn_cast<mlir::omp::TargetOp>(target);
addOperands(mapOperandsArr, mapMutableOpRange, targetOp);
}
if (auto targetDataOp = llvm::dyn_cast<mlir::omp::TargetDataOp>(target)) {
mlir::OperandRange useDevAddrArr = targetDataOp.getUseDeviceAddrVars();
mlir::MutableOperandRange useDevAddrMutableOpRange =
targetDataOp.getUseDeviceAddrVarsMutable();
addOperands(useDevAddrArr, useDevAddrMutableOpRange, targetDataOp);
}
mlir::Value newDescParentMapOp = builder.create<mlir::omp::MapInfoOp>(
op->getLoc(), op.getResult().getType(), descriptor,
mlir::TypeAttr::get(fir::unwrapRefType(descriptor.getType())),
/*varPtrPtr=*/mlir::Value{},
/*members=*/mlir::SmallVector<mlir::Value>{baseAddr},
/*members_index=*/
mlir::DenseIntElementsAttr::get(
mlir::VectorType::get(
llvm::ArrayRef<int64_t>({1, 1}),
mlir::IntegerType::get(builder.getContext(), 32)),
llvm::ArrayRef<int32_t>({0})),
/*bounds=*/mlir::SmallVector<mlir::Value>{},
builder.getIntegerAttr(builder.getIntegerType(64, false),
op.getMapType().value()),
op.getMapCaptureTypeAttr(), op.getNameAttr(), op.getPartialMapAttr());
op.replaceAllUsesWith(newDescParentMapOp);
op->erase();
}
// We add all mapped record members not directly used in the target region
// to the block arguments in front of their parent and we place them into
// the map operands list for consistency.
//
// These indirect uses (via accesses to their parent) will still be
// mapped individually in most cases, and a parent mapping doesn't
// guarantee the parent will be mapped in its totality, partial
// mapping is common.
//
// For example:
// map(tofrom: x%y)
//
// Will generate a mapping for "x" (the parent) and "y" (the member).
// The parent "x" will not be mapped, but the member "y" will.
// However, we must have the parent as a BlockArg and MapOperand
// in these cases, to maintain the correct uses within the region and
// to help tracking that the member is part of a larger object.
//
// In the case of:
// map(tofrom: x%y, x%z)
//
// The parent member becomes more critical, as we perform a partial
// structure mapping where we link the mapping of the members y
// and z together via the parent x. We do this at a kernel argument
// level in LLVM IR and not just MLIR, which is important to maintain
// similarity to Clang and for the runtime to do the correct thing.
// However, we still do not map the structure in its totality but
// rather we generate an un-sized "binding" map entry for it.
//
// In the case of:
// map(tofrom: x, x%y, x%z)
//
// We do actually map the entirety of "x", so the explicit mapping of
// x%y, x%z becomes unnecessary. It is redundant to write this from a
// Fortran OpenMP perspective (although it is legal), as even if the
// members were allocatables or pointers, we are mandated by the
// specification to map these (and any recursive components) in their
// entirety, which is different to the C++ equivalent, which requires
// explicit mapping of these segments.
void addImplicitMembersToTarget(mlir::omp::MapInfoOp op,
fir::FirOpBuilder &builder,
mlir::Operation *target) {
auto mapClauseOwner =
llvm::dyn_cast<mlir::omp::MapClauseOwningOpInterface>(target);
if (!mapClauseOwner)
return;
llvm::SmallVector<mlir::Value> newMapOps;
mlir::OperandRange mapVarsArr = mapClauseOwner.getMapVars();
auto targetOp = llvm::dyn_cast<mlir::omp::TargetOp>(target);
for (size_t i = 0; i < mapVarsArr.size(); ++i) {
if (mapVarsArr[i] == op) {
for (auto [j, mapMember] : llvm::enumerate(op.getMembers())) {
newMapOps.push_back(mapMember);
// for TargetOp's which have IsolatedFromAbove we must align the
// new additional map operand with an appropriate BlockArgument,
// as the printing and later processing currently requires a 1:1
// mapping of BlockArgs to MapInfoOp's at the same placement in
// each array (BlockArgs and MapVars).
if (targetOp) {
targetOp.getRegion().insertArgument(i + j, mapMember.getType(),
targetOp->getLoc());
}
}
}
newMapOps.push_back(mapVarsArr[i]);
}
mapClauseOwner.getMapVarsMutable().assign(newMapOps);
}
// This pass executes on omp::MapInfoOp's containing descriptor based types
// (allocatables, pointers, assumed shape etc.) and expanding them into
// multiple omp::MapInfoOp's for each pointer member contained within the
// descriptor.
//
// From the perspective of the MLIR pass manager this runs on the top level
// operation (usually function) containing the MapInfoOp because this pass
// will mutate siblings of MapInfoOp.
void runOnOperation() override {
mlir::ModuleOp module =
mlir::dyn_cast_or_null<mlir::ModuleOp>(getOperation());
if (!module)
module = getOperation()->getParentOfType<mlir::ModuleOp>();
fir::KindMapping kindMap = fir::getKindMapping(module);
fir::FirOpBuilder builder{module, std::move(kindMap)};
// We wish to maintain some function level scope (currently
// just local function scope variables used to load and store box
// variables into so we can access their base address, an
// quirk of box_offset requires us to have an in memory box, but Fortran
// in certain cases does not provide this) whilst not subjecting
// ourselves to the possibility of race conditions while this pass
// undergoes frequent re-iteration for the near future. So we loop
// over function in the module and then map.info inside of those.
getOperation()->walk([&](mlir::func::FuncOp func) {
// clear all local allocations we made for any boxes in any prior
// iterations from previous function scopes.
localBoxAllocas.clear();
func->walk([&](mlir::omp::MapInfoOp op) {
// TODO: Currently only supports a single user for the MapInfoOp, this
// is fine for the moment as the Fortran Frontend will generate a
// new MapInfoOp per Target operation for the moment. However, when/if
// we optimise/cleanup the IR, it likely isn't too difficult to
// extend this function, it would require some modification to create a
// single new MapInfoOp per new MapInfoOp generated and share it across
// all users appropriately, making sure to only add a single member link
// per new generation for the original originating descriptor MapInfoOp.
assert(llvm::hasSingleElement(op->getUsers()) &&
"OMPMapInfoFinalization currently only supports single users "
"of a MapInfoOp");
if (!op.getMembers().empty()) {
addImplicitMembersToTarget(op, builder, *op->getUsers().begin());
} else if (fir::isTypeWithDescriptor(op.getVarType()) ||
mlir::isa_and_present<fir::BoxAddrOp>(
op.getVarPtr().getDefiningOp())) {
builder.setInsertionPoint(op);
genDescriptorMemberMaps(op, builder, *op->getUsers().begin());
}
});
});
}
};
} // namespace