Files
clang-p2996/mlir/test/Dialect/Linalg/vectorization-pad-patterns.mlir
Andrzej Warzyński 39ad84e4d1 [mlir][linalg] Split GenericPadOpVectorizationPattern into two patterns (#111349)
At the moment, `GenericPadOpVectorizationPattern` implements two
orthogonal transformations:
  1. Rewrites `tensor::PadOp` into a sequence of `tensor::EmptyOp`,
    `linalg::FillOp` and `tensor::InsertSliceOp`.
  2. Vectorizes (where possible) `tensor::InsertSliceOp` (see
    `tryVectorizeCopy`).

This patch splits `GenericPadOpVectorizationPattern` into two separate
patterns:
  1. `GeneralizePadOpPattern` for the first transformation (note that
    currently `GenericPadOpVectorizationPattern` inherits from
    `GeneralizePadOpPattern`).
  2. `InsertSliceVectorizePattern` to vectorize `tensor::InsertSliceOp`.

With this change, we gain the following:
  * a clear separation between pre-processing and vectorization
    transformations/stages,
  * a path to support masked vectorisation for `tensor.insert_slice`
    (with a dedicated pattern for vectorization, it is much easier to
    specify the input vector sizes used in masking),
  * more opportunities to vectorize `tensor.insert_slice`.

Note for downstream users:
--------------------------

If you were using `populatePadOpVectorizationPatterns`, following this
change you will also have to add
`populateInsertSliceVectorizationPatterns`.

Finer implementation details:
-----------------------------

1.  The majority of changes in this patch are copy & paste + some edits.
  1.1. The only functional change is that the vectorization of
    `tensor.insert_slice` is now broadly available (as opposed to being
    constrained to the pad vectorization pattern:
    `GenericPadOpVectorizationPattern`).
  1.2. Following-on from the above, `@pad_and_insert_slice_dest` is
    updated. As expected, the input `tensor.insert_slice` Op is no
    longer "preserved" and instead gets vectorized successfully.

2. The `linalg.fill` case in `getConstantPadVal` works under the
   assumption that only _scalar_ source values can be used. That's
   consistent with the definition of the Op, but it's not tested at the
   moment. Hence a test case in Linalg/invalid.mlir is added.

3. The behaviour of the two TD vectorization Ops,
   `transform.structured.vectorize_children_and_apply_patterns` and
   `transform.structured.vectorize` is preserved.
2024-10-29 16:57:23 +00:00

278 lines
12 KiB
MLIR

// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s
///----------------------------------------------------------------------------------------
/// [Pattern: PadOpVectorizationWithTransferReadPattern]
///----------------------------------------------------------------------------------------
// CHECK-LABEL: func @pad_and_transfer_read
// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
// CHECK-NOT: tensor.pad
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C5:.*]] = arith.constant 5.0
// CHECK: %[[RESULT:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32>
// CHECK: return %[[RESULT]]
func.func @pad_and_transfer_read(%arg0: tensor<5x6xf32>) -> vector<7x9xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%c6 = arith.constant 6.0 : f32
%0 = tensor.pad %arg0 low[0, 0] high[5, 7] {
^bb0(%arg1: index, %arg2: index):
tensor.yield %c5 : f32
} : tensor<5x6xf32> to tensor<10x13xf32>
%1 = vector.transfer_read %0[%c0, %c0], %c6
: tensor<10x13xf32>, vector<7x9xf32>
return %1 : vector<7x9xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}
// -----
///----------------------------------------------------------------------------------------
/// [Pattern: PadOpVectorizationWithTransferWritePattern]
///----------------------------------------------------------------------------------------
func.func private @make_vector() -> vector<7x9xf32>
// CHECK-LABEL: func @pad_and_transfer_write_static_low_and_high
// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
// CHECK-NOT: tensor.pad
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> vector<7x9xf32>
// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[VEC0]], %[[ARG0]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<5x6xf32>
// CHECK: return %[[RESULT]]
func.func @pad_and_transfer_write_static_low_and_high(
%arg0: tensor<5x6xf32>) -> tensor<5x6xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%0 = tensor.pad %arg0 low[0, 0] high[5, 7] {
^bb0(%arg2: index, %arg3: index):
tensor.yield %c5 : f32
} : tensor<5x6xf32> to tensor<10x13xf32>
%1 = call @make_vector() : () -> vector<7x9xf32>
%2 = vector.transfer_write %1, %0[%c0, %c0]
: vector<7x9xf32>, tensor<10x13xf32>
%3 = tensor.extract_slice %2[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
return %3 : tensor<5x6xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}
// -----
func.func private @make_vector() -> vector<7x9xf32>
// CHECK-LABEL: func @pad_and_transfer_write_static_low_dynamic_high
// CHECK-SAME: %[[ARG0:.*]]: tensor<?x?xf32>, %[[SIZE:.*]]: index, %[[PADDING:.*]]: index
// CHECK-NOT: tensor.pad
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[SUB:.*]] = tensor.extract_slice %[[ARG0]][0, 0] [%[[SIZE]], 6] [1, 1] : tensor<?x?xf32> to tensor<?x6xf32>
// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> vector<7x9xf32>
// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[VEC0]], %[[SUB]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<?x6xf32>
// CHECK: return %[[RESULT]]
func.func @pad_and_transfer_write_static_low_dynamic_high(
%arg0: tensor<?x?xf32>, %size: index, %padding: index) -> tensor<?x6xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%s = tensor.extract_slice %arg0[0, 0] [%size, 6] [1, 1]
: tensor<?x?xf32> to tensor<?x6xf32>
%0 = tensor.pad %s low[0, 0] high[%padding, 7] {
^bb0(%arg2: index, %arg3: index):
tensor.yield %c5 : f32
} : tensor<?x6xf32> to tensor<?x13xf32>
%1 = call @make_vector() : () -> vector<7x9xf32>
%2 = vector.transfer_write %1, %0[%c0, %c0]
: vector<7x9xf32>, tensor<?x13xf32>
%3 = tensor.extract_slice %2[0, 0] [%size, 6] [1, 1] : tensor<?x13xf32> to tensor<?x6xf32>
return %3 : tensor<?x6xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}
// -----
///----------------------------------------------------------------------------------------
/// [Pattern: PadOpVectorizationWithInsertSlicePattern]
///----------------------------------------------------------------------------------------
func.func private @make_vector() -> tensor<12x13xf32>
// CHECK-LABEL: func @pad_and_insert_slice_source
// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
// CHECK-NOT: tensor.pad
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C5:.*]] = arith.constant 5.0
// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> tensor<12x13xf32>
// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32>
// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[VEC0]][%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<7x9xf32>, tensor<12x13xf32>
// CHECK: return %[[WRITE]]
func.func @pad_and_insert_slice_source(
%arg0: tensor<5x6xf32>) -> tensor<12x13xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%0 = tensor.pad %arg0 low[0, 0] high[2, 3] {
^bb0(%arg2: index, %arg3: index):
tensor.yield %c5 : f32
} : tensor<5x6xf32> to tensor<7x9xf32>
%1 = call @make_vector() : () -> tensor<12x13xf32>
%r = tensor.insert_slice %0 into %1[0, 0][7, 9][1, 1] : tensor<7x9xf32> into tensor<12x13xf32>
return %r : tensor<12x13xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}
// -----
///----------------------------------------------------------------------------------------
/// tensor::PadOp -> tensor::EmptyOp + linalg::FillOp/tensor::GenerateOp + tensor::InsertSliceOp
/// [Pattern: GenericPadOpVectorizationPattern + InsertSliceVectorizePattern]
/// TODO: Split the test into two, one for each pattern.
///----------------------------------------------------------------------------------------
func.func private @make_vector() -> tensor<12x13xf32>
// Same as @pad_and_insert_slice_dest in vectorization-with-patterns.mlir, but
// over here linalg::fill is not vectorized (patterns for linalg.fill are not
// included here)
// CHECK-LABEL: func.func @pad_and_insert_slice_dest(
// CHECK-SAME: %[[ARG_0:.*]]: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> {
// CHECK-NOT: tensor.pad
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[PAD:.*]] = arith.constant 5.000000e+00 : f32
// CHECK-DAG: %[[PAD_READ:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<1x12x13xf32>
// CHECK: %[[FILL:.*]] = linalg.fill ins(%[[PAD]] : f32) outs(%[[EMPTY]] : tensor<1x12x13xf32>) -> tensor<1x12x13xf32>
// CHECK: %[[READ_1:.*]] = vector.transfer_read %[[ARG_0]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x5x6xf32>, vector<1x5x6xf32>
// CHECK: %[[WRITE_1:.*]] = vector.transfer_write %[[READ_1]], %[[FILL]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x5x6xf32>, tensor<1x12x13xf32>
// CHECK: %[[VEC:.*]] = call @make_vector() : () -> tensor<12x13xf32>
// CHECK: %[[READ_2:.*]] = vector.transfer_read %[[VEC]]{{\[}}%[[C0]], %[[C0]]], %[[PAD_READ]] {in_bounds = [true, true]} : tensor<12x13xf32>, vector<12x13xf32>
// CHECK: %[[RES:.*]] = vector.transfer_write %[[READ_2]], %[[WRITE_1]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<12x13xf32>, tensor<1x12x13xf32>
// CHECK: return %[[RES]] : tensor<1x12x13xf32>
func.func @pad_and_insert_slice_dest(
%arg0: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> {
%c5 = arith.constant 5.0 : f32
%0 = tensor.pad %arg0 low[0, 0, 0] high[0, 7, 7] {
^bb0(%arg2: index, %arg3: index, %arg4: index):
tensor.yield %c5 : f32
} : tensor<1x5x6xf32> to tensor<1x12x13xf32>
%1 = call @make_vector() : () -> tensor<12x13xf32>
%r = tensor.insert_slice %1 into %0[0, 0, 0][1, 12, 13][1, 1, 1] : tensor<12x13xf32> into tensor<1x12x13xf32>
return %r : tensor<1x12x13xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}
// -----
func.func private @make_vector() -> vector<7x9xf32>
// Variant of @pad_and_transfer_write_static
// CHECK-LABEL: func @pad_and_transfer_write_static_non_zero_low_pad
// CHECK-NOT: tensor.pad
// CHECK: linalg.fill
func.func @pad_and_transfer_write_static_non_zero_low_pad(
%arg0: tensor<5x6xf32>) -> tensor<5x6xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%0 = tensor.pad %arg0 low[0, 1] high[5, 6] {
^bb0(%arg2: index, %arg3: index):
tensor.yield %c5 : f32
} : tensor<5x6xf32> to tensor<10x13xf32>
%1 = call @make_vector() : () -> vector<7x9xf32>
%2 = vector.transfer_write %1, %0[%c0, %c0]
: vector<7x9xf32>, tensor<10x13xf32>
%3 = tensor.extract_slice %2[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
return %3 : tensor<5x6xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}
// -----
func.func private @make_vector() -> vector<7x9xf32>
// Variant of @pad_and_transfer_write_static
// CHECK-LABEL: func @pad_and_transfer_write_static_non_zero_offset
// CHECK-NOT: tensor.pad
// CHECK: linalg.fill
func.func @pad_and_transfer_write_static_non_zero_offset(
%arg0: tensor<5x6xf32>) -> tensor<5x6xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%0 = tensor.pad %arg0 low[0, 1] high[5, 6] {
^bb0(%arg2: index, %arg3: index):
tensor.yield %c5 : f32
} : tensor<5x6xf32> to tensor<10x13xf32>
%1 = call @make_vector() : () -> vector<7x9xf32>
%2 = vector.transfer_write %1, %0[%c0, %c0]
: vector<7x9xf32>, tensor<10x13xf32>
%3 = tensor.extract_slice %2[0, 1] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
return %3 : tensor<5x6xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}