byval arguments in NVPTX are special. We're only allowed to read from them using a special instruction, and if we ever need to write to them or take an address, we must make a local copy and use it, instead. The problem is that local copies are very expensive, and we create them very late in the compilation pipeline, so LLVM does not have much of a chance to eliminate them, if they turn out to be unnecessary. One way around that is to create such copies early on, and let them percolate through the optimizations. The copying itself will never trigger creation of another copy later on, as the reads are allowed. If LLVM can eliminate it, it's a win. It the full optimization pipeline can't remove the copy, that's as good as it gets in terms of the effort we could've done, and it's certainly a much better effort than what we do now. This early injection of the copies has potential to create undesireable side-effects, so it's disabled by default, for now, until it sees more testing.
761 lines
29 KiB
C++
761 lines
29 KiB
C++
//===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//
|
|
// Arguments to kernel and device functions are passed via param space,
|
|
// which imposes certain restrictions:
|
|
// http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
|
|
//
|
|
// Kernel parameters are read-only and accessible only via ld.param
|
|
// instruction, directly or via a pointer.
|
|
//
|
|
// Device function parameters are directly accessible via
|
|
// ld.param/st.param, but taking the address of one returns a pointer
|
|
// to a copy created in local space which *can't* be used with
|
|
// ld.param/st.param.
|
|
//
|
|
// Copying a byval struct into local memory in IR allows us to enforce
|
|
// the param space restrictions, gives the rest of IR a pointer w/o
|
|
// param space restrictions, and gives us an opportunity to eliminate
|
|
// the copy.
|
|
//
|
|
// Pointer arguments to kernel functions need more work to be lowered:
|
|
//
|
|
// 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
|
|
// global address space. This allows later optimizations to emit
|
|
// ld.global.*/st.global.* for accessing these pointer arguments. For
|
|
// example,
|
|
//
|
|
// define void @foo(float* %input) {
|
|
// %v = load float, float* %input, align 4
|
|
// ...
|
|
// }
|
|
//
|
|
// becomes
|
|
//
|
|
// define void @foo(float* %input) {
|
|
// %input2 = addrspacecast float* %input to float addrspace(1)*
|
|
// %input3 = addrspacecast float addrspace(1)* %input2 to float*
|
|
// %v = load float, float* %input3, align 4
|
|
// ...
|
|
// }
|
|
//
|
|
// Later, NVPTXInferAddressSpaces will optimize it to
|
|
//
|
|
// define void @foo(float* %input) {
|
|
// %input2 = addrspacecast float* %input to float addrspace(1)*
|
|
// %v = load float, float addrspace(1)* %input2, align 4
|
|
// ...
|
|
// }
|
|
//
|
|
// 2. Convert byval kernel parameters to pointers in the param address space
|
|
// (so that NVPTX emits ld/st.param). Convert pointers *within* a byval
|
|
// kernel parameter to pointers in the global address space. This allows
|
|
// NVPTX to emit ld/st.global.
|
|
//
|
|
// struct S {
|
|
// int *x;
|
|
// int *y;
|
|
// };
|
|
// __global__ void foo(S s) {
|
|
// int *b = s.y;
|
|
// // use b
|
|
// }
|
|
//
|
|
// "b" points to the global address space. In the IR level,
|
|
//
|
|
// define void @foo(ptr byval %input) {
|
|
// %b_ptr = getelementptr {ptr, ptr}, ptr %input, i64 0, i32 1
|
|
// %b = load ptr, ptr %b_ptr
|
|
// ; use %b
|
|
// }
|
|
//
|
|
// becomes
|
|
//
|
|
// define void @foo({i32*, i32*}* byval %input) {
|
|
// %b_param = addrspacecat ptr %input to ptr addrspace(101)
|
|
// %b_ptr = getelementptr {ptr, ptr}, ptr addrspace(101) %b_param, i64 0, i32 1
|
|
// %b = load ptr, ptr addrspace(101) %b_ptr
|
|
// %b_global = addrspacecast ptr %b to ptr addrspace(1)
|
|
// ; use %b_generic
|
|
// }
|
|
//
|
|
// Create a local copy of kernel byval parameters used in a way that *might* mutate
|
|
// the parameter, by storing it in an alloca. Mutations to "grid_constant" parameters
|
|
// are undefined behaviour, and don't require local copies.
|
|
//
|
|
// define void @foo(ptr byval(%struct.s) align 4 %input) {
|
|
// store i32 42, ptr %input
|
|
// ret void
|
|
// }
|
|
//
|
|
// becomes
|
|
//
|
|
// define void @foo(ptr byval(%struct.s) align 4 %input) #1 {
|
|
// %input1 = alloca %struct.s, align 4
|
|
// %input2 = addrspacecast ptr %input to ptr addrspace(101)
|
|
// %input3 = load %struct.s, ptr addrspace(101) %input2, align 4
|
|
// store %struct.s %input3, ptr %input1, align 4
|
|
// store i32 42, ptr %input1, align 4
|
|
// ret void
|
|
// }
|
|
//
|
|
// If %input were passed to a device function, or written to memory,
|
|
// conservatively assume that %input gets mutated, and create a local copy.
|
|
//
|
|
// Convert param pointers to grid_constant byval kernel parameters that are
|
|
// passed into calls (device functions, intrinsics, inline asm), or otherwise
|
|
// "escape" (into stores/ptrtoints) to the generic address space, using the
|
|
// `nvvm.ptr.param.to.gen` intrinsic, so that NVPTX emits cvta.param
|
|
// (available for sm70+)
|
|
//
|
|
// define void @foo(ptr byval(%struct.s) %input) {
|
|
// ; %input is a grid_constant
|
|
// %call = call i32 @escape(ptr %input)
|
|
// ret void
|
|
// }
|
|
//
|
|
// becomes
|
|
//
|
|
// define void @foo(ptr byval(%struct.s) %input) {
|
|
// %input1 = addrspacecast ptr %input to ptr addrspace(101)
|
|
// ; the following intrinsic converts pointer to generic. We don't use an addrspacecast
|
|
// ; to prevent generic -> param -> generic from getting cancelled out
|
|
// %input1.gen = call ptr @llvm.nvvm.ptr.param.to.gen.p0.p101(ptr addrspace(101) %input1)
|
|
// %call = call i32 @escape(ptr %input1.gen)
|
|
// ret void
|
|
// }
|
|
//
|
|
// TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
|
|
// cancel the addrspacecast pair this pass emits.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/NVPTXBaseInfo.h"
|
|
#include "NVPTX.h"
|
|
#include "NVPTXTargetMachine.h"
|
|
#include "NVPTXUtilities.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/PtrUseVisitor.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <numeric>
|
|
#include <queue>
|
|
|
|
#define DEBUG_TYPE "nvptx-lower-args"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
void initializeNVPTXLowerArgsPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
class NVPTXLowerArgs : public FunctionPass {
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
bool runOnKernelFunction(const NVPTXTargetMachine &TM, Function &F);
|
|
bool runOnDeviceFunction(const NVPTXTargetMachine &TM, Function &F);
|
|
|
|
// handle byval parameters
|
|
void handleByValParam(const NVPTXTargetMachine &TM, Argument *Arg);
|
|
// Knowing Ptr must point to the global address space, this function
|
|
// addrspacecasts Ptr to global and then back to generic. This allows
|
|
// NVPTXInferAddressSpaces to fold the global-to-generic cast into
|
|
// loads/stores that appear later.
|
|
void markPointerAsGlobal(Value *Ptr);
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
NVPTXLowerArgs() : FunctionPass(ID) {}
|
|
StringRef getPassName() const override {
|
|
return "Lower pointer arguments of CUDA kernels";
|
|
}
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetPassConfig>();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
char NVPTXLowerArgs::ID = 1;
|
|
|
|
INITIALIZE_PASS_BEGIN(NVPTXLowerArgs, "nvptx-lower-args",
|
|
"Lower arguments (NVPTX)", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_END(NVPTXLowerArgs, "nvptx-lower-args",
|
|
"Lower arguments (NVPTX)", false, false)
|
|
|
|
// =============================================================================
|
|
// If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
|
|
// and we can't guarantee that the only accesses are loads,
|
|
// then add the following instructions to the first basic block:
|
|
//
|
|
// %temp = alloca %struct.x, align 8
|
|
// %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
|
|
// %tv = load %struct.x addrspace(101)* %tempd
|
|
// store %struct.x %tv, %struct.x* %temp, align 8
|
|
//
|
|
// The above code allocates some space in the stack and copies the incoming
|
|
// struct from param space to local space.
|
|
// Then replace all occurrences of %d by %temp.
|
|
//
|
|
// In case we know that all users are GEPs or Loads, replace them with the same
|
|
// ones in parameter AS, so we can access them using ld.param.
|
|
// =============================================================================
|
|
|
|
// For Loads, replaces the \p OldUse of the pointer with a Use of the same
|
|
// pointer in parameter AS.
|
|
// For "escapes" (to memory, a function call, or a ptrtoint), cast the OldUse to
|
|
// generic using cvta.param.
|
|
static void convertToParamAS(Use *OldUse, Value *Param, bool HasCvtaParam,
|
|
bool IsGridConstant) {
|
|
Instruction *I = dyn_cast<Instruction>(OldUse->getUser());
|
|
assert(I && "OldUse must be in an instruction");
|
|
struct IP {
|
|
Use *OldUse;
|
|
Instruction *OldInstruction;
|
|
Value *NewParam;
|
|
};
|
|
SmallVector<IP> ItemsToConvert = {{OldUse, I, Param}};
|
|
SmallVector<Instruction *> InstructionsToDelete;
|
|
|
|
auto CloneInstInParamAS = [HasCvtaParam,
|
|
IsGridConstant](const IP &I) -> Value * {
|
|
if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
|
|
LI->setOperand(0, I.NewParam);
|
|
return LI;
|
|
}
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
|
|
SmallVector<Value *, 4> Indices(GEP->indices());
|
|
auto *NewGEP = GetElementPtrInst::Create(
|
|
GEP->getSourceElementType(), I.NewParam, Indices, GEP->getName(),
|
|
GEP->getIterator());
|
|
NewGEP->setIsInBounds(GEP->isInBounds());
|
|
return NewGEP;
|
|
}
|
|
if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
|
|
auto *NewBCType = PointerType::get(BC->getContext(), ADDRESS_SPACE_PARAM);
|
|
return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
|
|
BC->getName(), BC->getIterator());
|
|
}
|
|
if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
|
|
assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
|
|
(void)ASC;
|
|
// Just pass through the argument, the old ASC is no longer needed.
|
|
return I.NewParam;
|
|
}
|
|
if (auto *MI = dyn_cast<MemTransferInst>(I.OldInstruction)) {
|
|
if (MI->getRawSource() == I.OldUse->get()) {
|
|
// convert to memcpy/memmove from param space.
|
|
IRBuilder<> Builder(I.OldInstruction);
|
|
Intrinsic::ID ID = MI->getIntrinsicID();
|
|
|
|
CallInst *B = Builder.CreateMemTransferInst(
|
|
ID, MI->getRawDest(), MI->getDestAlign(), I.NewParam,
|
|
MI->getSourceAlign(), MI->getLength(), MI->isVolatile());
|
|
for (unsigned I : {0, 1})
|
|
if (uint64_t Bytes = MI->getParamDereferenceableBytes(I))
|
|
B->addDereferenceableParamAttr(I, Bytes);
|
|
return B;
|
|
}
|
|
// We may be able to handle other cases if the argument is
|
|
// __grid_constant__
|
|
}
|
|
|
|
if (HasCvtaParam) {
|
|
auto GetParamAddrCastToGeneric =
|
|
[](Value *Addr, Instruction *OriginalUser) -> Value * {
|
|
PointerType *ReturnTy =
|
|
PointerType::get(OriginalUser->getContext(), ADDRESS_SPACE_GENERIC);
|
|
Function *CvtToGen = Intrinsic::getOrInsertDeclaration(
|
|
OriginalUser->getModule(), Intrinsic::nvvm_ptr_param_to_gen,
|
|
{ReturnTy, PointerType::get(OriginalUser->getContext(),
|
|
ADDRESS_SPACE_PARAM)});
|
|
|
|
// Cast param address to generic address space
|
|
Value *CvtToGenCall =
|
|
CallInst::Create(CvtToGen, Addr, Addr->getName() + ".gen",
|
|
OriginalUser->getIterator());
|
|
return CvtToGenCall;
|
|
};
|
|
auto *ParamInGenericAS =
|
|
GetParamAddrCastToGeneric(I.NewParam, I.OldInstruction);
|
|
|
|
// phi/select could use generic arg pointers w/o __grid_constant__
|
|
if (auto *PHI = dyn_cast<PHINode>(I.OldInstruction)) {
|
|
for (auto [Idx, V] : enumerate(PHI->incoming_values())) {
|
|
if (V.get() == I.OldUse->get())
|
|
PHI->setIncomingValue(Idx, ParamInGenericAS);
|
|
}
|
|
}
|
|
if (auto *SI = dyn_cast<SelectInst>(I.OldInstruction)) {
|
|
if (SI->getTrueValue() == I.OldUse->get())
|
|
SI->setTrueValue(ParamInGenericAS);
|
|
if (SI->getFalseValue() == I.OldUse->get())
|
|
SI->setFalseValue(ParamInGenericAS);
|
|
}
|
|
|
|
// Escapes or writes can only use generic param pointers if
|
|
// __grid_constant__ is in effect.
|
|
if (IsGridConstant) {
|
|
if (auto *CI = dyn_cast<CallInst>(I.OldInstruction)) {
|
|
I.OldUse->set(ParamInGenericAS);
|
|
return CI;
|
|
}
|
|
if (auto *SI = dyn_cast<StoreInst>(I.OldInstruction)) {
|
|
// byval address is being stored, cast it to generic
|
|
if (SI->getValueOperand() == I.OldUse->get())
|
|
SI->setOperand(0, ParamInGenericAS);
|
|
return SI;
|
|
}
|
|
if (auto *PI = dyn_cast<PtrToIntInst>(I.OldInstruction)) {
|
|
if (PI->getPointerOperand() == I.OldUse->get())
|
|
PI->setOperand(0, ParamInGenericAS);
|
|
return PI;
|
|
}
|
|
// TODO: iIf we allow stores, we should allow memcpy/memset to
|
|
// parameter, too.
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unsupported instruction");
|
|
};
|
|
|
|
while (!ItemsToConvert.empty()) {
|
|
IP I = ItemsToConvert.pop_back_val();
|
|
Value *NewInst = CloneInstInParamAS(I);
|
|
|
|
if (NewInst && NewInst != I.OldInstruction) {
|
|
// We've created a new instruction. Queue users of the old instruction to
|
|
// be converted and the instruction itself to be deleted. We can't delete
|
|
// the old instruction yet, because it's still in use by a load somewhere.
|
|
for (Use &U : I.OldInstruction->uses())
|
|
ItemsToConvert.push_back({&U, cast<Instruction>(U.getUser()), NewInst});
|
|
|
|
InstructionsToDelete.push_back(I.OldInstruction);
|
|
}
|
|
}
|
|
|
|
// Now we know that all argument loads are using addresses in parameter space
|
|
// and we can finally remove the old instructions in generic AS. Instructions
|
|
// scheduled for removal should be processed in reverse order so the ones
|
|
// closest to the load are deleted first. Otherwise they may still be in use.
|
|
// E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
|
|
// have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
|
|
// the BitCast.
|
|
for (Instruction *I : llvm::reverse(InstructionsToDelete))
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
// Adjust alignment of arguments passed byval in .param address space. We can
|
|
// increase alignment of such arguments in a way that ensures that we can
|
|
// effectively vectorize their loads. We should also traverse all loads from
|
|
// byval pointer and adjust their alignment, if those were using known offset.
|
|
// Such alignment changes must be conformed with parameter store and load in
|
|
// NVPTXTargetLowering::LowerCall.
|
|
static void adjustByValArgAlignment(Argument *Arg, Value *ArgInParamAS,
|
|
const NVPTXTargetLowering *TLI) {
|
|
Function *Func = Arg->getParent();
|
|
Type *StructType = Arg->getParamByValType();
|
|
const DataLayout &DL = Func->getDataLayout();
|
|
|
|
uint64_t NewArgAlign =
|
|
TLI->getFunctionParamOptimizedAlign(Func, StructType, DL).value();
|
|
uint64_t CurArgAlign =
|
|
Arg->getAttribute(Attribute::Alignment).getValueAsInt();
|
|
|
|
if (CurArgAlign >= NewArgAlign)
|
|
return;
|
|
|
|
LLVM_DEBUG(dbgs() << "Try to use alignment " << NewArgAlign << " instead of "
|
|
<< CurArgAlign << " for " << *Arg << '\n');
|
|
|
|
auto NewAlignAttr =
|
|
Attribute::get(Func->getContext(), Attribute::Alignment, NewArgAlign);
|
|
Arg->removeAttr(Attribute::Alignment);
|
|
Arg->addAttr(NewAlignAttr);
|
|
|
|
struct Load {
|
|
LoadInst *Inst;
|
|
uint64_t Offset;
|
|
};
|
|
|
|
struct LoadContext {
|
|
Value *InitialVal;
|
|
uint64_t Offset;
|
|
};
|
|
|
|
SmallVector<Load> Loads;
|
|
std::queue<LoadContext> Worklist;
|
|
Worklist.push({ArgInParamAS, 0});
|
|
bool IsGridConstant = isParamGridConstant(*Arg);
|
|
|
|
while (!Worklist.empty()) {
|
|
LoadContext Ctx = Worklist.front();
|
|
Worklist.pop();
|
|
|
|
for (User *CurUser : Ctx.InitialVal->users()) {
|
|
if (auto *I = dyn_cast<LoadInst>(CurUser)) {
|
|
Loads.push_back({I, Ctx.Offset});
|
|
continue;
|
|
}
|
|
|
|
if (auto *I = dyn_cast<BitCastInst>(CurUser)) {
|
|
Worklist.push({I, Ctx.Offset});
|
|
continue;
|
|
}
|
|
|
|
if (auto *I = dyn_cast<GetElementPtrInst>(CurUser)) {
|
|
APInt OffsetAccumulated =
|
|
APInt::getZero(DL.getIndexSizeInBits(ADDRESS_SPACE_PARAM));
|
|
|
|
if (!I->accumulateConstantOffset(DL, OffsetAccumulated))
|
|
continue;
|
|
|
|
uint64_t OffsetLimit = -1;
|
|
uint64_t Offset = OffsetAccumulated.getLimitedValue(OffsetLimit);
|
|
assert(Offset != OffsetLimit && "Expect Offset less than UINT64_MAX");
|
|
|
|
Worklist.push({I, Ctx.Offset + Offset});
|
|
continue;
|
|
}
|
|
|
|
if (isa<MemTransferInst>(CurUser))
|
|
continue;
|
|
|
|
// supported for grid_constant
|
|
if (IsGridConstant &&
|
|
(isa<CallInst>(CurUser) || isa<StoreInst>(CurUser) ||
|
|
isa<PtrToIntInst>(CurUser)))
|
|
continue;
|
|
|
|
llvm_unreachable("All users must be one of: load, "
|
|
"bitcast, getelementptr, call, store, ptrtoint");
|
|
}
|
|
}
|
|
|
|
for (Load &CurLoad : Loads) {
|
|
Align NewLoadAlign(std::gcd(NewArgAlign, CurLoad.Offset));
|
|
Align CurLoadAlign(CurLoad.Inst->getAlign());
|
|
CurLoad.Inst->setAlignment(std::max(NewLoadAlign, CurLoadAlign));
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct ArgUseChecker : PtrUseVisitor<ArgUseChecker> {
|
|
using Base = PtrUseVisitor<ArgUseChecker>;
|
|
|
|
bool IsGridConstant;
|
|
// Set of phi/select instructions using the Arg
|
|
SmallPtrSet<Instruction *, 4> Conditionals;
|
|
|
|
ArgUseChecker(const DataLayout &DL, bool IsGridConstant)
|
|
: PtrUseVisitor(DL), IsGridConstant(IsGridConstant) {}
|
|
|
|
PtrInfo visitArgPtr(Argument &A) {
|
|
assert(A.getType()->isPointerTy());
|
|
IntegerType *IntIdxTy = cast<IntegerType>(DL.getIndexType(A.getType()));
|
|
IsOffsetKnown = false;
|
|
Offset = APInt(IntIdxTy->getBitWidth(), 0);
|
|
PI.reset();
|
|
Conditionals.clear();
|
|
|
|
LLVM_DEBUG(dbgs() << "Checking Argument " << A << "\n");
|
|
// Enqueue the uses of this pointer.
|
|
enqueueUsers(A);
|
|
|
|
// Visit all the uses off the worklist until it is empty.
|
|
// Note that unlike PtrUseVisitor we intentionally do not track offsets.
|
|
// We're only interested in how we use the pointer.
|
|
while (!(Worklist.empty() || PI.isAborted())) {
|
|
UseToVisit ToVisit = Worklist.pop_back_val();
|
|
U = ToVisit.UseAndIsOffsetKnown.getPointer();
|
|
Instruction *I = cast<Instruction>(U->getUser());
|
|
if (isa<PHINode>(I) || isa<SelectInst>(I))
|
|
Conditionals.insert(I);
|
|
LLVM_DEBUG(dbgs() << "Processing " << *I << "\n");
|
|
Base::visit(I);
|
|
}
|
|
if (PI.isEscaped())
|
|
LLVM_DEBUG(dbgs() << "Argument pointer escaped: " << *PI.getEscapingInst()
|
|
<< "\n");
|
|
else if (PI.isAborted())
|
|
LLVM_DEBUG(dbgs() << "Pointer use needs a copy: " << *PI.getAbortingInst()
|
|
<< "\n");
|
|
LLVM_DEBUG(dbgs() << "Traversed " << Conditionals.size()
|
|
<< " conditionals\n");
|
|
return PI;
|
|
}
|
|
|
|
void visitStoreInst(StoreInst &SI) {
|
|
// Storing the pointer escapes it.
|
|
if (U->get() == SI.getValueOperand())
|
|
return PI.setEscapedAndAborted(&SI);
|
|
// Writes to the pointer are UB w/ __grid_constant__, but do not force a
|
|
// copy.
|
|
if (!IsGridConstant)
|
|
return PI.setAborted(&SI);
|
|
}
|
|
|
|
void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
|
|
// ASC to param space are no-ops and do not need a copy
|
|
if (ASC.getDestAddressSpace() != ADDRESS_SPACE_PARAM)
|
|
return PI.setEscapedAndAborted(&ASC);
|
|
Base::visitAddrSpaceCastInst(ASC);
|
|
}
|
|
|
|
void visitPtrToIntInst(PtrToIntInst &I) {
|
|
if (IsGridConstant)
|
|
return;
|
|
Base::visitPtrToIntInst(I);
|
|
}
|
|
void visitPHINodeOrSelectInst(Instruction &I) {
|
|
assert(isa<PHINode>(I) || isa<SelectInst>(I));
|
|
}
|
|
// PHI and select just pass through the pointers.
|
|
void visitPHINode(PHINode &PN) { enqueueUsers(PN); }
|
|
void visitSelectInst(SelectInst &SI) { enqueueUsers(SI); }
|
|
|
|
void visitMemTransferInst(MemTransferInst &II) {
|
|
if (*U == II.getRawDest() && !IsGridConstant)
|
|
PI.setAborted(&II);
|
|
// memcpy/memmove are OK when the pointer is source. We can convert them to
|
|
// AS-specific memcpy.
|
|
}
|
|
|
|
void visitMemSetInst(MemSetInst &II) {
|
|
if (!IsGridConstant)
|
|
PI.setAborted(&II);
|
|
}
|
|
}; // struct ArgUseChecker
|
|
|
|
void copyByValParam(Function &F, Argument &Arg) {
|
|
LLVM_DEBUG(dbgs() << "Creating a local copy of " << Arg << "\n");
|
|
// Otherwise we have to create a temporary copy.
|
|
BasicBlock::iterator FirstInst = F.getEntryBlock().begin();
|
|
Type *StructType = Arg.getParamByValType();
|
|
const DataLayout &DL = F.getDataLayout();
|
|
AllocaInst *AllocA = new AllocaInst(StructType, DL.getAllocaAddrSpace(),
|
|
Arg.getName(), FirstInst);
|
|
// Set the alignment to alignment of the byval parameter. This is because,
|
|
// later load/stores assume that alignment, and we are going to replace
|
|
// the use of the byval parameter with this alloca instruction.
|
|
AllocA->setAlignment(F.getParamAlign(Arg.getArgNo())
|
|
.value_or(DL.getPrefTypeAlign(StructType)));
|
|
Arg.replaceAllUsesWith(AllocA);
|
|
|
|
Value *ArgInParam = new AddrSpaceCastInst(
|
|
&Arg, PointerType::get(Arg.getContext(), ADDRESS_SPACE_PARAM),
|
|
Arg.getName(), FirstInst);
|
|
// Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
|
|
// addrspacecast preserves alignment. Since params are constant, this load
|
|
// is definitely not volatile.
|
|
const auto ArgSize = *AllocA->getAllocationSize(DL);
|
|
IRBuilder<> IRB(&*FirstInst);
|
|
IRB.CreateMemCpy(AllocA, AllocA->getAlign(), ArgInParam, AllocA->getAlign(),
|
|
ArgSize);
|
|
}
|
|
} // namespace
|
|
|
|
void NVPTXLowerArgs::handleByValParam(const NVPTXTargetMachine &TM,
|
|
Argument *Arg) {
|
|
Function *Func = Arg->getParent();
|
|
bool HasCvtaParam =
|
|
TM.getSubtargetImpl(*Func)->hasCvtaParam() && isKernelFunction(*Func);
|
|
bool IsGridConstant = HasCvtaParam && isParamGridConstant(*Arg);
|
|
const DataLayout &DL = Func->getDataLayout();
|
|
BasicBlock::iterator FirstInst = Func->getEntryBlock().begin();
|
|
Type *StructType = Arg->getParamByValType();
|
|
assert(StructType && "Missing byval type");
|
|
|
|
ArgUseChecker AUC(DL, IsGridConstant);
|
|
ArgUseChecker::PtrInfo PI = AUC.visitArgPtr(*Arg);
|
|
bool ArgUseIsReadOnly = !(PI.isEscaped() || PI.isAborted());
|
|
// Easy case, accessing parameter directly is fine.
|
|
if (ArgUseIsReadOnly && AUC.Conditionals.empty()) {
|
|
// Convert all loads and intermediate operations to use parameter AS and
|
|
// skip creation of a local copy of the argument.
|
|
SmallVector<Use *, 16> UsesToUpdate;
|
|
for (Use &U : Arg->uses())
|
|
UsesToUpdate.push_back(&U);
|
|
|
|
Value *ArgInParamAS = new AddrSpaceCastInst(
|
|
Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
|
|
FirstInst);
|
|
for (Use *U : UsesToUpdate)
|
|
convertToParamAS(U, ArgInParamAS, HasCvtaParam, IsGridConstant);
|
|
LLVM_DEBUG(dbgs() << "No need to copy or cast " << *Arg << "\n");
|
|
|
|
const auto *TLI =
|
|
cast<NVPTXTargetLowering>(TM.getSubtargetImpl()->getTargetLowering());
|
|
|
|
adjustByValArgAlignment(Arg, ArgInParamAS, TLI);
|
|
|
|
return;
|
|
}
|
|
|
|
// We can't access byval arg directly and need a pointer. on sm_70+ we have
|
|
// ability to take a pointer to the argument without making a local copy.
|
|
// However, we're still not allowed to write to it. If the user specified
|
|
// `__grid_constant__` for the argument, we'll consider escaped pointer as
|
|
// read-only.
|
|
if (HasCvtaParam && (ArgUseIsReadOnly || IsGridConstant)) {
|
|
LLVM_DEBUG(dbgs() << "Using non-copy pointer to " << *Arg << "\n");
|
|
// Replace all argument pointer uses (which might include a device function
|
|
// call) with a cast to the generic address space using cvta.param
|
|
// instruction, which avoids a local copy.
|
|
IRBuilder<> IRB(&Func->getEntryBlock().front());
|
|
|
|
// Cast argument to param address space
|
|
auto *CastToParam = cast<AddrSpaceCastInst>(IRB.CreateAddrSpaceCast(
|
|
Arg, IRB.getPtrTy(ADDRESS_SPACE_PARAM), Arg->getName() + ".param"));
|
|
|
|
// Cast param address to generic address space. We do not use an
|
|
// addrspacecast to generic here, because, LLVM considers `Arg` to be in the
|
|
// generic address space, and a `generic -> param` cast followed by a `param
|
|
// -> generic` cast will be folded away. The `param -> generic` intrinsic
|
|
// will be correctly lowered to `cvta.param`.
|
|
Value *CvtToGenCall = IRB.CreateIntrinsic(
|
|
IRB.getPtrTy(ADDRESS_SPACE_GENERIC), Intrinsic::nvvm_ptr_param_to_gen,
|
|
CastToParam, nullptr, CastToParam->getName() + ".gen");
|
|
|
|
Arg->replaceAllUsesWith(CvtToGenCall);
|
|
|
|
// Do not replace Arg in the cast to param space
|
|
CastToParam->setOperand(0, Arg);
|
|
} else
|
|
copyByValParam(*Func, *Arg);
|
|
}
|
|
|
|
void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
|
|
if (Ptr->getType()->getPointerAddressSpace() != ADDRESS_SPACE_GENERIC)
|
|
return;
|
|
|
|
// Deciding where to emit the addrspacecast pair.
|
|
BasicBlock::iterator InsertPt;
|
|
if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
|
|
// Insert at the functon entry if Ptr is an argument.
|
|
InsertPt = Arg->getParent()->getEntryBlock().begin();
|
|
} else {
|
|
// Insert right after Ptr if Ptr is an instruction.
|
|
InsertPt = ++cast<Instruction>(Ptr)->getIterator();
|
|
assert(InsertPt != InsertPt->getParent()->end() &&
|
|
"We don't call this function with Ptr being a terminator.");
|
|
}
|
|
|
|
Instruction *PtrInGlobal = new AddrSpaceCastInst(
|
|
Ptr, PointerType::get(Ptr->getContext(), ADDRESS_SPACE_GLOBAL),
|
|
Ptr->getName(), InsertPt);
|
|
Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
|
|
Ptr->getName(), InsertPt);
|
|
// Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
|
|
Ptr->replaceAllUsesWith(PtrInGeneric);
|
|
PtrInGlobal->setOperand(0, Ptr);
|
|
}
|
|
|
|
// =============================================================================
|
|
// Main function for this pass.
|
|
// =============================================================================
|
|
bool NVPTXLowerArgs::runOnKernelFunction(const NVPTXTargetMachine &TM,
|
|
Function &F) {
|
|
// Copying of byval aggregates + SROA may result in pointers being loaded as
|
|
// integers, followed by intotoptr. We may want to mark those as global, too,
|
|
// but only if the loaded integer is used exclusively for conversion to a
|
|
// pointer with inttoptr.
|
|
auto HandleIntToPtr = [this](Value &V) {
|
|
if (llvm::all_of(V.users(), [](User *U) { return isa<IntToPtrInst>(U); })) {
|
|
SmallVector<User *, 16> UsersToUpdate(V.users());
|
|
for (User *U : UsersToUpdate)
|
|
markPointerAsGlobal(U);
|
|
}
|
|
};
|
|
if (TM.getDrvInterface() == NVPTX::CUDA) {
|
|
// Mark pointers in byval structs as global.
|
|
for (auto &B : F) {
|
|
for (auto &I : B) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (LI->getType()->isPointerTy() || LI->getType()->isIntegerTy()) {
|
|
Value *UO = getUnderlyingObject(LI->getPointerOperand());
|
|
if (Argument *Arg = dyn_cast<Argument>(UO)) {
|
|
if (Arg->hasByValAttr()) {
|
|
// LI is a load from a pointer within a byval kernel parameter.
|
|
if (LI->getType()->isPointerTy())
|
|
markPointerAsGlobal(LI);
|
|
else
|
|
HandleIntToPtr(*LI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
|
|
for (Argument &Arg : F.args()) {
|
|
if (Arg.getType()->isPointerTy()) {
|
|
if (Arg.hasByValAttr())
|
|
handleByValParam(TM, &Arg);
|
|
else if (TM.getDrvInterface() == NVPTX::CUDA)
|
|
markPointerAsGlobal(&Arg);
|
|
} else if (Arg.getType()->isIntegerTy() &&
|
|
TM.getDrvInterface() == NVPTX::CUDA) {
|
|
HandleIntToPtr(Arg);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Device functions only need to copy byval args into local memory.
|
|
bool NVPTXLowerArgs::runOnDeviceFunction(const NVPTXTargetMachine &TM,
|
|
Function &F) {
|
|
LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
|
|
for (Argument &Arg : F.args())
|
|
if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
|
|
handleByValParam(TM, &Arg);
|
|
return true;
|
|
}
|
|
|
|
bool NVPTXLowerArgs::runOnFunction(Function &F) {
|
|
auto &TM = getAnalysis<TargetPassConfig>().getTM<NVPTXTargetMachine>();
|
|
|
|
return isKernelFunction(F) ? runOnKernelFunction(TM, F)
|
|
: runOnDeviceFunction(TM, F);
|
|
}
|
|
|
|
FunctionPass *llvm::createNVPTXLowerArgsPass() { return new NVPTXLowerArgs(); }
|
|
|
|
static bool copyFunctionByValArgs(Function &F) {
|
|
LLVM_DEBUG(dbgs() << "Creating a copy of byval args of " << F.getName()
|
|
<< "\n");
|
|
bool Changed = false;
|
|
for (Argument &Arg : F.args())
|
|
if (Arg.getType()->isPointerTy() && Arg.hasByValAttr() &&
|
|
!(isParamGridConstant(Arg) && isKernelFunction(F))) {
|
|
copyByValParam(F, Arg);
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
PreservedAnalyses NVPTXCopyByValArgsPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
return copyFunctionByValArgs(F) ? PreservedAnalyses::none()
|
|
: PreservedAnalyses::all();
|
|
}
|