ObjFile::parse combines symbol initialization and resolution. Many tasks
unrelated to symbol resolution can be postponed and parallelized. This patch
extracts local symbol initialization and parallelizes it.
Technically the new function initializeLocalSymbols can be merged into
ObjFile::postParse, but functions like getSrcMsg may access the
uninitialized (all nullptr) local part of InputFile::symbols.
Linking chrome: 1.02x as fast with glibc malloc, 1.04x as fast with mimalloc
Depends on f456c3ae3f and D119908
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D119909
1821 lines
68 KiB
C++
1821 lines
68 KiB
C++
//===- InputFiles.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "DWARF.h"
|
|
#include "Driver.h"
|
|
#include "InputSection.h"
|
|
#include "LinkerScript.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/CommonLinkerContext.h"
|
|
#include "lld/Common/DWARF.h"
|
|
#include "llvm/ADT/CachedHashString.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/LTO/LTO.h"
|
|
#include "llvm/Object/IRObjectFile.h"
|
|
#include "llvm/Support/ARMAttributeParser.h"
|
|
#include "llvm/Support/ARMBuildAttributes.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/RISCVAttributeParser.h"
|
|
#include "llvm/Support/TarWriter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::sys;
|
|
using namespace llvm::sys::fs;
|
|
using namespace llvm::support::endian;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
bool InputFile::isInGroup;
|
|
uint32_t InputFile::nextGroupId;
|
|
|
|
SmallVector<std::unique_ptr<MemoryBuffer>> elf::memoryBuffers;
|
|
SmallVector<BinaryFile *, 0> elf::binaryFiles;
|
|
SmallVector<BitcodeFile *, 0> elf::bitcodeFiles;
|
|
SmallVector<BitcodeFile *, 0> elf::lazyBitcodeFiles;
|
|
SmallVector<ELFFileBase *, 0> elf::objectFiles;
|
|
SmallVector<SharedFile *, 0> elf::sharedFiles;
|
|
|
|
std::unique_ptr<TarWriter> elf::tar;
|
|
|
|
// Returns "<internal>", "foo.a(bar.o)" or "baz.o".
|
|
std::string lld::toString(const InputFile *f) {
|
|
if (!f)
|
|
return "<internal>";
|
|
|
|
if (f->toStringCache.empty()) {
|
|
if (f->archiveName.empty())
|
|
f->toStringCache = f->getName();
|
|
else
|
|
(f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
|
|
}
|
|
return std::string(f->toStringCache);
|
|
}
|
|
|
|
static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
|
|
unsigned char size;
|
|
unsigned char endian;
|
|
std::tie(size, endian) = getElfArchType(mb.getBuffer());
|
|
|
|
auto report = [&](StringRef msg) {
|
|
StringRef filename = mb.getBufferIdentifier();
|
|
if (archiveName.empty())
|
|
fatal(filename + ": " + msg);
|
|
else
|
|
fatal(archiveName + "(" + filename + "): " + msg);
|
|
};
|
|
|
|
if (!mb.getBuffer().startswith(ElfMagic))
|
|
report("not an ELF file");
|
|
if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
|
|
report("corrupted ELF file: invalid data encoding");
|
|
if (size != ELFCLASS32 && size != ELFCLASS64)
|
|
report("corrupted ELF file: invalid file class");
|
|
|
|
size_t bufSize = mb.getBuffer().size();
|
|
if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
|
|
(size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
|
|
report("corrupted ELF file: file is too short");
|
|
|
|
if (size == ELFCLASS32)
|
|
return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
|
|
return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
|
|
}
|
|
|
|
InputFile::InputFile(Kind k, MemoryBufferRef m)
|
|
: mb(m), groupId(nextGroupId), fileKind(k) {
|
|
// All files within the same --{start,end}-group get the same group ID.
|
|
// Otherwise, a new file will get a new group ID.
|
|
if (!isInGroup)
|
|
++nextGroupId;
|
|
}
|
|
|
|
Optional<MemoryBufferRef> elf::readFile(StringRef path) {
|
|
llvm::TimeTraceScope timeScope("Load input files", path);
|
|
|
|
// The --chroot option changes our virtual root directory.
|
|
// This is useful when you are dealing with files created by --reproduce.
|
|
if (!config->chroot.empty() && path.startswith("/"))
|
|
path = saver().save(config->chroot + path);
|
|
|
|
log(path);
|
|
config->dependencyFiles.insert(llvm::CachedHashString(path));
|
|
|
|
auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
|
|
/*RequiresNullTerminator=*/false);
|
|
if (auto ec = mbOrErr.getError()) {
|
|
error("cannot open " + path + ": " + ec.message());
|
|
return None;
|
|
}
|
|
|
|
MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef();
|
|
memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership
|
|
|
|
if (tar)
|
|
tar->append(relativeToRoot(path), mbref.getBuffer());
|
|
return mbref;
|
|
}
|
|
|
|
// All input object files must be for the same architecture
|
|
// (e.g. it does not make sense to link x86 object files with
|
|
// MIPS object files.) This function checks for that error.
|
|
static bool isCompatible(InputFile *file) {
|
|
if (!file->isElf() && !isa<BitcodeFile>(file))
|
|
return true;
|
|
|
|
if (file->ekind == config->ekind && file->emachine == config->emachine) {
|
|
if (config->emachine != EM_MIPS)
|
|
return true;
|
|
if (isMipsN32Abi(file) == config->mipsN32Abi)
|
|
return true;
|
|
}
|
|
|
|
StringRef target =
|
|
!config->bfdname.empty() ? config->bfdname : config->emulation;
|
|
if (!target.empty()) {
|
|
error(toString(file) + " is incompatible with " + target);
|
|
return false;
|
|
}
|
|
|
|
InputFile *existing = nullptr;
|
|
if (!objectFiles.empty())
|
|
existing = objectFiles[0];
|
|
else if (!sharedFiles.empty())
|
|
existing = sharedFiles[0];
|
|
else if (!bitcodeFiles.empty())
|
|
existing = bitcodeFiles[0];
|
|
std::string with;
|
|
if (existing)
|
|
with = " with " + toString(existing);
|
|
error(toString(file) + " is incompatible" + with);
|
|
return false;
|
|
}
|
|
|
|
template <class ELFT> static void doParseFile(InputFile *file) {
|
|
if (!isCompatible(file))
|
|
return;
|
|
|
|
// Binary file
|
|
if (auto *f = dyn_cast<BinaryFile>(file)) {
|
|
binaryFiles.push_back(f);
|
|
f->parse();
|
|
return;
|
|
}
|
|
|
|
// Lazy object file
|
|
if (file->lazy) {
|
|
if (auto *f = dyn_cast<BitcodeFile>(file)) {
|
|
lazyBitcodeFiles.push_back(f);
|
|
f->parseLazy();
|
|
} else {
|
|
cast<ObjFile<ELFT>>(file)->parseLazy();
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (config->trace)
|
|
message(toString(file));
|
|
|
|
// .so file
|
|
if (auto *f = dyn_cast<SharedFile>(file)) {
|
|
f->parse<ELFT>();
|
|
return;
|
|
}
|
|
|
|
// LLVM bitcode file
|
|
if (auto *f = dyn_cast<BitcodeFile>(file)) {
|
|
bitcodeFiles.push_back(f);
|
|
f->parse<ELFT>();
|
|
return;
|
|
}
|
|
|
|
// Regular object file
|
|
objectFiles.push_back(cast<ELFFileBase>(file));
|
|
cast<ObjFile<ELFT>>(file)->parse();
|
|
}
|
|
|
|
// Add symbols in File to the symbol table.
|
|
void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); }
|
|
|
|
// Concatenates arguments to construct a string representing an error location.
|
|
static std::string createFileLineMsg(StringRef path, unsigned line) {
|
|
std::string filename = std::string(path::filename(path));
|
|
std::string lineno = ":" + std::to_string(line);
|
|
if (filename == path)
|
|
return filename + lineno;
|
|
return filename + lineno + " (" + path.str() + lineno + ")";
|
|
}
|
|
|
|
template <class ELFT>
|
|
static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
|
|
InputSectionBase &sec, uint64_t offset) {
|
|
// In DWARF, functions and variables are stored to different places.
|
|
// First, lookup a function for a given offset.
|
|
if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
|
|
return createFileLineMsg(info->FileName, info->Line);
|
|
|
|
// If it failed, lookup again as a variable.
|
|
if (Optional<std::pair<std::string, unsigned>> fileLine =
|
|
file.getVariableLoc(sym.getName()))
|
|
return createFileLineMsg(fileLine->first, fileLine->second);
|
|
|
|
// File.sourceFile contains STT_FILE symbol, and that is a last resort.
|
|
return std::string(file.sourceFile);
|
|
}
|
|
|
|
std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
|
|
uint64_t offset) {
|
|
if (kind() != ObjKind)
|
|
return "";
|
|
switch (config->ekind) {
|
|
default:
|
|
llvm_unreachable("Invalid kind");
|
|
case ELF32LEKind:
|
|
return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
|
|
case ELF32BEKind:
|
|
return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
|
|
case ELF64LEKind:
|
|
return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
|
|
case ELF64BEKind:
|
|
return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
|
|
}
|
|
}
|
|
|
|
StringRef InputFile::getNameForScript() const {
|
|
if (archiveName.empty())
|
|
return getName();
|
|
|
|
if (nameForScriptCache.empty())
|
|
nameForScriptCache = (archiveName + Twine(':') + getName()).str();
|
|
|
|
return nameForScriptCache;
|
|
}
|
|
|
|
template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
|
|
llvm::call_once(initDwarf, [this]() {
|
|
dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
|
|
std::make_unique<LLDDwarfObj<ELFT>>(this), "",
|
|
[&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
|
|
[&](Error warning) {
|
|
warn(getName() + ": " + toString(std::move(warning)));
|
|
}));
|
|
});
|
|
|
|
return dwarf.get();
|
|
}
|
|
|
|
// Returns the pair of file name and line number describing location of data
|
|
// object (variable, array, etc) definition.
|
|
template <class ELFT>
|
|
Optional<std::pair<std::string, unsigned>>
|
|
ObjFile<ELFT>::getVariableLoc(StringRef name) {
|
|
return getDwarf()->getVariableLoc(name);
|
|
}
|
|
|
|
// Returns source line information for a given offset
|
|
// using DWARF debug info.
|
|
template <class ELFT>
|
|
Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
|
|
uint64_t offset) {
|
|
// Detect SectionIndex for specified section.
|
|
uint64_t sectionIndex = object::SectionedAddress::UndefSection;
|
|
ArrayRef<InputSectionBase *> sections = s->file->getSections();
|
|
for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
|
|
if (s == sections[curIndex]) {
|
|
sectionIndex = curIndex;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return getDwarf()->getDILineInfo(offset, sectionIndex);
|
|
}
|
|
|
|
ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
|
|
ekind = getELFKind(mb, "");
|
|
|
|
switch (ekind) {
|
|
case ELF32LEKind:
|
|
init<ELF32LE>();
|
|
break;
|
|
case ELF32BEKind:
|
|
init<ELF32BE>();
|
|
break;
|
|
case ELF64LEKind:
|
|
init<ELF64LE>();
|
|
break;
|
|
case ELF64BEKind:
|
|
init<ELF64BE>();
|
|
break;
|
|
default:
|
|
llvm_unreachable("getELFKind");
|
|
}
|
|
}
|
|
|
|
template <typename Elf_Shdr>
|
|
static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
|
|
for (const Elf_Shdr &sec : sections)
|
|
if (sec.sh_type == type)
|
|
return &sec;
|
|
return nullptr;
|
|
}
|
|
|
|
template <class ELFT> void ELFFileBase::init() {
|
|
using Elf_Shdr = typename ELFT::Shdr;
|
|
using Elf_Sym = typename ELFT::Sym;
|
|
|
|
// Initialize trivial attributes.
|
|
const ELFFile<ELFT> &obj = getObj<ELFT>();
|
|
emachine = obj.getHeader().e_machine;
|
|
osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
|
|
abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
|
|
|
|
ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
|
|
elfShdrs = sections.data();
|
|
numELFShdrs = sections.size();
|
|
|
|
// Find a symbol table.
|
|
bool isDSO =
|
|
(identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
|
|
const Elf_Shdr *symtabSec =
|
|
findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
|
|
|
|
if (!symtabSec)
|
|
return;
|
|
|
|
// Initialize members corresponding to a symbol table.
|
|
firstGlobal = symtabSec->sh_info;
|
|
|
|
ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
|
|
if (firstGlobal == 0 || firstGlobal > eSyms.size())
|
|
fatal(toString(this) + ": invalid sh_info in symbol table");
|
|
|
|
elfSyms = reinterpret_cast<const void *>(eSyms.data());
|
|
numELFSyms = uint32_t(eSyms.size());
|
|
stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
|
|
return CHECK(
|
|
this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
|
|
this);
|
|
}
|
|
|
|
template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
|
|
object::ELFFile<ELFT> obj = this->getObj();
|
|
// Read a section table. justSymbols is usually false.
|
|
if (this->justSymbols)
|
|
initializeJustSymbols();
|
|
else
|
|
initializeSections(ignoreComdats, obj);
|
|
|
|
// Read a symbol table.
|
|
initializeSymbols(obj);
|
|
}
|
|
|
|
// Sections with SHT_GROUP and comdat bits define comdat section groups.
|
|
// They are identified and deduplicated by group name. This function
|
|
// returns a group name.
|
|
template <class ELFT>
|
|
StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
|
|
const Elf_Shdr &sec) {
|
|
typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
|
|
if (sec.sh_info >= symbols.size())
|
|
fatal(toString(this) + ": invalid symbol index");
|
|
const typename ELFT::Sym &sym = symbols[sec.sh_info];
|
|
return CHECK(sym.getName(this->stringTable), this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
|
|
// On a regular link we don't merge sections if -O0 (default is -O1). This
|
|
// sometimes makes the linker significantly faster, although the output will
|
|
// be bigger.
|
|
//
|
|
// Doing the same for -r would create a problem as it would combine sections
|
|
// with different sh_entsize. One option would be to just copy every SHF_MERGE
|
|
// section as is to the output. While this would produce a valid ELF file with
|
|
// usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
|
|
// they see two .debug_str. We could have separate logic for combining
|
|
// SHF_MERGE sections based both on their name and sh_entsize, but that seems
|
|
// to be more trouble than it is worth. Instead, we just use the regular (-O1)
|
|
// logic for -r.
|
|
if (config->optimize == 0 && !config->relocatable)
|
|
return false;
|
|
|
|
// A mergeable section with size 0 is useless because they don't have
|
|
// any data to merge. A mergeable string section with size 0 can be
|
|
// argued as invalid because it doesn't end with a null character.
|
|
// We'll avoid a mess by handling them as if they were non-mergeable.
|
|
if (sec.sh_size == 0)
|
|
return false;
|
|
|
|
// Check for sh_entsize. The ELF spec is not clear about the zero
|
|
// sh_entsize. It says that "the member [sh_entsize] contains 0 if
|
|
// the section does not hold a table of fixed-size entries". We know
|
|
// that Rust 1.13 produces a string mergeable section with a zero
|
|
// sh_entsize. Here we just accept it rather than being picky about it.
|
|
uint64_t entSize = sec.sh_entsize;
|
|
if (entSize == 0)
|
|
return false;
|
|
if (sec.sh_size % entSize)
|
|
fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
|
|
Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
|
|
Twine(entSize) + ")");
|
|
|
|
if (sec.sh_flags & SHF_WRITE)
|
|
fatal(toString(this) + ":(" + name +
|
|
"): writable SHF_MERGE section is not supported");
|
|
|
|
return true;
|
|
}
|
|
|
|
// This is for --just-symbols.
|
|
//
|
|
// --just-symbols is a very minor feature that allows you to link your
|
|
// output against other existing program, so that if you load both your
|
|
// program and the other program into memory, your output can refer the
|
|
// other program's symbols.
|
|
//
|
|
// When the option is given, we link "just symbols". The section table is
|
|
// initialized with null pointers.
|
|
template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
|
|
sections.resize(numELFShdrs);
|
|
}
|
|
|
|
// An ELF object file may contain a `.deplibs` section. If it exists, the
|
|
// section contains a list of library specifiers such as `m` for libm. This
|
|
// function resolves a given name by finding the first matching library checking
|
|
// the various ways that a library can be specified to LLD. This ELF extension
|
|
// is a form of autolinking and is called `dependent libraries`. It is currently
|
|
// unique to LLVM and lld.
|
|
static void addDependentLibrary(StringRef specifier, const InputFile *f) {
|
|
if (!config->dependentLibraries)
|
|
return;
|
|
if (Optional<std::string> s = searchLibraryBaseName(specifier))
|
|
driver->addFile(*s, /*withLOption=*/true);
|
|
else if (Optional<std::string> s = findFromSearchPaths(specifier))
|
|
driver->addFile(*s, /*withLOption=*/true);
|
|
else if (fs::exists(specifier))
|
|
driver->addFile(specifier, /*withLOption=*/false);
|
|
else
|
|
error(toString(f) +
|
|
": unable to find library from dependent library specifier: " +
|
|
specifier);
|
|
}
|
|
|
|
// Record the membership of a section group so that in the garbage collection
|
|
// pass, section group members are kept or discarded as a unit.
|
|
template <class ELFT>
|
|
static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
|
|
ArrayRef<typename ELFT::Word> entries) {
|
|
bool hasAlloc = false;
|
|
for (uint32_t index : entries.slice(1)) {
|
|
if (index >= sections.size())
|
|
return;
|
|
if (InputSectionBase *s = sections[index])
|
|
if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
|
|
hasAlloc = true;
|
|
}
|
|
|
|
// If any member has the SHF_ALLOC flag, the whole group is subject to garbage
|
|
// collection. See the comment in markLive(). This rule retains .debug_types
|
|
// and .rela.debug_types.
|
|
if (!hasAlloc)
|
|
return;
|
|
|
|
// Connect the members in a circular doubly-linked list via
|
|
// nextInSectionGroup.
|
|
InputSectionBase *head;
|
|
InputSectionBase *prev = nullptr;
|
|
for (uint32_t index : entries.slice(1)) {
|
|
InputSectionBase *s = sections[index];
|
|
if (!s || s == &InputSection::discarded)
|
|
continue;
|
|
if (prev)
|
|
prev->nextInSectionGroup = s;
|
|
else
|
|
head = s;
|
|
prev = s;
|
|
}
|
|
if (prev)
|
|
prev->nextInSectionGroup = head;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ObjFile<ELFT>::initializeSections(bool ignoreComdats,
|
|
const llvm::object::ELFFile<ELFT> &obj) {
|
|
ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
|
|
StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
|
|
uint64_t size = objSections.size();
|
|
this->sections.resize(size);
|
|
|
|
std::vector<ArrayRef<Elf_Word>> selectedGroups;
|
|
|
|
for (size_t i = 0; i != size; ++i) {
|
|
if (this->sections[i] == &InputSection::discarded)
|
|
continue;
|
|
const Elf_Shdr &sec = objSections[i];
|
|
|
|
// SHF_EXCLUDE'ed sections are discarded by the linker. However,
|
|
// if -r is given, we'll let the final link discard such sections.
|
|
// This is compatible with GNU.
|
|
if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
|
|
if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE)
|
|
cgProfileSectionIndex = i;
|
|
if (sec.sh_type == SHT_LLVM_ADDRSIG) {
|
|
// We ignore the address-significance table if we know that the object
|
|
// file was created by objcopy or ld -r. This is because these tools
|
|
// will reorder the symbols in the symbol table, invalidating the data
|
|
// in the address-significance table, which refers to symbols by index.
|
|
if (sec.sh_link != 0)
|
|
this->addrsigSec = &sec;
|
|
else if (config->icf == ICFLevel::Safe)
|
|
warn(toString(this) +
|
|
": --icf=safe conservatively ignores "
|
|
"SHT_LLVM_ADDRSIG [index " +
|
|
Twine(i) +
|
|
"] with sh_link=0 "
|
|
"(likely created using objcopy or ld -r)");
|
|
}
|
|
this->sections[i] = &InputSection::discarded;
|
|
continue;
|
|
}
|
|
|
|
switch (sec.sh_type) {
|
|
case SHT_GROUP: {
|
|
// De-duplicate section groups by their signatures.
|
|
StringRef signature = getShtGroupSignature(objSections, sec);
|
|
this->sections[i] = &InputSection::discarded;
|
|
|
|
ArrayRef<Elf_Word> entries =
|
|
CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
|
|
if (entries.empty())
|
|
fatal(toString(this) + ": empty SHT_GROUP");
|
|
|
|
Elf_Word flag = entries[0];
|
|
if (flag && flag != GRP_COMDAT)
|
|
fatal(toString(this) + ": unsupported SHT_GROUP format");
|
|
|
|
bool keepGroup =
|
|
(flag & GRP_COMDAT) == 0 || ignoreComdats ||
|
|
symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
|
|
.second;
|
|
if (keepGroup) {
|
|
if (config->relocatable)
|
|
this->sections[i] = createInputSection(
|
|
i, sec, check(obj.getSectionName(sec, shstrtab)));
|
|
selectedGroups.push_back(entries);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, discard group members.
|
|
for (uint32_t secIndex : entries.slice(1)) {
|
|
if (secIndex >= size)
|
|
fatal(toString(this) +
|
|
": invalid section index in group: " + Twine(secIndex));
|
|
this->sections[secIndex] = &InputSection::discarded;
|
|
}
|
|
break;
|
|
}
|
|
case SHT_SYMTAB_SHNDX:
|
|
shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
|
|
break;
|
|
case SHT_SYMTAB:
|
|
case SHT_STRTAB:
|
|
case SHT_REL:
|
|
case SHT_RELA:
|
|
case SHT_NULL:
|
|
break;
|
|
default:
|
|
this->sections[i] =
|
|
createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
|
|
}
|
|
}
|
|
|
|
// We have a second loop. It is used to:
|
|
// 1) handle SHF_LINK_ORDER sections.
|
|
// 2) create SHT_REL[A] sections. In some cases the section header index of a
|
|
// relocation section may be smaller than that of the relocated section. In
|
|
// such cases, the relocation section would attempt to reference a target
|
|
// section that has not yet been created. For simplicity, delay creation of
|
|
// relocation sections until now.
|
|
for (size_t i = 0; i != size; ++i) {
|
|
if (this->sections[i] == &InputSection::discarded)
|
|
continue;
|
|
const Elf_Shdr &sec = objSections[i];
|
|
|
|
if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) {
|
|
// Find a relocation target section and associate this section with that.
|
|
// Target may have been discarded if it is in a different section group
|
|
// and the group is discarded, even though it's a violation of the spec.
|
|
// We handle that situation gracefully by discarding dangling relocation
|
|
// sections.
|
|
const uint32_t info = sec.sh_info;
|
|
InputSectionBase *s = getRelocTarget(i, sec, info);
|
|
if (!s)
|
|
continue;
|
|
|
|
// ELF spec allows mergeable sections with relocations, but they are rare,
|
|
// and it is in practice hard to merge such sections by contents, because
|
|
// applying relocations at end of linking changes section contents. So, we
|
|
// simply handle such sections as non-mergeable ones. Degrading like this
|
|
// is acceptable because section merging is optional.
|
|
if (auto *ms = dyn_cast<MergeInputSection>(s)) {
|
|
s = make<InputSection>(ms->file, ms->flags, ms->type, ms->alignment,
|
|
ms->data(), ms->name);
|
|
sections[info] = s;
|
|
}
|
|
|
|
if (s->relSecIdx != 0)
|
|
error(
|
|
toString(s) +
|
|
": multiple relocation sections to one section are not supported");
|
|
s->relSecIdx = i;
|
|
|
|
// Relocation sections are usually removed from the output, so return
|
|
// `nullptr` for the normal case. However, if -r or --emit-relocs is
|
|
// specified, we need to copy them to the output. (Some post link analysis
|
|
// tools specify --emit-relocs to obtain the information.)
|
|
if (config->copyRelocs) {
|
|
auto *isec = make<InputSection>(
|
|
*this, sec, check(obj.getSectionName(sec, shstrtab)));
|
|
// If the relocated section is discarded (due to /DISCARD/ or
|
|
// --gc-sections), the relocation section should be discarded as well.
|
|
s->dependentSections.push_back(isec);
|
|
sections[i] = isec;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
|
|
// the flag.
|
|
if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER))
|
|
continue;
|
|
|
|
InputSectionBase *linkSec = nullptr;
|
|
if (sec.sh_link < size)
|
|
linkSec = this->sections[sec.sh_link];
|
|
if (!linkSec)
|
|
fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
|
|
|
|
// A SHF_LINK_ORDER section is discarded if its linked-to section is
|
|
// discarded.
|
|
InputSection *isec = cast<InputSection>(this->sections[i]);
|
|
linkSec->dependentSections.push_back(isec);
|
|
if (!isa<InputSection>(linkSec))
|
|
error("a section " + isec->name +
|
|
" with SHF_LINK_ORDER should not refer a non-regular section: " +
|
|
toString(linkSec));
|
|
}
|
|
|
|
for (ArrayRef<Elf_Word> entries : selectedGroups)
|
|
handleSectionGroup<ELFT>(this->sections, entries);
|
|
}
|
|
|
|
// For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
|
|
// flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
|
|
// the input objects have been compiled.
|
|
static void updateARMVFPArgs(const ARMAttributeParser &attributes,
|
|
const InputFile *f) {
|
|
Optional<unsigned> attr =
|
|
attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
|
|
if (!attr.hasValue())
|
|
// If an ABI tag isn't present then it is implicitly given the value of 0
|
|
// which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
|
|
// including some in glibc that don't use FP args (and should have value 3)
|
|
// don't have the attribute so we do not consider an implicit value of 0
|
|
// as a clash.
|
|
return;
|
|
|
|
unsigned vfpArgs = attr.getValue();
|
|
ARMVFPArgKind arg;
|
|
switch (vfpArgs) {
|
|
case ARMBuildAttrs::BaseAAPCS:
|
|
arg = ARMVFPArgKind::Base;
|
|
break;
|
|
case ARMBuildAttrs::HardFPAAPCS:
|
|
arg = ARMVFPArgKind::VFP;
|
|
break;
|
|
case ARMBuildAttrs::ToolChainFPPCS:
|
|
// Tool chain specific convention that conforms to neither AAPCS variant.
|
|
arg = ARMVFPArgKind::ToolChain;
|
|
break;
|
|
case ARMBuildAttrs::CompatibleFPAAPCS:
|
|
// Object compatible with all conventions.
|
|
return;
|
|
default:
|
|
error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
|
|
return;
|
|
}
|
|
// Follow ld.bfd and error if there is a mix of calling conventions.
|
|
if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
|
|
error(toString(f) + ": incompatible Tag_ABI_VFP_args");
|
|
else
|
|
config->armVFPArgs = arg;
|
|
}
|
|
|
|
// The ARM support in lld makes some use of instructions that are not available
|
|
// on all ARM architectures. Namely:
|
|
// - Use of BLX instruction for interworking between ARM and Thumb state.
|
|
// - Use of the extended Thumb branch encoding in relocation.
|
|
// - Use of the MOVT/MOVW instructions in Thumb Thunks.
|
|
// The ARM Attributes section contains information about the architecture chosen
|
|
// at compile time. We follow the convention that if at least one input object
|
|
// is compiled with an architecture that supports these features then lld is
|
|
// permitted to use them.
|
|
static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
|
|
Optional<unsigned> attr =
|
|
attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
|
|
if (!attr.hasValue())
|
|
return;
|
|
auto arch = attr.getValue();
|
|
switch (arch) {
|
|
case ARMBuildAttrs::Pre_v4:
|
|
case ARMBuildAttrs::v4:
|
|
case ARMBuildAttrs::v4T:
|
|
// Architectures prior to v5 do not support BLX instruction
|
|
break;
|
|
case ARMBuildAttrs::v5T:
|
|
case ARMBuildAttrs::v5TE:
|
|
case ARMBuildAttrs::v5TEJ:
|
|
case ARMBuildAttrs::v6:
|
|
case ARMBuildAttrs::v6KZ:
|
|
case ARMBuildAttrs::v6K:
|
|
config->armHasBlx = true;
|
|
// Architectures used in pre-Cortex processors do not support
|
|
// The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
|
|
// of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
|
|
break;
|
|
default:
|
|
// All other Architectures have BLX and extended branch encoding
|
|
config->armHasBlx = true;
|
|
config->armJ1J2BranchEncoding = true;
|
|
if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
|
|
// All Architectures used in Cortex processors with the exception
|
|
// of v6-M and v6S-M have the MOVT and MOVW instructions.
|
|
config->armHasMovtMovw = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If a source file is compiled with x86 hardware-assisted call flow control
|
|
// enabled, the generated object file contains feature flags indicating that
|
|
// fact. This function reads the feature flags and returns it.
|
|
//
|
|
// Essentially we want to read a single 32-bit value in this function, but this
|
|
// function is rather complicated because the value is buried deep inside a
|
|
// .note.gnu.property section.
|
|
//
|
|
// The section consists of one or more NOTE records. Each NOTE record consists
|
|
// of zero or more type-length-value fields. We want to find a field of a
|
|
// certain type. It seems a bit too much to just store a 32-bit value, perhaps
|
|
// the ABI is unnecessarily complicated.
|
|
template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
|
|
using Elf_Nhdr = typename ELFT::Nhdr;
|
|
using Elf_Note = typename ELFT::Note;
|
|
|
|
uint32_t featuresSet = 0;
|
|
ArrayRef<uint8_t> data = sec.rawData;
|
|
auto reportFatal = [&](const uint8_t *place, const char *msg) {
|
|
fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
|
|
Twine::utohexstr(place - sec.rawData.data()) + "): " + msg);
|
|
};
|
|
while (!data.empty()) {
|
|
// Read one NOTE record.
|
|
auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
|
|
if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
|
|
reportFatal(data.data(), "data is too short");
|
|
|
|
Elf_Note note(*nhdr);
|
|
if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
|
|
data = data.slice(nhdr->getSize());
|
|
continue;
|
|
}
|
|
|
|
uint32_t featureAndType = config->emachine == EM_AARCH64
|
|
? GNU_PROPERTY_AARCH64_FEATURE_1_AND
|
|
: GNU_PROPERTY_X86_FEATURE_1_AND;
|
|
|
|
// Read a body of a NOTE record, which consists of type-length-value fields.
|
|
ArrayRef<uint8_t> desc = note.getDesc();
|
|
while (!desc.empty()) {
|
|
const uint8_t *place = desc.data();
|
|
if (desc.size() < 8)
|
|
reportFatal(place, "program property is too short");
|
|
uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
|
|
uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
|
|
desc = desc.slice(8);
|
|
if (desc.size() < size)
|
|
reportFatal(place, "program property is too short");
|
|
|
|
if (type == featureAndType) {
|
|
// We found a FEATURE_1_AND field. There may be more than one of these
|
|
// in a .note.gnu.property section, for a relocatable object we
|
|
// accumulate the bits set.
|
|
if (size < 4)
|
|
reportFatal(place, "FEATURE_1_AND entry is too short");
|
|
featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
|
|
}
|
|
|
|
// Padding is present in the note descriptor, if necessary.
|
|
desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
|
|
}
|
|
|
|
// Go to next NOTE record to look for more FEATURE_1_AND descriptions.
|
|
data = data.slice(nhdr->getSize());
|
|
}
|
|
|
|
return featuresSet;
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx,
|
|
const Elf_Shdr &sec,
|
|
uint32_t info) {
|
|
if (info < this->sections.size()) {
|
|
InputSectionBase *target = this->sections[info];
|
|
|
|
// Strictly speaking, a relocation section must be included in the
|
|
// group of the section it relocates. However, LLVM 3.3 and earlier
|
|
// would fail to do so, so we gracefully handle that case.
|
|
if (target == &InputSection::discarded)
|
|
return nullptr;
|
|
|
|
if (target != nullptr)
|
|
return target;
|
|
}
|
|
|
|
error(toString(this) + Twine(": relocation section (index ") + Twine(idx) +
|
|
") has invalid sh_info (" + Twine(info) + ")");
|
|
return nullptr;
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
|
|
const Elf_Shdr &sec,
|
|
StringRef name) {
|
|
if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) {
|
|
ARMAttributeParser attributes;
|
|
ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
|
|
if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
|
|
? support::little
|
|
: support::big)) {
|
|
auto *isec = make<InputSection>(*this, sec, name);
|
|
warn(toString(isec) + ": " + llvm::toString(std::move(e)));
|
|
} else {
|
|
updateSupportedARMFeatures(attributes);
|
|
updateARMVFPArgs(attributes, this);
|
|
|
|
// FIXME: Retain the first attribute section we see. The eglibc ARM
|
|
// dynamic loaders require the presence of an attribute section for dlopen
|
|
// to work. In a full implementation we would merge all attribute
|
|
// sections.
|
|
if (in.attributes == nullptr) {
|
|
in.attributes = std::make_unique<InputSection>(*this, sec, name);
|
|
return in.attributes.get();
|
|
}
|
|
return &InputSection::discarded;
|
|
}
|
|
}
|
|
|
|
if (sec.sh_type == SHT_RISCV_ATTRIBUTES && config->emachine == EM_RISCV) {
|
|
RISCVAttributeParser attributes;
|
|
ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
|
|
if (Error e = attributes.parse(contents, support::little)) {
|
|
auto *isec = make<InputSection>(*this, sec, name);
|
|
warn(toString(isec) + ": " + llvm::toString(std::move(e)));
|
|
} else {
|
|
// FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
|
|
// present.
|
|
|
|
// FIXME: Retain the first attribute section we see. Tools such as
|
|
// llvm-objdump make use of the attribute section to determine which
|
|
// standard extensions to enable. In a full implementation we would merge
|
|
// all attribute sections.
|
|
if (in.attributes == nullptr) {
|
|
in.attributes = std::make_unique<InputSection>(*this, sec, name);
|
|
return in.attributes.get();
|
|
}
|
|
return &InputSection::discarded;
|
|
}
|
|
}
|
|
|
|
if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) {
|
|
ArrayRef<char> data =
|
|
CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
|
|
if (!data.empty() && data.back() != '\0') {
|
|
error(toString(this) +
|
|
": corrupted dependent libraries section (unterminated string): " +
|
|
name);
|
|
return &InputSection::discarded;
|
|
}
|
|
for (const char *d = data.begin(), *e = data.end(); d < e;) {
|
|
StringRef s(d);
|
|
addDependentLibrary(s, this);
|
|
d += s.size() + 1;
|
|
}
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
if (name.startswith(".n")) {
|
|
// The GNU linker uses .note.GNU-stack section as a marker indicating
|
|
// that the code in the object file does not expect that the stack is
|
|
// executable (in terms of NX bit). If all input files have the marker,
|
|
// the GNU linker adds a PT_GNU_STACK segment to tells the loader to
|
|
// make the stack non-executable. Most object files have this section as
|
|
// of 2017.
|
|
//
|
|
// But making the stack non-executable is a norm today for security
|
|
// reasons. Failure to do so may result in a serious security issue.
|
|
// Therefore, we make LLD always add PT_GNU_STACK unless it is
|
|
// explicitly told to do otherwise (by -z execstack). Because the stack
|
|
// executable-ness is controlled solely by command line options,
|
|
// .note.GNU-stack sections are simply ignored.
|
|
if (name == ".note.GNU-stack")
|
|
return &InputSection::discarded;
|
|
|
|
// Object files that use processor features such as Intel Control-Flow
|
|
// Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
|
|
// .note.gnu.property section containing a bitfield of feature bits like the
|
|
// GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
|
|
//
|
|
// Since we merge bitmaps from multiple object files to create a new
|
|
// .note.gnu.property containing a single AND'ed bitmap, we discard an input
|
|
// file's .note.gnu.property section.
|
|
if (name == ".note.gnu.property") {
|
|
this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// Split stacks is a feature to support a discontiguous stack,
|
|
// commonly used in the programming language Go. For the details,
|
|
// see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
|
|
// for split stack will include a .note.GNU-split-stack section.
|
|
if (name == ".note.GNU-split-stack") {
|
|
if (config->relocatable) {
|
|
error(
|
|
"cannot mix split-stack and non-split-stack in a relocatable link");
|
|
return &InputSection::discarded;
|
|
}
|
|
this->splitStack = true;
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// An object file cmpiled for split stack, but where some of the
|
|
// functions were compiled with the no_split_stack_attribute will
|
|
// include a .note.GNU-no-split-stack section.
|
|
if (name == ".note.GNU-no-split-stack") {
|
|
this->someNoSplitStack = true;
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// Strip existing .note.gnu.build-id sections so that the output won't have
|
|
// more than one build-id. This is not usually a problem because input
|
|
// object files normally don't have .build-id sections, but you can create
|
|
// such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
|
|
// against it.
|
|
if (name == ".note.gnu.build-id")
|
|
return &InputSection::discarded;
|
|
}
|
|
|
|
// The linkonce feature is a sort of proto-comdat. Some glibc i386 object
|
|
// files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
|
|
// sections. Drop those sections to avoid duplicate symbol errors.
|
|
// FIXME: This is glibc PR20543, we should remove this hack once that has been
|
|
// fixed for a while.
|
|
if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
|
|
name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
|
|
return &InputSection::discarded;
|
|
|
|
// The linker merges EH (exception handling) frames and creates a
|
|
// .eh_frame_hdr section for runtime. So we handle them with a special
|
|
// class. For relocatable outputs, they are just passed through.
|
|
if (name == ".eh_frame" && !config->relocatable)
|
|
return make<EhInputSection>(*this, sec, name);
|
|
|
|
if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
|
|
return make<MergeInputSection>(*this, sec, name);
|
|
return make<InputSection>(*this, sec, name);
|
|
}
|
|
|
|
// Initialize this->Symbols. this->Symbols is a parallel array as
|
|
// its corresponding ELF symbol table.
|
|
template <class ELFT>
|
|
void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) {
|
|
ArrayRef<InputSectionBase *> sections(this->sections);
|
|
SymbolTable &symtab = *elf::symtab;
|
|
|
|
ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
|
|
symbols.resize(eSyms.size());
|
|
|
|
// Some entries have been filled by LazyObjFile.
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
|
|
if (!symbols[i])
|
|
symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
|
|
|
|
// Perform symbol resolution on non-local symbols.
|
|
SmallVector<unsigned, 32> undefineds;
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
uint8_t binding = eSym.getBinding();
|
|
if (LLVM_UNLIKELY(binding == STB_LOCAL)) {
|
|
errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
|
|
") found at index >= .symtab's sh_info (" +
|
|
Twine(firstGlobal) + ")");
|
|
continue;
|
|
}
|
|
uint32_t secIdx = eSym.st_shndx;
|
|
if (secIdx == SHN_UNDEF) {
|
|
undefineds.push_back(i);
|
|
continue;
|
|
}
|
|
|
|
if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
|
|
secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
|
|
else if (secIdx >= SHN_LORESERVE)
|
|
secIdx = 0;
|
|
if (LLVM_UNLIKELY(secIdx >= sections.size()))
|
|
fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
|
|
InputSectionBase *sec = sections[secIdx];
|
|
uint8_t stOther = eSym.st_other;
|
|
uint8_t type = eSym.getType();
|
|
uint64_t value = eSym.st_value;
|
|
uint64_t size = eSym.st_size;
|
|
|
|
Symbol *sym = symbols[i];
|
|
sym->isUsedInRegularObj = true;
|
|
if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) {
|
|
if (value == 0 || value >= UINT32_MAX)
|
|
fatal(toString(this) + ": common symbol '" + sym->getName() +
|
|
"' has invalid alignment: " + Twine(value));
|
|
hasCommonSyms = true;
|
|
sym->resolve(
|
|
CommonSymbol{this, StringRef(), binding, stOther, type, value, size});
|
|
continue;
|
|
}
|
|
|
|
// If a defined symbol is in a discarded section, handle it as if it
|
|
// were an undefined symbol. Such symbol doesn't comply with the
|
|
// standard, but in practice, a .eh_frame often directly refer
|
|
// COMDAT member sections, and if a comdat group is discarded, some
|
|
// defined symbol in a .eh_frame becomes dangling symbols.
|
|
if (sec == &InputSection::discarded) {
|
|
Undefined und{this, StringRef(), binding, stOther, type, secIdx};
|
|
// !LazyObjFile::lazy indicates that the file containing this object has
|
|
// not finished processing, i.e. this symbol is a result of a lazy symbol
|
|
// extract. We should demote the lazy symbol to an Undefined so that any
|
|
// relocations outside of the group to it will trigger a discarded section
|
|
// error.
|
|
if (sym->symbolKind == Symbol::LazyObjectKind && !sym->file->lazy)
|
|
sym->replace(und);
|
|
else
|
|
sym->resolve(und);
|
|
continue;
|
|
}
|
|
|
|
// Handle global defined symbols.
|
|
if (binding == STB_GLOBAL || binding == STB_WEAK ||
|
|
binding == STB_GNU_UNIQUE) {
|
|
sym->resolve(
|
|
Defined{this, StringRef(), binding, stOther, type, value, size, sec});
|
|
continue;
|
|
}
|
|
|
|
fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
|
|
}
|
|
|
|
// Undefined symbols (excluding those defined relative to non-prevailing
|
|
// sections) can trigger recursive extract. Process defined symbols first so
|
|
// that the relative order between a defined symbol and an undefined symbol
|
|
// does not change the symbol resolution behavior. In addition, a set of
|
|
// interconnected symbols will all be resolved to the same file, instead of
|
|
// being resolved to different files.
|
|
for (unsigned i : undefineds) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
Symbol *sym = symbols[i];
|
|
sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other,
|
|
eSym.getType()});
|
|
sym->isUsedInRegularObj = true;
|
|
sym->referenced = true;
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ObjFile<ELFT>::initializeLocalSymbols() {
|
|
if (!firstGlobal)
|
|
return;
|
|
localSymStorage = std::make_unique<SymbolUnion[]>(firstGlobal);
|
|
SymbolUnion *locals = localSymStorage.get();
|
|
|
|
ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
|
|
for (size_t i = 0, end = firstGlobal; i != end; ++i) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
uint32_t secIdx = eSym.st_shndx;
|
|
if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
|
|
secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
|
|
else if (secIdx >= SHN_LORESERVE)
|
|
secIdx = 0;
|
|
if (LLVM_UNLIKELY(secIdx >= sections.size()))
|
|
fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
|
|
if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL))
|
|
error(toString(this) + ": non-local symbol (" + Twine(i) +
|
|
") found at index < .symtab's sh_info (" + Twine(end) + ")");
|
|
|
|
InputSectionBase *sec = sections[secIdx];
|
|
uint8_t type = eSym.getType();
|
|
if (type == STT_FILE)
|
|
sourceFile = CHECK(eSym.getName(stringTable), this);
|
|
if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name))
|
|
fatal(toString(this) + ": invalid symbol name offset");
|
|
StringRef name(stringTable.data() + eSym.st_name);
|
|
|
|
symbols[i] = reinterpret_cast<Symbol *>(locals + i);
|
|
if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
|
|
new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type,
|
|
/*discardedSecIdx=*/secIdx);
|
|
else
|
|
new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type,
|
|
eSym.st_value, eSym.st_size, sec);
|
|
symbols[i]->isUsedInRegularObj = true;
|
|
}
|
|
}
|
|
|
|
// Called after all ObjFile::parse is called for all ObjFiles. This checks
|
|
// duplicate symbols and may do symbol property merge in the future.
|
|
template <class ELFT> void ObjFile<ELFT>::postParse() {
|
|
ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
|
|
const Elf_Sym &eSym = eSyms[i];
|
|
const Symbol &sym = *symbols[i];
|
|
|
|
// st_value of STT_TLS represents the assigned offset, not the actual
|
|
// address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
|
|
// only be referenced by special TLS relocations. It is usually an error if
|
|
// a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
|
|
if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS &&
|
|
eSym.getType() != STT_NOTYPE)
|
|
errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " +
|
|
toString(sym.file) + "\n>>> in " + toString(this));
|
|
|
|
// !sym.file allows a symbol assignment redefines a symbol without an error.
|
|
if (sym.file == this || !sym.file || !sym.isDefined() ||
|
|
eSym.st_shndx == SHN_UNDEF || eSym.st_shndx == SHN_COMMON ||
|
|
eSym.getBinding() == STB_WEAK)
|
|
continue;
|
|
uint32_t secIdx = eSym.st_shndx;
|
|
if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
|
|
secIdx = cantFail(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
|
|
else if (secIdx >= SHN_LORESERVE)
|
|
secIdx = 0;
|
|
if (sections[secIdx] == &InputSection::discarded)
|
|
continue;
|
|
// Allow absolute symbols with the same value for GNU ld compatibility.
|
|
if (!cast<Defined>(sym).section && !sections[secIdx] &&
|
|
cast<Defined>(sym).value == eSym.st_value)
|
|
continue;
|
|
reportDuplicate(sym, this, sections[secIdx], eSym.st_value);
|
|
}
|
|
}
|
|
|
|
// The handling of tentative definitions (COMMON symbols) in archives is murky.
|
|
// A tentative definition will be promoted to a global definition if there are
|
|
// no non-tentative definitions to dominate it. When we hold a tentative
|
|
// definition to a symbol and are inspecting archive members for inclusion
|
|
// there are 2 ways we can proceed:
|
|
//
|
|
// 1) Consider the tentative definition a 'real' definition (ie promotion from
|
|
// tentative to real definition has already happened) and not inspect
|
|
// archive members for Global/Weak definitions to replace the tentative
|
|
// definition. An archive member would only be included if it satisfies some
|
|
// other undefined symbol. This is the behavior Gold uses.
|
|
//
|
|
// 2) Consider the tentative definition as still undefined (ie the promotion to
|
|
// a real definition happens only after all symbol resolution is done).
|
|
// The linker searches archive members for STB_GLOBAL definitions to
|
|
// replace the tentative definition with. This is the behavior used by
|
|
// GNU ld.
|
|
//
|
|
// The second behavior is inherited from SysVR4, which based it on the FORTRAN
|
|
// COMMON BLOCK model. This behavior is needed for proper initialization in old
|
|
// (pre F90) FORTRAN code that is packaged into an archive.
|
|
//
|
|
// The following functions search archive members for definitions to replace
|
|
// tentative definitions (implementing behavior 2).
|
|
static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
|
|
StringRef archiveName) {
|
|
IRSymtabFile symtabFile = check(readIRSymtab(mb));
|
|
for (const irsymtab::Reader::SymbolRef &sym :
|
|
symtabFile.TheReader.symbols()) {
|
|
if (sym.isGlobal() && sym.getName() == symName)
|
|
return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
|
|
StringRef archiveName) {
|
|
ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
|
|
StringRef stringtable = obj->getStringTable();
|
|
|
|
for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
|
|
Expected<StringRef> name = sym.getName(stringtable);
|
|
if (name && name.get() == symName)
|
|
return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
|
|
!sym.isCommon();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
|
|
StringRef archiveName) {
|
|
switch (getELFKind(mb, archiveName)) {
|
|
case ELF32LEKind:
|
|
return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
|
|
case ELF32BEKind:
|
|
return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
|
|
case ELF64LEKind:
|
|
return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
|
|
case ELF64BEKind:
|
|
return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
|
|
default:
|
|
llvm_unreachable("getELFKind");
|
|
}
|
|
}
|
|
|
|
unsigned SharedFile::vernauxNum;
|
|
|
|
// Parse the version definitions in the object file if present, and return a
|
|
// vector whose nth element contains a pointer to the Elf_Verdef for version
|
|
// identifier n. Version identifiers that are not definitions map to nullptr.
|
|
template <typename ELFT>
|
|
static SmallVector<const void *, 0>
|
|
parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
|
|
if (!sec)
|
|
return {};
|
|
|
|
// Build the Verdefs array by following the chain of Elf_Verdef objects
|
|
// from the start of the .gnu.version_d section.
|
|
SmallVector<const void *, 0> verdefs;
|
|
const uint8_t *verdef = base + sec->sh_offset;
|
|
for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
|
|
auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
|
|
verdef += curVerdef->vd_next;
|
|
unsigned verdefIndex = curVerdef->vd_ndx;
|
|
if (verdefIndex >= verdefs.size())
|
|
verdefs.resize(verdefIndex + 1);
|
|
verdefs[verdefIndex] = curVerdef;
|
|
}
|
|
return verdefs;
|
|
}
|
|
|
|
// Parse SHT_GNU_verneed to properly set the name of a versioned undefined
|
|
// symbol. We detect fatal issues which would cause vulnerabilities, but do not
|
|
// implement sophisticated error checking like in llvm-readobj because the value
|
|
// of such diagnostics is low.
|
|
template <typename ELFT>
|
|
std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
|
|
const typename ELFT::Shdr *sec) {
|
|
if (!sec)
|
|
return {};
|
|
std::vector<uint32_t> verneeds;
|
|
ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
|
|
const uint8_t *verneedBuf = data.begin();
|
|
for (unsigned i = 0; i != sec->sh_info; ++i) {
|
|
if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
|
|
fatal(toString(this) + " has an invalid Verneed");
|
|
auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
|
|
const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
|
|
for (unsigned j = 0; j != vn->vn_cnt; ++j) {
|
|
if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
|
|
fatal(toString(this) + " has an invalid Vernaux");
|
|
auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
|
|
if (aux->vna_name >= this->stringTable.size())
|
|
fatal(toString(this) + " has a Vernaux with an invalid vna_name");
|
|
uint16_t version = aux->vna_other & VERSYM_VERSION;
|
|
if (version >= verneeds.size())
|
|
verneeds.resize(version + 1);
|
|
verneeds[version] = aux->vna_name;
|
|
vernauxBuf += aux->vna_next;
|
|
}
|
|
verneedBuf += vn->vn_next;
|
|
}
|
|
return verneeds;
|
|
}
|
|
|
|
// We do not usually care about alignments of data in shared object
|
|
// files because the loader takes care of it. However, if we promote a
|
|
// DSO symbol to point to .bss due to copy relocation, we need to keep
|
|
// the original alignment requirements. We infer it in this function.
|
|
template <typename ELFT>
|
|
static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
|
|
const typename ELFT::Sym &sym) {
|
|
uint64_t ret = UINT64_MAX;
|
|
if (sym.st_value)
|
|
ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
|
|
if (0 < sym.st_shndx && sym.st_shndx < sections.size())
|
|
ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
|
|
return (ret > UINT32_MAX) ? 0 : ret;
|
|
}
|
|
|
|
// Fully parse the shared object file.
|
|
//
|
|
// This function parses symbol versions. If a DSO has version information,
|
|
// the file has a ".gnu.version_d" section which contains symbol version
|
|
// definitions. Each symbol is associated to one version through a table in
|
|
// ".gnu.version" section. That table is a parallel array for the symbol
|
|
// table, and each table entry contains an index in ".gnu.version_d".
|
|
//
|
|
// The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
|
|
// VER_NDX_GLOBAL. There's no table entry for these special versions in
|
|
// ".gnu.version_d".
|
|
//
|
|
// The file format for symbol versioning is perhaps a bit more complicated
|
|
// than necessary, but you can easily understand the code if you wrap your
|
|
// head around the data structure described above.
|
|
template <class ELFT> void SharedFile::parse() {
|
|
using Elf_Dyn = typename ELFT::Dyn;
|
|
using Elf_Shdr = typename ELFT::Shdr;
|
|
using Elf_Sym = typename ELFT::Sym;
|
|
using Elf_Verdef = typename ELFT::Verdef;
|
|
using Elf_Versym = typename ELFT::Versym;
|
|
|
|
ArrayRef<Elf_Dyn> dynamicTags;
|
|
const ELFFile<ELFT> obj = this->getObj<ELFT>();
|
|
ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>();
|
|
|
|
const Elf_Shdr *versymSec = nullptr;
|
|
const Elf_Shdr *verdefSec = nullptr;
|
|
const Elf_Shdr *verneedSec = nullptr;
|
|
|
|
// Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
|
|
for (const Elf_Shdr &sec : sections) {
|
|
switch (sec.sh_type) {
|
|
default:
|
|
continue;
|
|
case SHT_DYNAMIC:
|
|
dynamicTags =
|
|
CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
|
|
break;
|
|
case SHT_GNU_versym:
|
|
versymSec = &sec;
|
|
break;
|
|
case SHT_GNU_verdef:
|
|
verdefSec = &sec;
|
|
break;
|
|
case SHT_GNU_verneed:
|
|
verneedSec = &sec;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (versymSec && numELFSyms == 0) {
|
|
error("SHT_GNU_versym should be associated with symbol table");
|
|
return;
|
|
}
|
|
|
|
// Search for a DT_SONAME tag to initialize this->soName.
|
|
for (const Elf_Dyn &dyn : dynamicTags) {
|
|
if (dyn.d_tag == DT_NEEDED) {
|
|
uint64_t val = dyn.getVal();
|
|
if (val >= this->stringTable.size())
|
|
fatal(toString(this) + ": invalid DT_NEEDED entry");
|
|
dtNeeded.push_back(this->stringTable.data() + val);
|
|
} else if (dyn.d_tag == DT_SONAME) {
|
|
uint64_t val = dyn.getVal();
|
|
if (val >= this->stringTable.size())
|
|
fatal(toString(this) + ": invalid DT_SONAME entry");
|
|
soName = this->stringTable.data() + val;
|
|
}
|
|
}
|
|
|
|
// DSOs are uniquified not by filename but by soname.
|
|
DenseMap<CachedHashStringRef, SharedFile *>::iterator it;
|
|
bool wasInserted;
|
|
std::tie(it, wasInserted) =
|
|
symtab->soNames.try_emplace(CachedHashStringRef(soName), this);
|
|
|
|
// If a DSO appears more than once on the command line with and without
|
|
// --as-needed, --no-as-needed takes precedence over --as-needed because a
|
|
// user can add an extra DSO with --no-as-needed to force it to be added to
|
|
// the dependency list.
|
|
it->second->isNeeded |= isNeeded;
|
|
if (!wasInserted)
|
|
return;
|
|
|
|
sharedFiles.push_back(this);
|
|
|
|
verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
|
|
std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
|
|
|
|
// Parse ".gnu.version" section which is a parallel array for the symbol
|
|
// table. If a given file doesn't have a ".gnu.version" section, we use
|
|
// VER_NDX_GLOBAL.
|
|
size_t size = numELFSyms - firstGlobal;
|
|
std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
|
|
if (versymSec) {
|
|
ArrayRef<Elf_Versym> versym =
|
|
CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
|
|
this)
|
|
.slice(firstGlobal);
|
|
for (size_t i = 0; i < size; ++i)
|
|
versyms[i] = versym[i].vs_index;
|
|
}
|
|
|
|
// System libraries can have a lot of symbols with versions. Using a
|
|
// fixed buffer for computing the versions name (foo@ver) can save a
|
|
// lot of allocations.
|
|
SmallString<0> versionedNameBuffer;
|
|
|
|
// Add symbols to the symbol table.
|
|
SymbolTable &symtab = *elf::symtab;
|
|
ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
|
|
for (size_t i = 0, e = syms.size(); i != e; ++i) {
|
|
const Elf_Sym &sym = syms[i];
|
|
|
|
// ELF spec requires that all local symbols precede weak or global
|
|
// symbols in each symbol table, and the index of first non-local symbol
|
|
// is stored to sh_info. If a local symbol appears after some non-local
|
|
// symbol, that's a violation of the spec.
|
|
StringRef name = CHECK(sym.getName(stringTable), this);
|
|
if (sym.getBinding() == STB_LOCAL) {
|
|
warn("found local symbol '" + name +
|
|
"' in global part of symbol table in file " + toString(this));
|
|
continue;
|
|
}
|
|
|
|
uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
|
|
if (sym.isUndefined()) {
|
|
// For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
|
|
// as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
|
|
if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
|
|
if (idx >= verneeds.size()) {
|
|
error("corrupt input file: version need index " + Twine(idx) +
|
|
" for symbol " + name + " is out of bounds\n>>> defined in " +
|
|
toString(this));
|
|
continue;
|
|
}
|
|
StringRef verName = stringTable.data() + verneeds[idx];
|
|
versionedNameBuffer.clear();
|
|
name = saver().save(
|
|
(name + "@" + verName).toStringRef(versionedNameBuffer));
|
|
}
|
|
Symbol *s = symtab.addSymbol(
|
|
Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
|
|
s->exportDynamic = true;
|
|
if (s->isUndefined() && sym.getBinding() != STB_WEAK &&
|
|
config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
|
|
requiredSymbols.push_back(s);
|
|
continue;
|
|
}
|
|
|
|
// MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
|
|
// assigns VER_NDX_LOCAL to this section global symbol. Here is a
|
|
// workaround for this bug.
|
|
if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
|
|
name == "_gp_disp")
|
|
continue;
|
|
|
|
uint32_t alignment = getAlignment<ELFT>(sections, sym);
|
|
if (!(versyms[i] & VERSYM_HIDDEN)) {
|
|
auto *s = symtab.addSymbol(
|
|
SharedSymbol{*this, name, sym.getBinding(), sym.st_other,
|
|
sym.getType(), sym.st_value, sym.st_size, alignment});
|
|
if (s->file == this)
|
|
s->verdefIndex = idx;
|
|
}
|
|
|
|
// Also add the symbol with the versioned name to handle undefined symbols
|
|
// with explicit versions.
|
|
if (idx == VER_NDX_GLOBAL)
|
|
continue;
|
|
|
|
if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
|
|
error("corrupt input file: version definition index " + Twine(idx) +
|
|
" for symbol " + name + " is out of bounds\n>>> defined in " +
|
|
toString(this));
|
|
continue;
|
|
}
|
|
|
|
StringRef verName =
|
|
stringTable.data() +
|
|
reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
|
|
versionedNameBuffer.clear();
|
|
name = (name + "@" + verName).toStringRef(versionedNameBuffer);
|
|
auto *s = symtab.addSymbol(
|
|
SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other,
|
|
sym.getType(), sym.st_value, sym.st_size, alignment});
|
|
if (s->file == this)
|
|
s->verdefIndex = idx;
|
|
}
|
|
}
|
|
|
|
static ELFKind getBitcodeELFKind(const Triple &t) {
|
|
if (t.isLittleEndian())
|
|
return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
|
|
return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
|
|
}
|
|
|
|
static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
|
|
switch (t.getArch()) {
|
|
case Triple::aarch64:
|
|
case Triple::aarch64_be:
|
|
return EM_AARCH64;
|
|
case Triple::amdgcn:
|
|
case Triple::r600:
|
|
return EM_AMDGPU;
|
|
case Triple::arm:
|
|
case Triple::thumb:
|
|
return EM_ARM;
|
|
case Triple::avr:
|
|
return EM_AVR;
|
|
case Triple::hexagon:
|
|
return EM_HEXAGON;
|
|
case Triple::mips:
|
|
case Triple::mipsel:
|
|
case Triple::mips64:
|
|
case Triple::mips64el:
|
|
return EM_MIPS;
|
|
case Triple::msp430:
|
|
return EM_MSP430;
|
|
case Triple::ppc:
|
|
case Triple::ppcle:
|
|
return EM_PPC;
|
|
case Triple::ppc64:
|
|
case Triple::ppc64le:
|
|
return EM_PPC64;
|
|
case Triple::riscv32:
|
|
case Triple::riscv64:
|
|
return EM_RISCV;
|
|
case Triple::x86:
|
|
return t.isOSIAMCU() ? EM_IAMCU : EM_386;
|
|
case Triple::x86_64:
|
|
return EM_X86_64;
|
|
default:
|
|
error(path + ": could not infer e_machine from bitcode target triple " +
|
|
t.str());
|
|
return EM_NONE;
|
|
}
|
|
}
|
|
|
|
static uint8_t getOsAbi(const Triple &t) {
|
|
switch (t.getOS()) {
|
|
case Triple::AMDHSA:
|
|
return ELF::ELFOSABI_AMDGPU_HSA;
|
|
case Triple::AMDPAL:
|
|
return ELF::ELFOSABI_AMDGPU_PAL;
|
|
case Triple::Mesa3D:
|
|
return ELF::ELFOSABI_AMDGPU_MESA3D;
|
|
default:
|
|
return ELF::ELFOSABI_NONE;
|
|
}
|
|
}
|
|
|
|
BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
|
|
uint64_t offsetInArchive, bool lazy)
|
|
: InputFile(BitcodeKind, mb) {
|
|
this->archiveName = archiveName;
|
|
this->lazy = lazy;
|
|
|
|
std::string path = mb.getBufferIdentifier().str();
|
|
if (config->thinLTOIndexOnly)
|
|
path = replaceThinLTOSuffix(mb.getBufferIdentifier());
|
|
|
|
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
|
|
// name. If two archives define two members with the same name, this
|
|
// causes a collision which result in only one of the objects being taken
|
|
// into consideration at LTO time (which very likely causes undefined
|
|
// symbols later in the link stage). So we append file offset to make
|
|
// filename unique.
|
|
StringRef name = archiveName.empty()
|
|
? saver().save(path)
|
|
: saver().save(archiveName + "(" + path::filename(path) +
|
|
" at " + utostr(offsetInArchive) + ")");
|
|
MemoryBufferRef mbref(mb.getBuffer(), name);
|
|
|
|
obj = CHECK(lto::InputFile::create(mbref), this);
|
|
|
|
Triple t(obj->getTargetTriple());
|
|
ekind = getBitcodeELFKind(t);
|
|
emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
|
|
osabi = getOsAbi(t);
|
|
}
|
|
|
|
static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
|
|
switch (gvVisibility) {
|
|
case GlobalValue::DefaultVisibility:
|
|
return STV_DEFAULT;
|
|
case GlobalValue::HiddenVisibility:
|
|
return STV_HIDDEN;
|
|
case GlobalValue::ProtectedVisibility:
|
|
return STV_PROTECTED;
|
|
}
|
|
llvm_unreachable("unknown visibility");
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void
|
|
createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats,
|
|
const lto::InputFile::Symbol &objSym, BitcodeFile &f) {
|
|
uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
|
|
uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
|
|
uint8_t visibility = mapVisibility(objSym.getVisibility());
|
|
|
|
if (!sym)
|
|
sym = symtab->insert(saver().save(objSym.getName()));
|
|
|
|
int c = objSym.getComdatIndex();
|
|
if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
|
|
Undefined newSym(&f, StringRef(), binding, visibility, type);
|
|
sym->resolve(newSym);
|
|
sym->referenced = true;
|
|
return;
|
|
}
|
|
|
|
if (objSym.isCommon()) {
|
|
sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT,
|
|
objSym.getCommonAlignment(),
|
|
objSym.getCommonSize()});
|
|
} else {
|
|
Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr);
|
|
if (objSym.canBeOmittedFromSymbolTable())
|
|
newSym.exportDynamic = false;
|
|
sym->resolve(newSym);
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void BitcodeFile::parse() {
|
|
for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
|
|
keptComdats.push_back(
|
|
s.second == Comdat::NoDeduplicate ||
|
|
symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
|
|
.second);
|
|
}
|
|
|
|
symbols.resize(obj->symbols().size());
|
|
// Process defined symbols first. See the comment in
|
|
// ObjFile<ELFT>::initializeSymbols.
|
|
for (auto it : llvm::enumerate(obj->symbols()))
|
|
if (!it.value().isUndefined()) {
|
|
Symbol *&sym = symbols[it.index()];
|
|
createBitcodeSymbol<ELFT>(sym, keptComdats, it.value(), *this);
|
|
}
|
|
for (auto it : llvm::enumerate(obj->symbols()))
|
|
if (it.value().isUndefined()) {
|
|
Symbol *&sym = symbols[it.index()];
|
|
createBitcodeSymbol<ELFT>(sym, keptComdats, it.value(), *this);
|
|
}
|
|
|
|
for (auto l : obj->getDependentLibraries())
|
|
addDependentLibrary(l, this);
|
|
}
|
|
|
|
void BitcodeFile::parseLazy() {
|
|
SymbolTable &symtab = *elf::symtab;
|
|
symbols.resize(obj->symbols().size());
|
|
for (auto it : llvm::enumerate(obj->symbols()))
|
|
if (!it.value().isUndefined()) {
|
|
auto *sym = symtab.insert(saver().save(it.value().getName()));
|
|
sym->resolve(LazyObject{*this});
|
|
symbols[it.index()] = sym;
|
|
}
|
|
}
|
|
|
|
void BitcodeFile::postParse() {
|
|
for (auto it : llvm::enumerate(obj->symbols())) {
|
|
const Symbol &sym = *symbols[it.index()];
|
|
const auto &objSym = it.value();
|
|
if (sym.file == this || !sym.isDefined() || objSym.isUndefined() ||
|
|
objSym.isCommon() || objSym.isWeak())
|
|
continue;
|
|
int c = objSym.getComdatIndex();
|
|
if (c != -1 && !keptComdats[c])
|
|
continue;
|
|
reportDuplicate(sym, this, nullptr, 0);
|
|
}
|
|
}
|
|
|
|
void BinaryFile::parse() {
|
|
ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
|
|
auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
|
|
8, data, ".data");
|
|
sections.push_back(section);
|
|
|
|
// For each input file foo that is embedded to a result as a binary
|
|
// blob, we define _binary_foo_{start,end,size} symbols, so that
|
|
// user programs can access blobs by name. Non-alphanumeric
|
|
// characters in a filename are replaced with underscore.
|
|
std::string s = "_binary_" + mb.getBufferIdentifier().str();
|
|
for (size_t i = 0; i < s.size(); ++i)
|
|
if (!isAlnum(s[i]))
|
|
s[i] = '_';
|
|
|
|
llvm::StringSaver &saver = lld::saver();
|
|
|
|
symtab->addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_start"),
|
|
STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0,
|
|
0, section});
|
|
symtab->addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_end"),
|
|
STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
|
|
data.size(), 0, section});
|
|
symtab->addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_size"),
|
|
STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
|
|
data.size(), 0, nullptr});
|
|
}
|
|
|
|
InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
|
|
uint64_t offsetInArchive) {
|
|
if (isBitcode(mb))
|
|
return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false);
|
|
|
|
switch (getELFKind(mb, archiveName)) {
|
|
case ELF32LEKind:
|
|
return make<ObjFile<ELF32LE>>(mb, archiveName);
|
|
case ELF32BEKind:
|
|
return make<ObjFile<ELF32BE>>(mb, archiveName);
|
|
case ELF64LEKind:
|
|
return make<ObjFile<ELF64LE>>(mb, archiveName);
|
|
case ELF64BEKind:
|
|
return make<ObjFile<ELF64BE>>(mb, archiveName);
|
|
default:
|
|
llvm_unreachable("getELFKind");
|
|
}
|
|
}
|
|
|
|
InputFile *elf::createLazyFile(MemoryBufferRef mb, StringRef archiveName,
|
|
uint64_t offsetInArchive) {
|
|
if (isBitcode(mb))
|
|
return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/true);
|
|
|
|
auto *file =
|
|
cast<ELFFileBase>(createObjectFile(mb, archiveName, offsetInArchive));
|
|
file->lazy = true;
|
|
return file;
|
|
}
|
|
|
|
template <class ELFT> void ObjFile<ELFT>::parseLazy() {
|
|
const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>();
|
|
SymbolTable &symtab = *elf::symtab;
|
|
|
|
symbols.resize(eSyms.size());
|
|
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
|
|
if (eSyms[i].st_shndx != SHN_UNDEF)
|
|
symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
|
|
|
|
// Replace existing symbols with LazyObject symbols.
|
|
//
|
|
// resolve() may trigger this->extract() if an existing symbol is an undefined
|
|
// symbol. If that happens, this function has served its purpose, and we can
|
|
// exit from the loop early.
|
|
for (Symbol *sym : makeArrayRef(symbols).slice(firstGlobal))
|
|
if (sym) {
|
|
sym->resolve(LazyObject{*this});
|
|
if (!lazy)
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool InputFile::shouldExtractForCommon(StringRef name) {
|
|
if (isBitcode(mb))
|
|
return isBitcodeNonCommonDef(mb, name, archiveName);
|
|
|
|
return isNonCommonDef(mb, name, archiveName);
|
|
}
|
|
|
|
std::string elf::replaceThinLTOSuffix(StringRef path) {
|
|
StringRef suffix = config->thinLTOObjectSuffixReplace.first;
|
|
StringRef repl = config->thinLTOObjectSuffixReplace.second;
|
|
|
|
if (path.consume_back(suffix))
|
|
return (path + repl).str();
|
|
return std::string(path);
|
|
}
|
|
|
|
template void BitcodeFile::parse<ELF32LE>();
|
|
template void BitcodeFile::parse<ELF32BE>();
|
|
template void BitcodeFile::parse<ELF64LE>();
|
|
template void BitcodeFile::parse<ELF64BE>();
|
|
|
|
template class elf::ObjFile<ELF32LE>;
|
|
template class elf::ObjFile<ELF32BE>;
|
|
template class elf::ObjFile<ELF64LE>;
|
|
template class elf::ObjFile<ELF64BE>;
|
|
|
|
template void SharedFile::parse<ELF32LE>();
|
|
template void SharedFile::parse<ELF32BE>();
|
|
template void SharedFile::parse<ELF64LE>();
|
|
template void SharedFile::parse<ELF64BE>();
|