Files
clang-p2996/llvm/test/Transforms/InstCombine/bitreverse.ll
Nikita Popov a105877646 [InstCombine] Remove some of the complexity-based canonicalization (#91185)
The idea behind this canonicalization is that it allows us to handle less
patterns, because we know that some will be canonicalized away. This is
indeed very useful to e.g. know that constants are always on the right.

However, this is only useful if the canonicalization is actually
reliable. This is the case for constants, but not for arguments: Moving
these to the right makes it look like the "more complex" expression is
guaranteed to be on the left, but this is not actually the case in
practice. It fails as soon as you replace the argument with another
instruction.

The end result is that it looks like things correctly work in tests,
while they actually don't. We use the "thwart complexity-based
canonicalization" trick to handle this in tests, but it's often a
challenge for new contributors to get this right, and based on the
regressions this PR originally exposed, we clearly don't get this right
in many cases.

For this reason, I think that it's better to remove this complexity
canonicalization. It will make it much easier to write tests for
commuted cases and make sure that they are handled.
2024-08-21 12:02:54 +02:00

537 lines
17 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=instcombine -S | FileCheck %s
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-n8:16:32"
declare i16 @llvm.bitreverse.i16(i16)
declare i32 @llvm.bitreverse.i32(i32)
declare i64 @llvm.bitreverse.i64(i64)
declare <2 x i8> @llvm.bitreverse.v2i8(<2 x i8>)
declare <2 x i32> @llvm.bitreverse.v2i32(<2 x i32>)
declare void @use_i32(i32)
declare void @use_i64(i64)
;pairwise reverse
;template <typename T>
;T reverse(T v) {
; T s = sizeof(v) * 8;
; T mask = ~(T)0;
; while ((s >>= 1) > 0) {
; mask ^= (mask << s);
; v = ((v >> s) & mask) | ((v << s) & ~mask);
; }
; return v;
;}
define i8 @rev8(i8 %v) {
; CHECK-LABEL: @rev8(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[OR_2:%.*]] = call i8 @llvm.bitreverse.i8(i8 [[V:%.*]])
; CHECK-NEXT: ret i8 [[OR_2]]
;
entry:
%shr4 = lshr i8 %v, 4
%shl7 = shl i8 %v, 4
%or = or i8 %shr4, %shl7
%shr4.1 = lshr i8 %or, 2
%and.1 = and i8 %shr4.1, 51
%shl7.1 = shl i8 %or, 2
%and9.1 = and i8 %shl7.1, -52
%or.1 = or i8 %and.1, %and9.1
%shr4.2 = lshr i8 %or.1, 1
%and.2 = and i8 %shr4.2, 85
%shl7.2 = shl i8 %or.1, 1
%and9.2 = and i8 %shl7.2, -86
%or.2 = or i8 %and.2, %and9.2
ret i8 %or.2
}
define i16 @rev16(i16 %v) {
; CHECK-LABEL: @rev16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[OR_3:%.*]] = call i16 @llvm.bitreverse.i16(i16 [[V:%.*]])
; CHECK-NEXT: ret i16 [[OR_3]]
;
entry:
%shr4 = lshr i16 %v, 8
%shl7 = shl i16 %v, 8
%or = or i16 %shr4, %shl7
%shr4.1 = lshr i16 %or, 4
%and.1 = and i16 %shr4.1, 3855
%shl7.1 = shl i16 %or, 4
%and9.1 = and i16 %shl7.1, -3856
%or.1 = or i16 %and.1, %and9.1
%shr4.2 = lshr i16 %or.1, 2
%and.2 = and i16 %shr4.2, 13107
%shl7.2 = shl i16 %or.1, 2
%and9.2 = and i16 %shl7.2, -13108
%or.2 = or i16 %and.2, %and9.2
%shr4.3 = lshr i16 %or.2, 1
%and.3 = and i16 %shr4.3, 21845
%shl7.3 = shl i16 %or.2, 1
%and9.3 = and i16 %shl7.3, -21846
%or.3 = or i16 %and.3, %and9.3
ret i16 %or.3
}
define i32 @rev32(i32 %v) {
; CHECK-LABEL: @rev32(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[OR_4:%.*]] = call i32 @llvm.bitreverse.i32(i32 [[V:%.*]])
; CHECK-NEXT: ret i32 [[OR_4]]
;
entry:
%shr1 = lshr i32 %v, 16
%shl2 = shl i32 %v, 16
%or = or i32 %shr1, %shl2
%shr1.1 = lshr i32 %or, 8
%and.1 = and i32 %shr1.1, 16711935
%shl2.1 = shl i32 %or, 8
%and3.1 = and i32 %shl2.1, -16711936
%or.1 = or i32 %and.1, %and3.1
%shr1.2 = lshr i32 %or.1, 4
%and.2 = and i32 %shr1.2, 252645135
%shl2.2 = shl i32 %or.1, 4
%and3.2 = and i32 %shl2.2, -252645136
%or.2 = or i32 %and.2, %and3.2
%shr1.3 = lshr i32 %or.2, 2
%and.3 = and i32 %shr1.3, 858993459
%shl2.3 = shl i32 %or.2, 2
%and3.3 = and i32 %shl2.3, -858993460
%or.3 = or i32 %and.3, %and3.3
%shr1.4 = lshr i32 %or.3, 1
%and.4 = and i32 %shr1.4, 1431655765
%shl2.4 = shl i32 %or.3, 1
%and3.4 = and i32 %shl2.4, -1431655766
%or.4 = or i32 %and.4, %and3.4
ret i32 %or.4
}
define i32 @rev32_bswap(i32 %v) {
; CHECK-LABEL: @rev32_bswap(
; CHECK-NEXT: [[RET:%.*]] = call i32 @llvm.bitreverse.i32(i32 [[V:%.*]])
; CHECK-NEXT: ret i32 [[RET]]
;
%and.i = lshr i32 %v, 1
%shr.i = and i32 %and.i, 1431655765
%and1.i = shl i32 %v, 1
%shl.i = and i32 %and1.i, -1431655766
%or.i = or disjoint i32 %shr.i, %shl.i
%and2.i = lshr i32 %or.i, 2
%shr3.i = and i32 %and2.i, 858993459
%and4.i = shl i32 %or.i, 2
%shl5.i = and i32 %and4.i, -858993460
%or6.i = or disjoint i32 %shr3.i, %shl5.i
%and7.i = lshr i32 %or6.i, 4
%shr8.i = and i32 %and7.i, 252645135
%and9.i = shl i32 %or6.i, 4
%shl10.i = and i32 %and9.i, -252645136
%or11.i = or disjoint i32 %shr8.i, %shl10.i
%ret = call i32 @llvm.bswap.i32(i32 %or11.i)
ret i32 %ret
}
define i64 @rev64(i64 %v) {
; CHECK-LABEL: @rev64(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[OR_5:%.*]] = call i64 @llvm.bitreverse.i64(i64 [[V:%.*]])
; CHECK-NEXT: ret i64 [[OR_5]]
;
entry:
%shr2 = lshr i64 %v, 32
%shl4 = shl i64 %v, 32
%or = or i64 %shr2, %shl4
%shr2.1 = lshr i64 %or, 16
%and.1 = and i64 %shr2.1, 281470681808895
%shl4.1 = shl i64 %or, 16
%and5.1 = and i64 %shl4.1, -281470681808896
%or.1 = or i64 %and.1, %and5.1
%shr2.2 = lshr i64 %or.1, 8
%and.2 = and i64 %shr2.2, 71777214294589695
%shl4.2 = shl i64 %or.1, 8
%and5.2 = and i64 %shl4.2, -71777214294589696
%or.2 = or i64 %and.2, %and5.2
%shr2.3 = lshr i64 %or.2, 4
%and.3 = and i64 %shr2.3, 1085102592571150095
%shl4.3 = shl i64 %or.2, 4
%and5.3 = and i64 %shl4.3, -1085102592571150096
%or.3 = or i64 %and.3, %and5.3
%shr2.4 = lshr i64 %or.3, 2
%and.4 = and i64 %shr2.4, 3689348814741910323
%shl4.4 = shl i64 %or.3, 2
%and5.4 = and i64 %shl4.4, -3689348814741910324
%or.4 = or i64 %and.4, %and5.4
%shr2.5 = lshr i64 %or.4, 1
%and.5 = and i64 %shr2.5, 6148914691236517205
%shl4.5 = shl i64 %or.4, 1
%and5.5 = and i64 %shl4.5, -6148914691236517206
%or.5 = or i64 %and.5, %and5.5
ret i64 %or.5
}
;unsigned char rev8_xor(unsigned char x) {
; unsigned char y;
; y = x&0x55; x ^= y; x |= (y<<2)|(y>>6);
; y = x&0x66; x ^= y; x |= (y<<4)|(y>>4);
; return (x<<1)|(x>>7);
;}
define i8 @rev8_xor(i8 %0) {
; CHECK-LABEL: @rev8_xor(
; CHECK-NEXT: [[TMP2:%.*]] = call i8 @llvm.bitreverse.i8(i8 [[TMP0:%.*]])
; CHECK-NEXT: ret i8 [[TMP2]]
;
%2 = and i8 %0, 85
%3 = xor i8 %0, %2
%4 = shl i8 %2, 2
%5 = lshr i8 %2, 6
%6 = or i8 %5, %3
%7 = or i8 %6, %4
%8 = and i8 %7, 102
%9 = xor i8 %7, %8
%10 = lshr i8 %8, 4
%11 = or i8 %10, %9
%12 = shl i8 %8, 5
%13 = shl i8 %11, 1
%14 = or i8 %12, %13
%15 = lshr i8 %0, 7
%16 = or i8 %14, %15
ret i8 %16
}
define <2 x i8> @rev8_xor_vector(<2 x i8> %0) {
; CHECK-LABEL: @rev8_xor_vector(
; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i8> @llvm.bitreverse.v2i8(<2 x i8> [[TMP0:%.*]])
; CHECK-NEXT: ret <2 x i8> [[TMP2]]
;
%2 = and <2 x i8> %0, <i8 85, i8 85>
%3 = xor <2 x i8> %0, %2
%4 = shl <2 x i8> %2, <i8 2, i8 2>
%5 = lshr <2 x i8> %2, <i8 6, i8 6>
%6 = or <2 x i8> %5, %3
%7 = or <2 x i8> %6, %4
%8 = and <2 x i8> %7, <i8 102, i8 102>
%9 = xor <2 x i8> %7, %8
%10 = lshr <2 x i8> %8, <i8 4, i8 4>
%11 = or <2 x i8> %10, %9
%12 = shl <2 x i8> %8, <i8 5, i8 5>
%13 = shl <2 x i8> %11, <i8 1, i8 1>
%14 = or <2 x i8> %12, %13
%15 = lshr <2 x i8> %0, <i8 7, i8 7>
%16 = or <2 x i8> %14, %15
ret <2 x i8> %16
}
; bitreverse8(x) = ((x * 0x0202020202ULL) & 0x010884422010ULL) % 1023
define i8 @rev8_mul_and_urem(i8 %0) {
; CHECK-LABEL: @rev8_mul_and_urem(
; CHECK-NEXT: [[TMP2:%.*]] = zext i8 [[TMP0:%.*]] to i64
; CHECK-NEXT: [[TMP3:%.*]] = mul nuw nsw i64 [[TMP2]], 8623620610
; CHECK-NEXT: [[TMP4:%.*]] = and i64 [[TMP3]], 1136090292240
; CHECK-NEXT: [[TMP5:%.*]] = urem i64 [[TMP4]], 1023
; CHECK-NEXT: [[TMP6:%.*]] = trunc i64 [[TMP5]] to i8
; CHECK-NEXT: ret i8 [[TMP6]]
;
%2 = zext i8 %0 to i64
%3 = mul nuw nsw i64 %2, 8623620610
%4 = and i64 %3, 1136090292240
%5 = urem i64 %4, 1023
%6 = trunc i64 %5 to i8
ret i8 %6
}
; bitreverse8(x) = ((x * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
define i8 @rev8_mul_and_mul(i8 %0) {
; CHECK-LABEL: @rev8_mul_and_mul(
; CHECK-NEXT: [[TMP2:%.*]] = zext i8 [[TMP0:%.*]] to i64
; CHECK-NEXT: [[TMP3:%.*]] = mul nuw nsw i64 [[TMP2]], 2149582850
; CHECK-NEXT: [[TMP4:%.*]] = and i64 [[TMP3]], 36578664720
; CHECK-NEXT: [[TMP5:%.*]] = mul i64 [[TMP4]], 4311810305
; CHECK-NEXT: [[TMP6:%.*]] = lshr i64 [[TMP5]], 32
; CHECK-NEXT: [[TMP7:%.*]] = trunc i64 [[TMP6]] to i8
; CHECK-NEXT: ret i8 [[TMP7]]
;
%2 = zext i8 %0 to i64
%3 = mul nuw nsw i64 %2, 2149582850
%4 = and i64 %3, 36578664720
%5 = mul i64 %4, 4311810305
%6 = lshr i64 %5, 32
%7 = trunc i64 %6 to i8
ret i8 %7
}
; bitreverse8(x) = (((x * 0x0802LU) & 0x22110LU) | ((x * 0x8020LU) & 0x88440LU)) * 0x10101LU >> 16
define i8 @rev8_mul_and_lshr(i8 %0) {
; CHECK-LABEL: @rev8_mul_and_lshr(
; CHECK-NEXT: [[TMP2:%.*]] = zext i8 [[TMP0:%.*]] to i64
; CHECK-NEXT: [[TMP3:%.*]] = mul nuw nsw i64 [[TMP2]], 2050
; CHECK-NEXT: [[TMP4:%.*]] = and i64 [[TMP3]], 139536
; CHECK-NEXT: [[TMP5:%.*]] = mul nuw nsw i64 [[TMP2]], 32800
; CHECK-NEXT: [[TMP6:%.*]] = and i64 [[TMP5]], 558144
; CHECK-NEXT: [[TMP7:%.*]] = or disjoint i64 [[TMP4]], [[TMP6]]
; CHECK-NEXT: [[TMP8:%.*]] = mul nuw nsw i64 [[TMP7]], 65793
; CHECK-NEXT: [[TMP9:%.*]] = lshr i64 [[TMP8]], 16
; CHECK-NEXT: [[TMP10:%.*]] = trunc i64 [[TMP9]] to i8
; CHECK-NEXT: ret i8 [[TMP10]]
;
%2 = zext i8 %0 to i64
%3 = mul nuw nsw i64 %2, 2050
%4 = and i64 %3, 139536
%5 = mul nuw nsw i64 %2, 32800
%6 = and i64 %5, 558144
%7 = or i64 %4, %6
%8 = mul nuw nsw i64 %7, 65793
%9 = lshr i64 %8, 16
%10 = trunc i64 %9 to i8
ret i8 %10
}
define i4 @shuf_4bits(<4 x i1> %x) {
; CHECK-LABEL: @shuf_4bits(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <4 x i1> [[X:%.*]] to i4
; CHECK-NEXT: [[CAST:%.*]] = call i4 @llvm.bitreverse.i4(i4 [[TMP1]])
; CHECK-NEXT: ret i4 [[CAST]]
;
%bitreverse = shufflevector <4 x i1> %x, <4 x i1> undef, <4 x i32> <i32 3, i32 2, i32 1, i32 0>
%cast = bitcast <4 x i1> %bitreverse to i4
ret i4 %cast
}
define i4 @shuf_load_4bits(ptr %p) {
; CHECK-LABEL: @shuf_load_4bits(
; CHECK-NEXT: [[X1:%.*]] = load i4, ptr [[P:%.*]], align 1
; CHECK-NEXT: [[CAST:%.*]] = call i4 @llvm.bitreverse.i4(i4 [[X1]])
; CHECK-NEXT: ret i4 [[CAST]]
;
%x = load <4 x i1>, ptr %p
%bitreverse = shufflevector <4 x i1> %x, <4 x i1> undef, <4 x i32> <i32 3, i32 2, i32 1, i32 0>
%cast = bitcast <4 x i1> %bitreverse to i4
ret i4 %cast
}
define i4 @shuf_bitcast_twice_4bits(i4 %x) {
; CHECK-LABEL: @shuf_bitcast_twice_4bits(
; CHECK-NEXT: [[CAST2:%.*]] = call i4 @llvm.bitreverse.i4(i4 [[X:%.*]])
; CHECK-NEXT: ret i4 [[CAST2]]
;
%cast1 = bitcast i4 %x to <4 x i1>
%bitreverse = shufflevector <4 x i1> %cast1, <4 x i1> undef, <4 x i32> <i32 poison, i32 2, i32 1, i32 0>
%cast2 = bitcast <4 x i1> %bitreverse to i4
ret i4 %cast2
}
; Negative tests - not reverse
define i4 @shuf_4bits_not_reverse(<4 x i1> %x) {
; CHECK-LABEL: @shuf_4bits_not_reverse(
; CHECK-NEXT: [[BITREVERSE:%.*]] = shufflevector <4 x i1> [[X:%.*]], <4 x i1> poison, <4 x i32> <i32 3, i32 1, i32 2, i32 0>
; CHECK-NEXT: [[CAST:%.*]] = bitcast <4 x i1> [[BITREVERSE]] to i4
; CHECK-NEXT: ret i4 [[CAST]]
;
%bitreverse = shufflevector <4 x i1> %x, <4 x i1> undef, <4 x i32> <i32 3, i32 1, i32 2, i32 0>
%cast = bitcast <4 x i1> %bitreverse to i4
ret i4 %cast
}
; Negative test - extra use
declare void @use(<4 x i1>)
define i4 @shuf_4bits_extra_use(<4 x i1> %x) {
; CHECK-LABEL: @shuf_4bits_extra_use(
; CHECK-NEXT: [[BITREVERSE:%.*]] = shufflevector <4 x i1> [[X:%.*]], <4 x i1> poison, <4 x i32> <i32 3, i32 2, i32 1, i32 0>
; CHECK-NEXT: call void @use(<4 x i1> [[BITREVERSE]])
; CHECK-NEXT: [[CAST:%.*]] = bitcast <4 x i1> [[BITREVERSE]] to i4
; CHECK-NEXT: ret i4 [[CAST]]
;
%bitreverse = shufflevector <4 x i1> %x, <4 x i1> undef, <4 x i32> <i32 3, i32 2, i32 1, i32 0>
call void @use(<4 x i1> %bitreverse)
%cast = bitcast <4 x i1> %bitreverse to i4
ret i4 %cast
}
define i32 @rev_i1(i1 %x) {
; CHECK-LABEL: @rev_i1(
; CHECK-NEXT: [[Z:%.*]] = zext i1 [[X:%.*]] to i32
; CHECK-NEXT: call void @use_i32(i32 [[Z]])
; CHECK-NEXT: [[R:%.*]] = select i1 [[X]], i32 -2147483648, i32 0
; CHECK-NEXT: ret i32 [[R]]
;
%z = zext i1 %x to i32
call void @use_i32(i32 %z)
%r = call i32 @llvm.bitreverse.i32(i32 %z)
ret i32 %r
}
define <2 x i8> @rev_v2i1(<2 x i1> %x) {
; CHECK-LABEL: @rev_v2i1(
; CHECK-NEXT: [[R:%.*]] = select <2 x i1> [[X:%.*]], <2 x i8> <i8 -128, i8 -128>, <2 x i8> zeroinitializer
; CHECK-NEXT: ret <2 x i8> [[R]]
;
%z = zext <2 x i1> %x to <2 x i8>
%r = call <2 x i8> @llvm.bitreverse.v2i8(<2 x i8> %z)
ret <2 x i8> %r
}
define i32 @rev_i2(i2 %x) {
; CHECK-LABEL: @rev_i2(
; CHECK-NEXT: [[Z:%.*]] = zext i2 [[X:%.*]] to i32
; CHECK-NEXT: [[R:%.*]] = call i32 @llvm.bitreverse.i32(i32 [[Z]])
; CHECK-NEXT: ret i32 [[R]]
;
%z = zext i2 %x to i32
%r = call i32 @llvm.bitreverse.i32(i32 %z)
ret i32 %r
}
; This used to infinite loop.
define i64 @PR59897(i1 %X1_2) {
; CHECK-LABEL: @PR59897(
; CHECK-NEXT: [[NOT_X1_2:%.*]] = xor i1 [[X1_2:%.*]], true
; CHECK-NEXT: [[X0_3X2X5X0:%.*]] = zext i1 [[NOT_X1_2]] to i64
; CHECK-NEXT: ret i64 [[X0_3X2X5X0]]
;
%X1_3 = zext i1 %X1_2 to i32
%X8_3x2x2x0 = call i32 @llvm.bitreverse.i32(i32 %X1_3)
%X8_4x2x3x0 = xor i32 %X8_3x2x2x0, -1
%X0_3x2x4x0 = lshr i32 %X8_4x2x3x0, 31
%X0_3x2x5x0 = zext i32 %X0_3x2x4x0 to i64
ret i64 %X0_3x2x5x0
}
; Issue#62236
; Fold: BITREVERSE( OP( BITREVERSE(x), y ) ) -> OP( x, BITREVERSE(y) )
define i16 @rev_xor_lhs_rev16(i16 %a, i16 %b) #0 {
; CHECK-LABEL: @rev_xor_lhs_rev16(
; CHECK-NEXT: [[TMP1:%.*]] = call i16 @llvm.bitreverse.i16(i16 [[B:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = xor i16 [[A:%.*]], [[TMP1]]
; CHECK-NEXT: ret i16 [[TMP2]]
;
%1 = tail call i16 @llvm.bitreverse.i16(i16 %a)
%2 = xor i16 %1, %b
%3 = tail call i16 @llvm.bitreverse.i16(i16 %2)
ret i16 %3
}
define i32 @rev_and_rhs_rev32(i32 %a, i32 %b) #0 {
; CHECK-LABEL: @rev_and_rhs_rev32(
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @llvm.bitreverse.i32(i32 [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[TMP1]], [[B:%.*]]
; CHECK-NEXT: ret i32 [[TMP2]]
;
%1 = tail call i32 @llvm.bitreverse.i32(i32 %b)
%2 = and i32 %a, %1
%3 = tail call i32 @llvm.bitreverse.i32(i32 %2)
ret i32 %3
}
define i32 @rev_or_rhs_rev32(i32 %a, i32 %b) #0 {
; CHECK-LABEL: @rev_or_rhs_rev32(
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @llvm.bitreverse.i32(i32 [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = or i32 [[TMP1]], [[B:%.*]]
; CHECK-NEXT: ret i32 [[TMP2]]
;
%1 = tail call i32 @llvm.bitreverse.i32(i32 %b)
%2 = or i32 %a, %1
%3 = tail call i32 @llvm.bitreverse.i32(i32 %2)
ret i32 %3
}
define i64 @rev_or_rhs_rev64(i64 %a, i64 %b) #0 {
; CHECK-LABEL: @rev_or_rhs_rev64(
; CHECK-NEXT: [[TMP1:%.*]] = call i64 @llvm.bitreverse.i64(i64 [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = or i64 [[TMP1]], [[B:%.*]]
; CHECK-NEXT: ret i64 [[TMP2]]
;
%1 = tail call i64 @llvm.bitreverse.i64(i64 %b)
%2 = or i64 %a, %1
%3 = tail call i64 @llvm.bitreverse.i64(i64 %2)
ret i64 %3
}
define i64 @rev_xor_rhs_rev64(i64 %a, i64 %b) #0 {
; CHECK-LABEL: @rev_xor_rhs_rev64(
; CHECK-NEXT: [[TMP1:%.*]] = call i64 @llvm.bitreverse.i64(i64 [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = xor i64 [[TMP1]], [[B:%.*]]
; CHECK-NEXT: ret i64 [[TMP2]]
;
%1 = tail call i64 @llvm.bitreverse.i64(i64 %b)
%2 = xor i64 %a, %1
%3 = tail call i64 @llvm.bitreverse.i64(i64 %2)
ret i64 %3
}
define <2 x i32> @rev_xor_rhs_i32vec(<2 x i32> %a, <2 x i32> %b) #0 {
; CHECK-LABEL: @rev_xor_rhs_i32vec(
; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i32> @llvm.bitreverse.v2i32(<2 x i32> [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = xor <2 x i32> [[TMP1]], [[B:%.*]]
; CHECK-NEXT: ret <2 x i32> [[TMP2]]
;
%1 = tail call <2 x i32> @llvm.bitreverse.v2i32(<2 x i32> %b)
%2 = xor <2 x i32> %a, %1
%3 = tail call <2 x i32> @llvm.bitreverse.v2i32(<2 x i32> %2)
ret <2 x i32> %3
}
define i64 @rev_and_rhs_rev64_multiuse1(i64 %a, i64 %b) #0 {
; CHECK-LABEL: @rev_and_rhs_rev64_multiuse1(
; CHECK-NEXT: [[TMP1:%.*]] = tail call i64 @llvm.bitreverse.i64(i64 [[B:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = and i64 [[A:%.*]], [[TMP1]]
; CHECK-NEXT: [[TMP3:%.*]] = tail call i64 @llvm.bitreverse.i64(i64 [[TMP2]])
; CHECK-NEXT: [[TMP4:%.*]] = mul i64 [[TMP2]], [[TMP3]]
; CHECK-NEXT: ret i64 [[TMP4]]
;
%1 = tail call i64 @llvm.bitreverse.i64(i64 %b)
%2 = and i64 %a, %1
%3 = tail call i64 @llvm.bitreverse.i64(i64 %2)
%4 = mul i64 %2, %3 ;increase use of logical op
ret i64 %4
}
define i64 @rev_and_rhs_rev64_multiuse2(i64 %a, i64 %b) #0 {
; CHECK-LABEL: @rev_and_rhs_rev64_multiuse2(
; CHECK-NEXT: [[TMP1:%.*]] = tail call i64 @llvm.bitreverse.i64(i64 [[B:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = and i64 [[A:%.*]], [[TMP1]]
; CHECK-NEXT: [[TMP3:%.*]] = tail call i64 @llvm.bitreverse.i64(i64 [[TMP2]])
; CHECK-NEXT: [[TMP4:%.*]] = mul i64 [[TMP1]], [[TMP3]]
; CHECK-NEXT: ret i64 [[TMP4]]
;
%1 = tail call i64 @llvm.bitreverse.i64(i64 %b)
%2 = and i64 %a, %1
%3 = tail call i64 @llvm.bitreverse.i64(i64 %2)
%4 = mul i64 %1, %3 ;increase use of inner bitreverse
ret i64 %4
}
define i64 @rev_all_operand64(i64 %a, i64 %b) #0 {
; CHECK-LABEL: @rev_all_operand64(
; CHECK-NEXT: [[TMP1:%.*]] = and i64 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret i64 [[TMP1]]
;
%1 = tail call i64 @llvm.bitreverse.i64(i64 %a)
%2 = tail call i64 @llvm.bitreverse.i64(i64 %b)
%3 = and i64 %1, %2
%4 = tail call i64 @llvm.bitreverse.i64(i64 %3)
ret i64 %4
}
define i64 @rev_all_operand64_multiuse_both(i64 %a, i64 %b) #0 {
; CHECK-LABEL: @rev_all_operand64_multiuse_both(
; CHECK-NEXT: [[TMP1:%.*]] = tail call i64 @llvm.bitreverse.i64(i64 [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = tail call i64 @llvm.bitreverse.i64(i64 [[B:%.*]])
; CHECK-NEXT: [[TMP3:%.*]] = and i64 [[A]], [[B]]
; CHECK-NEXT: call void @use_i64(i64 [[TMP1]])
; CHECK-NEXT: call void @use_i64(i64 [[TMP2]])
; CHECK-NEXT: ret i64 [[TMP3]]
;
%1 = tail call i64 @llvm.bitreverse.i64(i64 %a)
%2 = tail call i64 @llvm.bitreverse.i64(i64 %b)
%3 = and i64 %1, %2
%4 = tail call i64 @llvm.bitreverse.i64(i64 %3)
call void @use_i64(i64 %1)
call void @use_i64(i64 %2)
ret i64 %4
}
declare i32 @llvm.bswap.i32(i32 %or11.i)