Files
clang-p2996/mlir/lib/Conversion/GPUToSPIRV/ConvertGPUToSPIRV.cpp
Mahesh Ravishankar a78bd84cf8 NFC: Refactor Dialect Conversion targeting SPIR-V.
Refactoring the conversion from StandardOps/GPU dialect to SPIR-V
dialect:
1) Move the SPIRVTypeConversion and SPIRVOpLowering class into SPIR-V
   dialect.
2) Add header files that expose functions to add patterns for the
   dialects to SPIR-V lowering, as well as a pass that does the
   dialect to SPIR-V lowering.
3) Make SPIRVOpLowering derive from OpLowering class.
PiperOrigin-RevId: 280486871
2019-11-14 12:34:54 -08:00

192 lines
7.4 KiB
C++

//===- ConvertGPUToSPIRV.cpp - Convert GPU ops to SPIR-V dialect ----------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the conversion patterns from GPU ops to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVLowering.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
using namespace mlir;
namespace {
/// Pattern to convert a loop::ForOp within kernel functions into spirv::LoopOp.
class ForOpConversion final : public SPIRVOpLowering<loop::ForOp> {
public:
using SPIRVOpLowering<loop::ForOp>::SPIRVOpLowering;
PatternMatchResult
matchAndRewrite(loop::ForOp forOp, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override;
};
/// Pattern lowering GPU block/thread size/id to loading SPIR-V invocation
/// builin variables.
template <typename SourceOp, spirv::BuiltIn builtin>
class LaunchConfigConversion : public SPIRVOpLowering<SourceOp> {
public:
using SPIRVOpLowering<SourceOp>::SPIRVOpLowering;
PatternMatchResult
matchAndRewrite(SourceOp op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override;
};
/// Pattern to convert a kernel function in GPU dialect (a FuncOp with the
/// attribute gpu.kernel) within a spv.module.
class KernelFnConversion final : public SPIRVOpLowering<FuncOp> {
public:
using SPIRVOpLowering<FuncOp>::SPIRVOpLowering;
PatternMatchResult
matchAndRewrite(FuncOp funcOp, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
PatternMatchResult
ForOpConversion::matchAndRewrite(loop::ForOp forOp, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const {
// loop::ForOp can be lowered to the structured control flow represented by
// spirv::LoopOp by making the continue block of the spirv::LoopOp the loop
// latch and the merge block the exit block. The resulting spirv::LoopOp has a
// single back edge from the continue to header block, and a single exit from
// header to merge.
loop::ForOpOperandAdaptor forOperands(operands);
auto loc = forOp.getLoc();
auto loopControl = rewriter.getI32IntegerAttr(
static_cast<uint32_t>(spirv::LoopControl::None));
auto loopOp = rewriter.create<spirv::LoopOp>(loc, loopControl);
loopOp.addEntryAndMergeBlock();
OpBuilder::InsertionGuard guard(rewriter);
// Create the block for the header.
auto header = new Block();
// Insert the header.
loopOp.body().getBlocks().insert(std::next(loopOp.body().begin(), 1), header);
// Create the new induction variable to use.
BlockArgument *newIndVar =
header->addArgument(forOperands.lowerBound()->getType());
Block *body = forOp.getBody();
// Apply signature conversion to the body of the forOp. It has a single block,
// with argument which is the induction variable. That has to be replaced with
// the new induction variable.
TypeConverter::SignatureConversion signatureConverter(
body->getNumArguments());
signatureConverter.remapInput(0, newIndVar);
body = rewriter.applySignatureConversion(&forOp.getLoopBody(),
signatureConverter);
// Delete the loop terminator.
rewriter.eraseOp(body->getTerminator());
// Move the blocks from the forOp into the loopOp. This is the body of the
// loopOp.
rewriter.inlineRegionBefore(forOp.getOperation()->getRegion(0), loopOp.body(),
std::next(loopOp.body().begin(), 2));
// Branch into it from the entry.
rewriter.setInsertionPointToEnd(&(loopOp.body().front()));
rewriter.create<spirv::BranchOp>(loc, header, forOperands.lowerBound());
// Generate the rest of the loop header.
rewriter.setInsertionPointToEnd(header);
auto mergeBlock = loopOp.getMergeBlock();
auto cmpOp = rewriter.create<spirv::SLessThanOp>(
loc, rewriter.getI1Type(), newIndVar, forOperands.upperBound());
rewriter.create<spirv::BranchConditionalOp>(
loc, cmpOp, body, ArrayRef<Value *>(), mergeBlock, ArrayRef<Value *>());
// Generate instructions to increment the step of the induction variable and
// branch to the header.
Block *continueBlock = loopOp.getContinueBlock();
rewriter.setInsertionPointToEnd(continueBlock);
// Add the step to the induction variable and branch to the header.
Value *updatedIndVar = rewriter.create<spirv::IAddOp>(
loc, newIndVar->getType(), newIndVar, forOperands.step());
rewriter.create<spirv::BranchOp>(loc, header, updatedIndVar);
rewriter.eraseOp(forOp);
return matchSuccess();
}
template <typename SourceOp, spirv::BuiltIn builtin>
PatternMatchResult LaunchConfigConversion<SourceOp, builtin>::matchAndRewrite(
SourceOp op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const {
auto dimAttr =
op.getOperation()->template getAttrOfType<StringAttr>("dimension");
if (!dimAttr) {
return this->matchFailure();
}
int32_t index = 0;
if (dimAttr.getValue() == "x") {
index = 0;
} else if (dimAttr.getValue() == "y") {
index = 1;
} else if (dimAttr.getValue() == "z") {
index = 2;
} else {
return this->matchFailure();
}
// SPIR-V invocation builtin variables are a vector of type <3xi32>
auto spirvBuiltin = spirv::getBuiltinVariableValue(op, builtin, rewriter);
rewriter.replaceOpWithNewOp<spirv::CompositeExtractOp>(
op, rewriter.getIntegerType(32), spirvBuiltin,
rewriter.getI32ArrayAttr({index}));
return this->matchSuccess();
}
PatternMatchResult
KernelFnConversion::matchAndRewrite(FuncOp funcOp, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const {
FuncOp newFuncOp;
if (!gpu::GPUDialect::isKernel(funcOp)) {
return matchFailure();
}
if (failed(spirv::lowerAsEntryFunction(funcOp, &typeConverter, rewriter,
newFuncOp))) {
return matchFailure();
}
return matchSuccess();
}
namespace mlir {
void populateGPUToSPIRVPatterns(MLIRContext *context,
SPIRVTypeConverter &typeConverter,
OwningRewritePatternList &patterns) {
patterns.insert<
ForOpConversion, KernelFnConversion,
LaunchConfigConversion<gpu::BlockDimOp, spirv::BuiltIn::WorkgroupSize>,
LaunchConfigConversion<gpu::BlockIdOp, spirv::BuiltIn::WorkgroupId>,
LaunchConfigConversion<gpu::GridDimOp, spirv::BuiltIn::NumWorkgroups>,
LaunchConfigConversion<gpu::ThreadIdOp,
spirv::BuiltIn::LocalInvocationId>>(context,
typeConverter);
}
} // namespace mlir