Files
clang-p2996/mlir/lib/Dialect/Arith/Transforms/IntNarrowing.cpp
Nikhil Kalra fef3566a25 [mlir] Pass Options ownership modifications (#110582)
This change makes two (related) changes: 

First, it updates the tablegen option for `ListOption` to emit a
`SmallVector` instead of an `ArrayRef`. This brings `ListOption` more
inline with the traditional `Option`, where values are typically
provided using types that have storage. After this change, all options
should be fully owned by a Pass' `Options` object after it has been
fully constructed, unless the underlying type of the `Option` explicitly
indicates otherwise.

Second, it updates the generated constructors for Passes to consume
options by value instead of reference, and prefers moving options into
the pass itself. This should be more efficient for non-trivial options
objects, where the previous interface forced a copy to be materialized.
Now, at worst case the API materializes a copy (no worse than before);
at best-case, all options objects are moved into place. Ideally, we
could update the Pass constructor to take an r-value reference to the
Options object instead, but this approach will require numerous changes
to existing passes and their factory functions.

---------

Authored-by: Nikhil Kalra <nkalra@apple.com>
2024-10-01 09:48:51 -07:00

791 lines
30 KiB
C++

//===- IntNarrowing.cpp - Integer bitwidth reduction optimizations --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Transforms/Transforms.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include <cassert>
#include <cstdint>
namespace mlir::arith {
#define GEN_PASS_DEF_ARITHINTNARROWING
#include "mlir/Dialect/Arith/Transforms/Passes.h.inc"
} // namespace mlir::arith
namespace mlir::arith {
namespace {
//===----------------------------------------------------------------------===//
// Common Helpers
//===----------------------------------------------------------------------===//
/// The base for integer bitwidth narrowing patterns.
template <typename SourceOp>
struct NarrowingPattern : OpRewritePattern<SourceOp> {
NarrowingPattern(MLIRContext *ctx, const ArithIntNarrowingOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<SourceOp>(ctx, benefit),
supportedBitwidths(options.bitwidthsSupported.begin(),
options.bitwidthsSupported.end()) {
assert(!supportedBitwidths.empty() && "Invalid options");
assert(!llvm::is_contained(supportedBitwidths, 0) && "Invalid bitwidth");
llvm::sort(supportedBitwidths);
}
FailureOr<unsigned>
getNarrowestCompatibleBitwidth(unsigned bitsRequired) const {
for (unsigned candidate : supportedBitwidths)
if (candidate >= bitsRequired)
return candidate;
return failure();
}
/// Returns the narrowest supported type that fits `bitsRequired`.
FailureOr<Type> getNarrowType(unsigned bitsRequired, Type origTy) const {
assert(origTy);
FailureOr<unsigned> bestBitwidth =
getNarrowestCompatibleBitwidth(bitsRequired);
if (failed(bestBitwidth))
return failure();
Type elemTy = getElementTypeOrSelf(origTy);
if (!isa<IntegerType>(elemTy))
return failure();
auto newElemTy = IntegerType::get(origTy.getContext(), *bestBitwidth);
if (newElemTy == elemTy)
return failure();
if (origTy == elemTy)
return newElemTy;
if (auto shapedTy = dyn_cast<ShapedType>(origTy))
if (dyn_cast<IntegerType>(shapedTy.getElementType()))
return shapedTy.clone(shapedTy.getShape(), newElemTy);
return failure();
}
private:
// Supported integer bitwidths in the ascending order.
llvm::SmallVector<unsigned, 6> supportedBitwidths;
};
/// Returns the integer bitwidth required to represent `type`.
FailureOr<unsigned> calculateBitsRequired(Type type) {
assert(type);
if (auto intTy = dyn_cast<IntegerType>(getElementTypeOrSelf(type)))
return intTy.getWidth();
return failure();
}
enum class ExtensionKind { Sign, Zero };
/// Wrapper around `arith::ExtSIOp` and `arith::ExtUIOp` ops that abstracts away
/// the exact op type. Exposes helper functions to query the types, operands,
/// and the result. This is so that we can handle both extension kinds without
/// needing to use templates or branching.
class ExtensionOp {
public:
/// Attemps to create a new extension op from `op`. Returns an extension op
/// wrapper when `op` is either `arith.extsi` or `arith.extui`, and failure
/// otherwise.
static FailureOr<ExtensionOp> from(Operation *op) {
if (dyn_cast_or_null<arith::ExtSIOp>(op))
return ExtensionOp{op, ExtensionKind::Sign};
if (dyn_cast_or_null<arith::ExtUIOp>(op))
return ExtensionOp{op, ExtensionKind::Zero};
return failure();
}
ExtensionOp(const ExtensionOp &) = default;
ExtensionOp &operator=(const ExtensionOp &) = default;
/// Creates a new extension op of the same kind.
Operation *recreate(PatternRewriter &rewriter, Location loc, Type newType,
Value in) {
if (kind == ExtensionKind::Sign)
return rewriter.create<arith::ExtSIOp>(loc, newType, in);
return rewriter.create<arith::ExtUIOp>(loc, newType, in);
}
/// Replaces `toReplace` with a new extension op of the same kind.
void recreateAndReplace(PatternRewriter &rewriter, Operation *toReplace,
Value in) {
assert(toReplace->getNumResults() == 1);
Type newType = toReplace->getResult(0).getType();
Operation *newOp = recreate(rewriter, toReplace->getLoc(), newType, in);
rewriter.replaceOp(toReplace, newOp->getResult(0));
}
ExtensionKind getKind() { return kind; }
Value getResult() { return op->getResult(0); }
Value getIn() { return op->getOperand(0); }
Type getType() { return getResult().getType(); }
Type getElementType() { return getElementTypeOrSelf(getType()); }
Type getInType() { return getIn().getType(); }
Type getInElementType() { return getElementTypeOrSelf(getInType()); }
private:
ExtensionOp(Operation *op, ExtensionKind kind) : op(op), kind(kind) {
assert(op);
assert((isa<arith::ExtSIOp, arith::ExtUIOp>(op)) && "Not an extension op");
}
Operation *op = nullptr;
ExtensionKind kind = {};
};
/// Returns the integer bitwidth required to represent `value`.
unsigned calculateBitsRequired(const APInt &value,
ExtensionKind lookThroughExtension) {
// For unsigned values, we only need the active bits. As a special case, zero
// requires one bit.
if (lookThroughExtension == ExtensionKind::Zero)
return std::max(value.getActiveBits(), 1u);
// If a signed value is nonnegative, we need one extra bit for the sign.
if (value.isNonNegative())
return value.getActiveBits() + 1;
// For the signed min, we need all the bits.
if (value.isMinSignedValue())
return value.getBitWidth();
// For negative values, we need all the non-sign bits and one extra bit for
// the sign.
return value.getBitWidth() - value.getNumSignBits() + 1;
}
/// Returns the integer bitwidth required to represent `value`.
/// Looks through either sign- or zero-extension as specified by
/// `lookThroughExtension`.
FailureOr<unsigned> calculateBitsRequired(Value value,
ExtensionKind lookThroughExtension) {
// Handle constants.
if (TypedAttr attr; matchPattern(value, m_Constant(&attr))) {
if (auto intAttr = dyn_cast<IntegerAttr>(attr))
return calculateBitsRequired(intAttr.getValue(), lookThroughExtension);
if (auto elemsAttr = dyn_cast<DenseElementsAttr>(attr)) {
if (elemsAttr.getElementType().isIntOrIndex()) {
if (elemsAttr.isSplat())
return calculateBitsRequired(elemsAttr.getSplatValue<APInt>(),
lookThroughExtension);
unsigned maxBits = 1;
for (const APInt &elemValue : elemsAttr.getValues<APInt>())
maxBits = std::max(
maxBits, calculateBitsRequired(elemValue, lookThroughExtension));
return maxBits;
}
}
}
if (lookThroughExtension == ExtensionKind::Sign) {
if (auto sext = value.getDefiningOp<arith::ExtSIOp>())
return calculateBitsRequired(sext.getIn().getType());
} else if (lookThroughExtension == ExtensionKind::Zero) {
if (auto zext = value.getDefiningOp<arith::ExtUIOp>())
return calculateBitsRequired(zext.getIn().getType());
}
// If nothing else worked, return the type requirements for this element type.
return calculateBitsRequired(value.getType());
}
/// Base pattern for arith binary ops.
/// Example:
/// ```
/// %lhs = arith.extsi %a : i8 to i32
/// %rhs = arith.extsi %b : i8 to i32
/// %r = arith.addi %lhs, %rhs : i32
/// ==>
/// %lhs = arith.extsi %a : i8 to i16
/// %rhs = arith.extsi %b : i8 to i16
/// %add = arith.addi %lhs, %rhs : i16
/// %r = arith.extsi %add : i16 to i32
/// ```
template <typename BinaryOp>
struct BinaryOpNarrowingPattern : NarrowingPattern<BinaryOp> {
using NarrowingPattern<BinaryOp>::NarrowingPattern;
/// Returns the number of bits required to represent the full result, assuming
/// that both operands are `operandBits`-wide. Derived classes must implement
/// this, taking into account `BinaryOp` semantics.
virtual unsigned getResultBitsProduced(unsigned operandBits) const = 0;
/// Customization point for patterns that should only apply with
/// zero/sign-extension ops as arguments.
virtual bool isSupported(ExtensionOp) const { return true; }
LogicalResult matchAndRewrite(BinaryOp op,
PatternRewriter &rewriter) const final {
Type origTy = op.getType();
FailureOr<unsigned> resultBits = calculateBitsRequired(origTy);
if (failed(resultBits))
return failure();
// For the optimization to apply, we expect the lhs to be an extension op,
// and for the rhs to either be the same extension op or a constant.
FailureOr<ExtensionOp> ext = ExtensionOp::from(op.getLhs().getDefiningOp());
if (failed(ext) || !isSupported(*ext))
return failure();
FailureOr<unsigned> lhsBitsRequired =
calculateBitsRequired(ext->getIn(), ext->getKind());
if (failed(lhsBitsRequired) || *lhsBitsRequired >= *resultBits)
return failure();
FailureOr<unsigned> rhsBitsRequired =
calculateBitsRequired(op.getRhs(), ext->getKind());
if (failed(rhsBitsRequired) || *rhsBitsRequired >= *resultBits)
return failure();
// Negotiate a common bit requirements for both lhs and rhs, accounting for
// the result requiring more bits than the operands.
unsigned commonBitsRequired =
getResultBitsProduced(std::max(*lhsBitsRequired, *rhsBitsRequired));
FailureOr<Type> narrowTy = this->getNarrowType(commonBitsRequired, origTy);
if (failed(narrowTy) || calculateBitsRequired(*narrowTy) >= *resultBits)
return failure();
Location loc = op.getLoc();
Value newLhs =
rewriter.createOrFold<arith::TruncIOp>(loc, *narrowTy, op.getLhs());
Value newRhs =
rewriter.createOrFold<arith::TruncIOp>(loc, *narrowTy, op.getRhs());
Value newAdd = rewriter.create<BinaryOp>(loc, newLhs, newRhs);
ext->recreateAndReplace(rewriter, op, newAdd);
return success();
}
};
//===----------------------------------------------------------------------===//
// AddIOp Pattern
//===----------------------------------------------------------------------===//
struct AddIPattern final : BinaryOpNarrowingPattern<arith::AddIOp> {
using BinaryOpNarrowingPattern::BinaryOpNarrowingPattern;
// Addition may require one extra bit for the result.
// Example: `UINT8_MAX + 1 == 255 + 1 == 256`.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return operandBits + 1;
}
};
//===----------------------------------------------------------------------===//
// SubIOp Pattern
//===----------------------------------------------------------------------===//
struct SubIPattern final : BinaryOpNarrowingPattern<arith::SubIOp> {
using BinaryOpNarrowingPattern::BinaryOpNarrowingPattern;
// This optimization only applies to signed arguments.
bool isSupported(ExtensionOp ext) const override {
return ext.getKind() == ExtensionKind::Sign;
}
// Subtraction may require one extra bit for the result.
// Example: `INT8_MAX - (-1) == 127 - (-1) == 128`.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return operandBits + 1;
}
};
//===----------------------------------------------------------------------===//
// MulIOp Pattern
//===----------------------------------------------------------------------===//
struct MulIPattern final : BinaryOpNarrowingPattern<arith::MulIOp> {
using BinaryOpNarrowingPattern::BinaryOpNarrowingPattern;
// Multiplication may require up double the operand bits.
// Example: `UNT8_MAX * UINT8_MAX == 255 * 255 == 65025`.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return 2 * operandBits;
}
};
//===----------------------------------------------------------------------===//
// DivSIOp Pattern
//===----------------------------------------------------------------------===//
struct DivSIPattern final : BinaryOpNarrowingPattern<arith::DivSIOp> {
using BinaryOpNarrowingPattern::BinaryOpNarrowingPattern;
// This optimization only applies to signed arguments.
bool isSupported(ExtensionOp ext) const override {
return ext.getKind() == ExtensionKind::Sign;
}
// Unlike multiplication, signed division requires only one more result bit.
// Example: `INT8_MIN / (-1) == -128 / (-1) == 128`.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return operandBits + 1;
}
};
//===----------------------------------------------------------------------===//
// DivUIOp Pattern
//===----------------------------------------------------------------------===//
struct DivUIPattern final : BinaryOpNarrowingPattern<arith::DivUIOp> {
using BinaryOpNarrowingPattern::BinaryOpNarrowingPattern;
// This optimization only applies to unsigned arguments.
bool isSupported(ExtensionOp ext) const override {
return ext.getKind() == ExtensionKind::Zero;
}
// Unsigned division does not require any extra result bits.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return operandBits;
}
};
//===----------------------------------------------------------------------===//
// Min/Max Patterns
//===----------------------------------------------------------------------===//
template <typename MinMaxOp, ExtensionKind Kind>
struct MinMaxPattern final : BinaryOpNarrowingPattern<MinMaxOp> {
using BinaryOpNarrowingPattern<MinMaxOp>::BinaryOpNarrowingPattern;
bool isSupported(ExtensionOp ext) const override {
return ext.getKind() == Kind;
}
// Min/max returns one of the arguments and does not require any extra result
// bits.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return operandBits;
}
};
using MaxSIPattern = MinMaxPattern<arith::MaxSIOp, ExtensionKind::Sign>;
using MaxUIPattern = MinMaxPattern<arith::MaxUIOp, ExtensionKind::Zero>;
using MinSIPattern = MinMaxPattern<arith::MinSIOp, ExtensionKind::Sign>;
using MinUIPattern = MinMaxPattern<arith::MinUIOp, ExtensionKind::Zero>;
//===----------------------------------------------------------------------===//
// *IToFPOp Patterns
//===----------------------------------------------------------------------===//
template <typename IToFPOp, ExtensionKind Extension>
struct IToFPPattern final : NarrowingPattern<IToFPOp> {
using NarrowingPattern<IToFPOp>::NarrowingPattern;
LogicalResult matchAndRewrite(IToFPOp op,
PatternRewriter &rewriter) const override {
FailureOr<unsigned> narrowestWidth =
calculateBitsRequired(op.getIn(), Extension);
if (failed(narrowestWidth))
return failure();
FailureOr<Type> narrowTy =
this->getNarrowType(*narrowestWidth, op.getIn().getType());
if (failed(narrowTy))
return failure();
Value newIn = rewriter.createOrFold<arith::TruncIOp>(op.getLoc(), *narrowTy,
op.getIn());
rewriter.replaceOpWithNewOp<IToFPOp>(op, op.getType(), newIn);
return success();
}
};
using SIToFPPattern = IToFPPattern<arith::SIToFPOp, ExtensionKind::Sign>;
using UIToFPPattern = IToFPPattern<arith::UIToFPOp, ExtensionKind::Zero>;
//===----------------------------------------------------------------------===//
// Index Cast Patterns
//===----------------------------------------------------------------------===//
// These rely on the `ValueBounds` interface for index values. For example, we
// can often statically tell index value bounds of loop induction variables.
template <typename CastOp, ExtensionKind Kind>
struct IndexCastPattern final : NarrowingPattern<CastOp> {
using NarrowingPattern<CastOp>::NarrowingPattern;
LogicalResult matchAndRewrite(CastOp op,
PatternRewriter &rewriter) const override {
Value in = op.getIn();
// We only support scalar index -> integer casts.
if (!isa<IndexType>(in.getType()))
return failure();
// Check the lower bound in both the signed and unsigned cast case. We
// conservatively assume that even unsigned casts may be performed on
// negative indices.
FailureOr<int64_t> lb = ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType::LB, in);
if (failed(lb))
return failure();
FailureOr<int64_t> ub = ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType::UB, in,
/*stopCondition=*/nullptr, /*closedUB=*/true);
if (failed(ub))
return failure();
assert(*lb <= *ub && "Invalid bounds");
unsigned lbBitsRequired = calculateBitsRequired(APInt(64, *lb), Kind);
unsigned ubBitsRequired = calculateBitsRequired(APInt(64, *ub), Kind);
unsigned bitsRequired = std::max(lbBitsRequired, ubBitsRequired);
IntegerType resultTy = cast<IntegerType>(op.getType());
if (resultTy.getWidth() <= bitsRequired)
return failure();
FailureOr<Type> narrowTy = this->getNarrowType(bitsRequired, resultTy);
if (failed(narrowTy))
return failure();
Value newCast = rewriter.create<CastOp>(op.getLoc(), *narrowTy, op.getIn());
if (Kind == ExtensionKind::Sign)
rewriter.replaceOpWithNewOp<arith::ExtSIOp>(op, resultTy, newCast);
else
rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, resultTy, newCast);
return success();
}
};
using IndexCastSIPattern =
IndexCastPattern<arith::IndexCastOp, ExtensionKind::Sign>;
using IndexCastUIPattern =
IndexCastPattern<arith::IndexCastUIOp, ExtensionKind::Zero>;
//===----------------------------------------------------------------------===//
// Patterns to Commute Extension Ops
//===----------------------------------------------------------------------===//
struct ExtensionOverBroadcast final : NarrowingPattern<vector::BroadcastOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::BroadcastOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getSource().getDefiningOp());
if (failed(ext))
return failure();
VectorType origTy = op.getResultVectorType();
VectorType newTy =
origTy.cloneWith(origTy.getShape(), ext->getInElementType());
Value newBroadcast =
rewriter.create<vector::BroadcastOp>(op.getLoc(), newTy, ext->getIn());
ext->recreateAndReplace(rewriter, op, newBroadcast);
return success();
}
};
struct ExtensionOverExtract final : NarrowingPattern<vector::ExtractOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::ExtractOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getVector().getDefiningOp());
if (failed(ext))
return failure();
Value newExtract = rewriter.create<vector::ExtractOp>(
op.getLoc(), ext->getIn(), op.getMixedPosition());
ext->recreateAndReplace(rewriter, op, newExtract);
return success();
}
};
struct ExtensionOverExtractElement final
: NarrowingPattern<vector::ExtractElementOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::ExtractElementOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getVector().getDefiningOp());
if (failed(ext))
return failure();
Value newExtract = rewriter.create<vector::ExtractElementOp>(
op.getLoc(), ext->getIn(), op.getPosition());
ext->recreateAndReplace(rewriter, op, newExtract);
return success();
}
};
struct ExtensionOverExtractStridedSlice final
: NarrowingPattern<vector::ExtractStridedSliceOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getVector().getDefiningOp());
if (failed(ext))
return failure();
VectorType origTy = op.getType();
VectorType extractTy =
origTy.cloneWith(origTy.getShape(), ext->getInElementType());
Value newExtract = rewriter.create<vector::ExtractStridedSliceOp>(
op.getLoc(), extractTy, ext->getIn(), op.getOffsets(), op.getSizes(),
op.getStrides());
ext->recreateAndReplace(rewriter, op, newExtract);
return success();
}
};
/// Base pattern for `vector.insert` narrowing patterns.
template <typename InsertionOp>
struct ExtensionOverInsertionPattern : NarrowingPattern<InsertionOp> {
using NarrowingPattern<InsertionOp>::NarrowingPattern;
/// Derived classes must provide a function to create the matching insertion
/// op based on the original op and new arguments.
virtual InsertionOp createInsertionOp(PatternRewriter &rewriter,
InsertionOp origInsert,
Value narrowValue,
Value narrowDest) const = 0;
LogicalResult matchAndRewrite(InsertionOp op,
PatternRewriter &rewriter) const final {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getSource().getDefiningOp());
if (failed(ext))
return failure();
FailureOr<InsertionOp> newInsert = createNarrowInsert(op, rewriter, *ext);
if (failed(newInsert))
return failure();
ext->recreateAndReplace(rewriter, op, *newInsert);
return success();
}
FailureOr<InsertionOp> createNarrowInsert(InsertionOp op,
PatternRewriter &rewriter,
ExtensionOp insValue) const {
// Calculate the operand and result bitwidths. We can only apply narrowing
// when the inserted source value and destination vector require fewer bits
// than the result. Because the source and destination may have different
// bitwidths requirements, we have to find the common narrow bitwidth that
// is greater equal to the operand bitwidth requirements and still narrower
// than the result.
FailureOr<unsigned> origBitsRequired = calculateBitsRequired(op.getType());
if (failed(origBitsRequired))
return failure();
// TODO: We could relax this check by disregarding bitwidth requirements of
// elements that we know will be replaced by the insertion.
FailureOr<unsigned> destBitsRequired =
calculateBitsRequired(op.getDest(), insValue.getKind());
if (failed(destBitsRequired) || *destBitsRequired >= *origBitsRequired)
return failure();
FailureOr<unsigned> insertedBitsRequired =
calculateBitsRequired(insValue.getIn(), insValue.getKind());
if (failed(insertedBitsRequired) ||
*insertedBitsRequired >= *origBitsRequired)
return failure();
// Find a narrower element type that satisfies the bitwidth requirements of
// both the source and the destination values.
unsigned newInsertionBits =
std::max(*destBitsRequired, *insertedBitsRequired);
FailureOr<Type> newVecTy =
this->getNarrowType(newInsertionBits, op.getType());
if (failed(newVecTy) || *newVecTy == op.getType())
return failure();
FailureOr<Type> newInsertedValueTy =
this->getNarrowType(newInsertionBits, insValue.getType());
if (failed(newInsertedValueTy))
return failure();
Location loc = op.getLoc();
Value narrowValue = rewriter.createOrFold<arith::TruncIOp>(
loc, *newInsertedValueTy, insValue.getResult());
Value narrowDest =
rewriter.createOrFold<arith::TruncIOp>(loc, *newVecTy, op.getDest());
return createInsertionOp(rewriter, op, narrowValue, narrowDest);
}
};
struct ExtensionOverInsert final
: ExtensionOverInsertionPattern<vector::InsertOp> {
using ExtensionOverInsertionPattern::ExtensionOverInsertionPattern;
vector::InsertOp createInsertionOp(PatternRewriter &rewriter,
vector::InsertOp origInsert,
Value narrowValue,
Value narrowDest) const override {
return rewriter.create<vector::InsertOp>(origInsert.getLoc(), narrowValue,
narrowDest,
origInsert.getMixedPosition());
}
};
struct ExtensionOverInsertElement final
: ExtensionOverInsertionPattern<vector::InsertElementOp> {
using ExtensionOverInsertionPattern::ExtensionOverInsertionPattern;
vector::InsertElementOp createInsertionOp(PatternRewriter &rewriter,
vector::InsertElementOp origInsert,
Value narrowValue,
Value narrowDest) const override {
return rewriter.create<vector::InsertElementOp>(
origInsert.getLoc(), narrowValue, narrowDest, origInsert.getPosition());
}
};
struct ExtensionOverInsertStridedSlice final
: ExtensionOverInsertionPattern<vector::InsertStridedSliceOp> {
using ExtensionOverInsertionPattern::ExtensionOverInsertionPattern;
vector::InsertStridedSliceOp
createInsertionOp(PatternRewriter &rewriter,
vector::InsertStridedSliceOp origInsert, Value narrowValue,
Value narrowDest) const override {
return rewriter.create<vector::InsertStridedSliceOp>(
origInsert.getLoc(), narrowValue, narrowDest, origInsert.getOffsets(),
origInsert.getStrides());
}
};
struct ExtensionOverShapeCast final : NarrowingPattern<vector::ShapeCastOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getSource().getDefiningOp());
if (failed(ext))
return failure();
VectorType origTy = op.getResultVectorType();
VectorType newTy =
origTy.cloneWith(origTy.getShape(), ext->getInElementType());
Value newCast =
rewriter.create<vector::ShapeCastOp>(op.getLoc(), newTy, ext->getIn());
ext->recreateAndReplace(rewriter, op, newCast);
return success();
}
};
struct ExtensionOverTranspose final : NarrowingPattern<vector::TransposeOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getVector().getDefiningOp());
if (failed(ext))
return failure();
VectorType origTy = op.getResultVectorType();
VectorType newTy =
origTy.cloneWith(origTy.getShape(), ext->getInElementType());
Value newTranspose = rewriter.create<vector::TransposeOp>(
op.getLoc(), newTy, ext->getIn(), op.getPermutation());
ext->recreateAndReplace(rewriter, op, newTranspose);
return success();
}
};
struct ExtensionOverFlatTranspose final
: NarrowingPattern<vector::FlatTransposeOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::FlatTransposeOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getMatrix().getDefiningOp());
if (failed(ext))
return failure();
VectorType origTy = op.getType();
VectorType newTy =
origTy.cloneWith(origTy.getShape(), ext->getInElementType());
Value newTranspose = rewriter.create<vector::FlatTransposeOp>(
op.getLoc(), newTy, ext->getIn(), op.getRowsAttr(),
op.getColumnsAttr());
ext->recreateAndReplace(rewriter, op, newTranspose);
return success();
}
};
//===----------------------------------------------------------------------===//
// Pass Definitions
//===----------------------------------------------------------------------===//
struct ArithIntNarrowingPass final
: impl::ArithIntNarrowingBase<ArithIntNarrowingPass> {
using ArithIntNarrowingBase::ArithIntNarrowingBase;
void runOnOperation() override {
if (bitwidthsSupported.empty() ||
llvm::is_contained(bitwidthsSupported, 0)) {
// Invalid pass options.
return signalPassFailure();
}
Operation *op = getOperation();
MLIRContext *ctx = op->getContext();
RewritePatternSet patterns(ctx);
populateArithIntNarrowingPatterns(
patterns, ArithIntNarrowingOptions{
llvm::to_vector_of<unsigned>(bitwidthsSupported)});
if (failed(applyPatternsAndFoldGreedily(op, std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public API
//===----------------------------------------------------------------------===//
void populateArithIntNarrowingPatterns(
RewritePatternSet &patterns, const ArithIntNarrowingOptions &options) {
// Add commute patterns with a higher benefit. This is to expose more
// optimization opportunities to narrowing patterns.
patterns.add<ExtensionOverBroadcast, ExtensionOverExtract,
ExtensionOverExtractElement, ExtensionOverExtractStridedSlice,
ExtensionOverInsert, ExtensionOverInsertElement,
ExtensionOverInsertStridedSlice, ExtensionOverShapeCast,
ExtensionOverTranspose, ExtensionOverFlatTranspose>(
patterns.getContext(), options, PatternBenefit(2));
patterns.add<AddIPattern, SubIPattern, MulIPattern, DivSIPattern,
DivUIPattern, MaxSIPattern, MaxUIPattern, MinSIPattern,
MinUIPattern, SIToFPPattern, UIToFPPattern, IndexCastSIPattern,
IndexCastUIPattern>(patterns.getContext(), options);
}
} // namespace mlir::arith