Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_binary.mlir
River Riddle a8308020ac [mlir] Remove special case parsing/printing of func operations
This was leftover from when the standard dialect was destroyed, and
when FuncOp moved to the func dialect. Now that these transitions
have settled a bit we can drop these.

Most updates were handled using a simple regex: replace `^( *)func` with `$1func.func`

Differential Revision: https://reviews.llvm.org/D124146
2022-05-06 13:36:15 -07:00

294 lines
13 KiB
MLIR

// RUN: mlir-opt %s --sparse-compiler | \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
#SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}>
#DCSR = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed"]}>
//
// Traits for tensor operations.
//
#trait_vec_scale = {
indexing_maps = [
affine_map<(i) -> (i)>, // a (in)
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"]
}
#trait_vec_op = {
indexing_maps = [
affine_map<(i) -> (i)>, // a (in)
affine_map<(i) -> (i)>, // b (in)
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"]
}
#trait_mat_op = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A (in)
affine_map<(i,j) -> (i,j)>, // B (in)
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = A(i,j) OP B(i,j)"
}
module {
// Creates a new sparse vector using the minimum values from two input sparse vectors.
// When there is no overlap, include the present value in the output.
func.func @vector_min(%arga: tensor<?xf64, #SparseVector>,
%argb: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = sparse_tensor.init [%d] : tensor<?xf64, #SparseVector>
%0 = linalg.generic #trait_vec_op
ins(%arga, %argb: tensor<?xf64, #SparseVector>, tensor<?xf64, #SparseVector>)
outs(%xv: tensor<?xf64, #SparseVector>) {
^bb(%a: f64, %b: f64, %x: f64):
%1 = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap={
^bb0(%a0: f64, %b0: f64):
%cmp = arith.cmpf "olt", %a0, %b0 : f64
%2 = arith.select %cmp, %a0, %b0: f64
sparse_tensor.yield %2 : f64
}
left=identity
right=identity
linalg.yield %1 : f64
} -> tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
// Creates a new sparse vector by multiplying a sparse vector with a dense vector.
// When there is no overlap, leave the result empty.
func.func @vector_mul(%arga: tensor<?xf64, #SparseVector>,
%argb: tensor<?xf64>) -> tensor<?xf64, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = sparse_tensor.init [%d] : tensor<?xf64, #SparseVector>
%0 = linalg.generic #trait_vec_op
ins(%arga, %argb: tensor<?xf64, #SparseVector>, tensor<?xf64>)
outs(%xv: tensor<?xf64, #SparseVector>) {
^bb(%a: f64, %b: f64, %x: f64):
%1 = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap={
^bb0(%a0: f64, %b0: f64):
%ret = arith.mulf %a0, %b0 : f64
sparse_tensor.yield %ret : f64
}
left={}
right={}
linalg.yield %1 : f64
} -> tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
// Take a set difference of two sparse vectors. The result will include only those
// sparse elements present in the first, but not the second vector.
func.func @vector_setdiff(%arga: tensor<?xf64, #SparseVector>,
%argb: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = sparse_tensor.init [%d] : tensor<?xf64, #SparseVector>
%0 = linalg.generic #trait_vec_op
ins(%arga, %argb: tensor<?xf64, #SparseVector>, tensor<?xf64, #SparseVector>)
outs(%xv: tensor<?xf64, #SparseVector>) {
^bb(%a: f64, %b: f64, %x: f64):
%1 = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap={}
left=identity
right={}
linalg.yield %1 : f64
} -> tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
// Return the index of each entry
func.func @vector_index(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xi32, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = sparse_tensor.init [%d] : tensor<?xi32, #SparseVector>
%0 = linalg.generic #trait_vec_scale
ins(%arga: tensor<?xf64, #SparseVector>)
outs(%xv: tensor<?xi32, #SparseVector>) {
^bb(%a: f64, %x: i32):
%idx = linalg.index 0 : index
%1 = sparse_tensor.binary %a, %idx : f64, index to i32
overlap={
^bb0(%x0: f64, %i: index):
%ret = arith.index_cast %i : index to i32
sparse_tensor.yield %ret : i32
}
left={}
right={}
linalg.yield %1 : i32
} -> tensor<?xi32, #SparseVector>
return %0 : tensor<?xi32, #SparseVector>
}
// Adds two sparse matrices when they intersect. Where they don't intersect,
// negate the 2nd argument's values; ignore 1st argument-only values.
func.func @matrix_intersect(%arga: tensor<?x?xf64, #DCSR>,
%argb: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #DCSR>
%d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #DCSR>
%xv = sparse_tensor.init [%d0, %d1] : tensor<?x?xf64, #DCSR>
%0 = linalg.generic #trait_mat_op
ins(%arga, %argb: tensor<?x?xf64, #DCSR>, tensor<?x?xf64, #DCSR>)
outs(%xv: tensor<?x?xf64, #DCSR>) {
^bb(%a: f64, %b: f64, %x: f64):
%1 = sparse_tensor.binary %a, %b: f64, f64 to f64
overlap={
^bb0(%x0: f64, %y0: f64):
%ret = arith.addf %x0, %y0 : f64
sparse_tensor.yield %ret : f64
}
left={}
right={
^bb0(%x1: f64):
%lret = arith.negf %x1 : f64
sparse_tensor.yield %lret : f64
}
linalg.yield %1 : f64
} -> tensor<?x?xf64, #DCSR>
return %0 : tensor<?x?xf64, #DCSR>
}
// Dumps a sparse vector of type f64.
func.func @dump_vec(%arg0: tensor<?xf64, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant -1.0 : f64
%0 = sparse_tensor.values %arg0 : tensor<?xf64, #SparseVector> to memref<?xf64>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<16xf64>
vector.print %1 : vector<16xf64>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0 : tensor<?xf64, #SparseVector> to tensor<?xf64>
%2 = bufferization.to_memref %dv : memref<?xf64>
%3 = vector.transfer_read %2[%c0], %d0: memref<?xf64>, vector<32xf64>
vector.print %3 : vector<32xf64>
memref.dealloc %2 : memref<?xf64>
return
}
// Dumps a sparse vector of type i32.
func.func @dump_vec_i32(%arg0: tensor<?xi32, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant -1 : i32
%0 = sparse_tensor.values %arg0 : tensor<?xi32, #SparseVector> to memref<?xi32>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xi32>, vector<24xi32>
vector.print %1 : vector<24xi32>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0 : tensor<?xi32, #SparseVector> to tensor<?xi32>
%2 = bufferization.to_memref %dv : memref<?xi32>
%3 = vector.transfer_read %2[%c0], %d0: memref<?xi32>, vector<32xi32>
vector.print %3 : vector<32xi32>
memref.dealloc %2 : memref<?xi32>
return
}
// Dump a sparse matrix.
func.func @dump_mat(%arg0: tensor<?x?xf64, #DCSR>) {
%d0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
%dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #DCSR> to tensor<?x?xf64>
%0 = bufferization.to_memref %dm : memref<?x?xf64>
%1 = vector.transfer_read %0[%c0, %c0], %d0: memref<?x?xf64>, vector<4x8xf64>
vector.print %1 : vector<4x8xf64>
memref.dealloc %0 : memref<?x?xf64>
return
}
// Driver method to call and verify vector kernels.
func.func @entry() {
%c0 = arith.constant 0 : index
// Setup sparse vectors.
%v1 = arith.constant sparse<
[ [0], [3], [11], [17], [20], [21], [28], [29], [31] ],
[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
> : tensor<32xf64>
%v2 = arith.constant sparse<
[ [1], [3], [4], [10], [16], [18], [21], [28], [29], [31] ],
[11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0 ]
> : tensor<32xf64>
%v3 = arith.constant dense<
[0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1.]
> : tensor<32xf64>
%sv1 = sparse_tensor.convert %v1 : tensor<32xf64> to tensor<?xf64, #SparseVector>
%sv2 = sparse_tensor.convert %v2 : tensor<32xf64> to tensor<?xf64, #SparseVector>
%dv3 = tensor.cast %v3 : tensor<32xf64> to tensor<?xf64>
// Setup sparse matrices.
%m1 = arith.constant sparse<
[ [0,0], [0,1], [1,7], [2,2], [2,4], [2,7], [3,0], [3,2], [3,3] ],
[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
> : tensor<4x8xf64>
%m2 = arith.constant sparse<
[ [0,0], [0,7], [1,0], [1,6], [2,1], [2,7] ],
[6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ]
> : tensor<4x8xf64>
%sm1 = sparse_tensor.convert %m1 : tensor<4x8xf64> to tensor<?x?xf64, #DCSR>
%sm2 = sparse_tensor.convert %m2 : tensor<4x8xf64> to tensor<?x?xf64, #DCSR>
// Call sparse vector kernels.
%0 = call @vector_min(%sv1, %sv2)
: (tensor<?xf64, #SparseVector>,
tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector>
%1 = call @vector_mul(%sv1, %dv3)
: (tensor<?xf64, #SparseVector>,
tensor<?xf64>) -> tensor<?xf64, #SparseVector>
%2 = call @vector_setdiff(%sv1, %sv2)
: (tensor<?xf64, #SparseVector>,
tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector>
%3 = call @vector_index(%sv1)
: (tensor<?xf64, #SparseVector>) -> tensor<?xi32, #SparseVector>
// Call sparse matrix kernels.
%5 = call @matrix_intersect(%sm1, %sm2)
: (tensor<?x?xf64, #DCSR>, tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR>
//
// Verify the results.
//
// CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1 )
// CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
// CHECK-NEXT: ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, -1, -1, -1, -1, -1, -1 )
// CHECK-NEXT: ( 0, 11, 0, 12, 13, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 15, 0, 16, 0, 0, 17, 0, 0, 0, 0, 0, 0, 18, 19, 0, 20 )
// CHECK-NEXT: ( 1, 11, 2, 13, 14, 3, 15, 4, 16, 5, 6, 7, 8, 9, -1, -1 )
// CHECK-NEXT: ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
// CHECK-NEXT: ( 0, 6, 3, 28, 0, 6, 56, 72, 9, -1, -1, -1, -1, -1, -1, -1 )
// CHECK-NEXT: ( 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 28, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 56, 72, 0, 9 )
// CHECK-NEXT: ( 1, 3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 )
// CHECK-NEXT: ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 3, 11, 17, 20, 21, 28, 29, 31, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 )
// CHECK-NEXT: ( 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 17, 0, 0, 20, 21, 0, 0, 0, 0, 0, 0, 28, 29, 0, 31 )
// CHECK-NEXT: ( ( 7, 0, 0, 0, 0, 0, 0, -5 ), ( -4, 0, 0, 0, 0, 0, -3, 0 ), ( 0, -2, 0, 0, 0, 0, 0, 7 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ) )
//
call @dump_vec(%sv1) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec(%sv2) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec(%0) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec(%1) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec(%2) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec_i32(%3) : (tensor<?xi32, #SparseVector>) -> ()
call @dump_mat(%5) : (tensor<?x?xf64, #DCSR>) -> ()
// Release the resources.
sparse_tensor.release %sv1 : tensor<?xf64, #SparseVector>
sparse_tensor.release %sv2 : tensor<?xf64, #SparseVector>
sparse_tensor.release %sm1 : tensor<?x?xf64, #DCSR>
sparse_tensor.release %sm2 : tensor<?x?xf64, #DCSR>
sparse_tensor.release %0 : tensor<?xf64, #SparseVector>
sparse_tensor.release %1 : tensor<?xf64, #SparseVector>
sparse_tensor.release %2 : tensor<?xf64, #SparseVector>
sparse_tensor.release %3 : tensor<?xi32, #SparseVector>
sparse_tensor.release %5 : tensor<?x?xf64, #DCSR>
return
}
}