Files
clang-p2996/llvm/lib/Target/X86/X86LoadValueInjectionLoadHardening.cpp
Zola Bridges dfabffb195 [x86][lvi][seses] Use SESES at O0 for LVI mitigation
Use SESES as the fallback at O0 where the optimized LVI pass isn't desired due
to its effect on build times at O0.

I updated the LVI tests since this changes the code gen for the tests touched in the parent revision.

This is a follow up to the comments I made here: https://reviews.llvm.org/D80964

Hopefully we can continue the discussion here.

Also updated SESES to handle LFENCE instructions properly instead of adding
redundant LFENCEs. In particular, 1) no longer add LFENCE if the current
instruction being processed is an LFENCE and 2) no longer add LFENCE if the
instruction right before the instruction being processed is an LFENCE

Reviewed By: sconstab

Differential Revision: https://reviews.llvm.org/D82037
2020-07-07 11:05:09 -07:00

825 lines
32 KiB
C++

//==-- X86LoadValueInjectionLoadHardening.cpp - LVI load hardening for x86 --=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// Description: This pass finds Load Value Injection (LVI) gadgets consisting
/// of a load from memory (i.e., SOURCE), and any operation that may transmit
/// the value loaded from memory over a covert channel, or use the value loaded
/// from memory to determine a branch/call target (i.e., SINK). After finding
/// all such gadgets in a given function, the pass minimally inserts LFENCE
/// instructions in such a manner that the following property is satisfied: for
/// all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
/// least one LFENCE instruction. The algorithm that implements this minimal
/// insertion is influenced by an academic paper that minimally inserts memory
/// fences for high-performance concurrent programs:
/// http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf
/// The algorithm implemented in this pass is as follows:
/// 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the
/// following components:
/// - SOURCE instructions (also includes function arguments)
/// - SINK instructions
/// - Basic block entry points
/// - Basic block terminators
/// - LFENCE instructions
/// 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e.,
/// gadgets) are already mitigated by existing LFENCEs. If all gadgets have been
/// mitigated, go to step 6.
/// 3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
/// 4. Insert one LFENCE along each CFG edge that was cut in step 3.
/// 5. Go to step 2.
/// 6. If any LFENCEs were inserted, return `true` from runOnMachineFunction()
/// to tell LLVM that the function was modified.
///
//===----------------------------------------------------------------------===//
#include "ImmutableGraph.h"
#include "X86.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominanceFrontier.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RDFGraph.h"
#include "llvm/CodeGen/RDFLiveness.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define PASS_KEY "x86-lvi-load"
#define DEBUG_TYPE PASS_KEY
STATISTIC(NumFences, "Number of LFENCEs inserted for LVI mitigation");
STATISTIC(NumFunctionsConsidered, "Number of functions analyzed");
STATISTIC(NumFunctionsMitigated, "Number of functions for which mitigations "
"were deployed");
STATISTIC(NumGadgets, "Number of LVI gadgets detected during analysis");
static cl::opt<std::string> OptimizePluginPath(
PASS_KEY "-opt-plugin",
cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden);
static cl::opt<bool> NoConditionalBranches(
PASS_KEY "-no-cbranch",
cl::desc("Don't treat conditional branches as disclosure gadgets. This "
"may improve performance, at the cost of security."),
cl::init(false), cl::Hidden);
static cl::opt<bool> EmitDot(
PASS_KEY "-dot",
cl::desc(
"For each function, emit a dot graph depicting potential LVI gadgets"),
cl::init(false), cl::Hidden);
static cl::opt<bool> EmitDotOnly(
PASS_KEY "-dot-only",
cl::desc("For each function, emit a dot graph depicting potential LVI "
"gadgets, and do not insert any fences"),
cl::init(false), cl::Hidden);
static cl::opt<bool> EmitDotVerify(
PASS_KEY "-dot-verify",
cl::desc("For each function, emit a dot graph to stdout depicting "
"potential LVI gadgets, used for testing purposes only"),
cl::init(false), cl::Hidden);
static llvm::sys::DynamicLibrary OptimizeDL;
typedef int (*OptimizeCutT)(unsigned int *nodes, unsigned int nodes_size,
unsigned int *edges, int *edge_values,
int *cut_edges /* out */, unsigned int edges_size);
static OptimizeCutT OptimizeCut = nullptr;
namespace {
struct MachineGadgetGraph : ImmutableGraph<MachineInstr *, int> {
static constexpr int GadgetEdgeSentinel = -1;
static constexpr MachineInstr *const ArgNodeSentinel = nullptr;
using GraphT = ImmutableGraph<MachineInstr *, int>;
using Node = typename GraphT::Node;
using Edge = typename GraphT::Edge;
using size_type = typename GraphT::size_type;
MachineGadgetGraph(std::unique_ptr<Node[]> Nodes,
std::unique_ptr<Edge[]> Edges, size_type NodesSize,
size_type EdgesSize, int NumFences = 0, int NumGadgets = 0)
: GraphT(std::move(Nodes), std::move(Edges), NodesSize, EdgesSize),
NumFences(NumFences), NumGadgets(NumGadgets) {}
static inline bool isCFGEdge(const Edge &E) {
return E.getValue() != GadgetEdgeSentinel;
}
static inline bool isGadgetEdge(const Edge &E) {
return E.getValue() == GadgetEdgeSentinel;
}
int NumFences;
int NumGadgets;
};
class X86LoadValueInjectionLoadHardeningPass : public MachineFunctionPass {
public:
X86LoadValueInjectionLoadHardeningPass() : MachineFunctionPass(ID) {}
StringRef getPassName() const override {
return "X86 Load Value Injection (LVI) Load Hardening";
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnMachineFunction(MachineFunction &MF) override;
static char ID;
private:
using GraphBuilder = ImmutableGraphBuilder<MachineGadgetGraph>;
using EdgeSet = MachineGadgetGraph::EdgeSet;
using NodeSet = MachineGadgetGraph::NodeSet;
using Gadget = std::pair<MachineInstr *, MachineInstr *>;
const X86Subtarget *STI;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
std::unique_ptr<MachineGadgetGraph>
getGadgetGraph(MachineFunction &MF, const MachineLoopInfo &MLI,
const MachineDominatorTree &MDT,
const MachineDominanceFrontier &MDF) const;
int hardenLoadsWithPlugin(MachineFunction &MF,
std::unique_ptr<MachineGadgetGraph> Graph) const;
int hardenLoadsWithGreedyHeuristic(
MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const;
int elimMitigatedEdgesAndNodes(MachineGadgetGraph &G,
EdgeSet &ElimEdges /* in, out */,
NodeSet &ElimNodes /* in, out */) const;
std::unique_ptr<MachineGadgetGraph>
trimMitigatedEdges(std::unique_ptr<MachineGadgetGraph> Graph) const;
void findAndCutEdges(MachineGadgetGraph &G,
EdgeSet &CutEdges /* out */) const;
int insertFences(MachineFunction &MF, MachineGadgetGraph &G,
EdgeSet &CutEdges /* in, out */) const;
bool instrUsesRegToAccessMemory(const MachineInstr &I, unsigned Reg) const;
bool instrUsesRegToBranch(const MachineInstr &I, unsigned Reg) const;
inline bool isFence(const MachineInstr *MI) const {
return MI && (MI->getOpcode() == X86::LFENCE ||
(STI->useLVIControlFlowIntegrity() && MI->isCall()));
}
};
} // end anonymous namespace
namespace llvm {
template <>
struct GraphTraits<MachineGadgetGraph *>
: GraphTraits<ImmutableGraph<MachineInstr *, int> *> {};
template <>
struct DOTGraphTraits<MachineGadgetGraph *> : DefaultDOTGraphTraits {
using GraphType = MachineGadgetGraph;
using Traits = llvm::GraphTraits<GraphType *>;
using NodeRef = typename Traits::NodeRef;
using EdgeRef = typename Traits::EdgeRef;
using ChildIteratorType = typename Traits::ChildIteratorType;
using ChildEdgeIteratorType = typename Traits::ChildEdgeIteratorType;
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
std::string getNodeLabel(NodeRef Node, GraphType *) {
if (Node->getValue() == MachineGadgetGraph::ArgNodeSentinel)
return "ARGS";
std::string Str;
raw_string_ostream OS(Str);
OS << *Node->getValue();
return OS.str();
}
static std::string getNodeAttributes(NodeRef Node, GraphType *) {
MachineInstr *MI = Node->getValue();
if (MI == MachineGadgetGraph::ArgNodeSentinel)
return "color = blue";
if (MI->getOpcode() == X86::LFENCE)
return "color = green";
return "";
}
static std::string getEdgeAttributes(NodeRef, ChildIteratorType E,
GraphType *) {
int EdgeVal = (*E.getCurrent()).getValue();
return EdgeVal >= 0 ? "label = " + std::to_string(EdgeVal)
: "color = red, style = \"dashed\"";
}
};
} // end namespace llvm
constexpr MachineInstr *MachineGadgetGraph::ArgNodeSentinel;
constexpr int MachineGadgetGraph::GadgetEdgeSentinel;
char X86LoadValueInjectionLoadHardeningPass::ID = 0;
void X86LoadValueInjectionLoadHardeningPass::getAnalysisUsage(
AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineDominanceFrontier>();
AU.setPreservesCFG();
}
static void WriteGadgetGraph(raw_ostream &OS, MachineFunction &MF,
MachineGadgetGraph *G) {
WriteGraph(OS, G, /*ShortNames*/ false,
"Speculative gadgets for \"" + MF.getName() + "\" function");
}
bool X86LoadValueInjectionLoadHardeningPass::runOnMachineFunction(
MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "***** " << getPassName() << " : " << MF.getName()
<< " *****\n");
STI = &MF.getSubtarget<X86Subtarget>();
if (!STI->useLVILoadHardening())
return false;
// FIXME: support 32-bit
if (!STI->is64Bit())
report_fatal_error("LVI load hardening is only supported on 64-bit", false);
// Don't skip functions with the "optnone" attr but participate in opt-bisect.
const Function &F = MF.getFunction();
if (!F.hasOptNone() && skipFunction(F))
return false;
++NumFunctionsConsidered;
TII = STI->getInstrInfo();
TRI = STI->getRegisterInfo();
LLVM_DEBUG(dbgs() << "Building gadget graph...\n");
const auto &MLI = getAnalysis<MachineLoopInfo>();
const auto &MDT = getAnalysis<MachineDominatorTree>();
const auto &MDF = getAnalysis<MachineDominanceFrontier>();
std::unique_ptr<MachineGadgetGraph> Graph = getGadgetGraph(MF, MLI, MDT, MDF);
LLVM_DEBUG(dbgs() << "Building gadget graph... Done\n");
if (Graph == nullptr)
return false; // didn't find any gadgets
if (EmitDotVerify) {
WriteGadgetGraph(outs(), MF, Graph.get());
return false;
}
if (EmitDot || EmitDotOnly) {
LLVM_DEBUG(dbgs() << "Emitting gadget graph...\n");
std::error_code FileError;
std::string FileName = "lvi.";
FileName += MF.getName();
FileName += ".dot";
raw_fd_ostream FileOut(FileName, FileError);
if (FileError)
errs() << FileError.message();
WriteGadgetGraph(FileOut, MF, Graph.get());
FileOut.close();
LLVM_DEBUG(dbgs() << "Emitting gadget graph... Done\n");
if (EmitDotOnly)
return false;
}
int FencesInserted;
if (!OptimizePluginPath.empty()) {
if (!OptimizeDL.isValid()) {
std::string ErrorMsg;
OptimizeDL = llvm::sys::DynamicLibrary::getPermanentLibrary(
OptimizePluginPath.c_str(), &ErrorMsg);
if (!ErrorMsg.empty())
report_fatal_error("Failed to load opt plugin: \"" + ErrorMsg + '\"');
OptimizeCut = (OptimizeCutT)OptimizeDL.getAddressOfSymbol("optimize_cut");
if (!OptimizeCut)
report_fatal_error("Invalid optimization plugin");
}
FencesInserted = hardenLoadsWithPlugin(MF, std::move(Graph));
} else { // Use the default greedy heuristic
FencesInserted = hardenLoadsWithGreedyHeuristic(MF, std::move(Graph));
}
if (FencesInserted > 0)
++NumFunctionsMitigated;
NumFences += FencesInserted;
return (FencesInserted > 0);
}
std::unique_ptr<MachineGadgetGraph>
X86LoadValueInjectionLoadHardeningPass::getGadgetGraph(
MachineFunction &MF, const MachineLoopInfo &MLI,
const MachineDominatorTree &MDT,
const MachineDominanceFrontier &MDF) const {
using namespace rdf;
// Build the Register Dataflow Graph using the RDF framework
TargetOperandInfo TOI{*TII};
DataFlowGraph DFG{MF, *TII, *TRI, MDT, MDF, TOI};
DFG.build();
Liveness L{MF.getRegInfo(), DFG};
L.computePhiInfo();
GraphBuilder Builder;
using GraphIter = typename GraphBuilder::BuilderNodeRef;
DenseMap<MachineInstr *, GraphIter> NodeMap;
int FenceCount = 0, GadgetCount = 0;
auto MaybeAddNode = [&NodeMap, &Builder](MachineInstr *MI) {
auto Ref = NodeMap.find(MI);
if (Ref == NodeMap.end()) {
auto I = Builder.addVertex(MI);
NodeMap[MI] = I;
return std::pair<GraphIter, bool>{I, true};
}
return std::pair<GraphIter, bool>{Ref->getSecond(), false};
};
// The `Transmitters` map memoizes transmitters found for each def. If a def
// has not yet been analyzed, then it will not appear in the map. If a def
// has been analyzed and was determined not to have any transmitters, then
// its list of transmitters will be empty.
DenseMap<NodeId, std::vector<NodeId>> Transmitters;
// Analyze all machine instructions to find gadgets and LFENCEs, adding
// each interesting value to `Nodes`
auto AnalyzeDef = [&](NodeAddr<DefNode *> SourceDef) {
SmallSet<NodeId, 8> UsesVisited, DefsVisited;
std::function<void(NodeAddr<DefNode *>)> AnalyzeDefUseChain =
[&](NodeAddr<DefNode *> Def) {
if (Transmitters.find(Def.Id) != Transmitters.end())
return; // Already analyzed `Def`
// Use RDF to find all the uses of `Def`
rdf::NodeSet Uses;
RegisterRef DefReg = DFG.getPRI().normalize(Def.Addr->getRegRef(DFG));
for (auto UseID : L.getAllReachedUses(DefReg, Def)) {
auto Use = DFG.addr<UseNode *>(UseID);
if (Use.Addr->getFlags() & NodeAttrs::PhiRef) { // phi node
NodeAddr<PhiNode *> Phi = Use.Addr->getOwner(DFG);
for (auto I : L.getRealUses(Phi.Id)) {
if (DFG.getPRI().alias(RegisterRef(I.first), DefReg)) {
for (auto UA : I.second)
Uses.emplace(UA.first);
}
}
} else { // not a phi node
Uses.emplace(UseID);
}
}
// For each use of `Def`, we want to know whether:
// (1) The use can leak the Def'ed value,
// (2) The use can further propagate the Def'ed value to more defs
for (auto UseID : Uses) {
if (!UsesVisited.insert(UseID).second)
continue; // Already visited this use of `Def`
auto Use = DFG.addr<UseNode *>(UseID);
assert(!(Use.Addr->getFlags() & NodeAttrs::PhiRef));
MachineOperand &UseMO = Use.Addr->getOp();
MachineInstr &UseMI = *UseMO.getParent();
assert(UseMO.isReg());
// We naively assume that an instruction propagates any loaded
// uses to all defs unless the instruction is a call, in which
// case all arguments will be treated as gadget sources during
// analysis of the callee function.
if (UseMI.isCall())
continue;
// Check whether this use can transmit (leak) its value.
if (instrUsesRegToAccessMemory(UseMI, UseMO.getReg()) ||
(!NoConditionalBranches &&
instrUsesRegToBranch(UseMI, UseMO.getReg()))) {
Transmitters[Def.Id].push_back(Use.Addr->getOwner(DFG).Id);
if (UseMI.mayLoad())
continue; // Found a transmitting load -- no need to continue
// traversing its defs (i.e., this load will become
// a new gadget source anyways).
}
// Check whether the use propagates to more defs.
NodeAddr<InstrNode *> Owner{Use.Addr->getOwner(DFG)};
rdf::NodeList AnalyzedChildDefs;
for (auto &ChildDef :
Owner.Addr->members_if(DataFlowGraph::IsDef, DFG)) {
if (!DefsVisited.insert(ChildDef.Id).second)
continue; // Already visited this def
if (Def.Addr->getAttrs() & NodeAttrs::Dead)
continue;
if (Def.Id == ChildDef.Id)
continue; // `Def` uses itself (e.g., increment loop counter)
AnalyzeDefUseChain(ChildDef);
// `Def` inherits all of its child defs' transmitters.
for (auto TransmitterId : Transmitters[ChildDef.Id])
Transmitters[Def.Id].push_back(TransmitterId);
}
}
// Note that this statement adds `Def.Id` to the map if no
// transmitters were found for `Def`.
auto &DefTransmitters = Transmitters[Def.Id];
// Remove duplicate transmitters
llvm::sort(DefTransmitters);
DefTransmitters.erase(
std::unique(DefTransmitters.begin(), DefTransmitters.end()),
DefTransmitters.end());
};
// Find all of the transmitters
AnalyzeDefUseChain(SourceDef);
auto &SourceDefTransmitters = Transmitters[SourceDef.Id];
if (SourceDefTransmitters.empty())
return; // No transmitters for `SourceDef`
MachineInstr *Source = SourceDef.Addr->getFlags() & NodeAttrs::PhiRef
? MachineGadgetGraph::ArgNodeSentinel
: SourceDef.Addr->getOp().getParent();
auto GadgetSource = MaybeAddNode(Source);
// Each transmitter is a sink for `SourceDef`.
for (auto TransmitterId : SourceDefTransmitters) {
MachineInstr *Sink = DFG.addr<StmtNode *>(TransmitterId).Addr->getCode();
auto GadgetSink = MaybeAddNode(Sink);
// Add the gadget edge to the graph.
Builder.addEdge(MachineGadgetGraph::GadgetEdgeSentinel,
GadgetSource.first, GadgetSink.first);
++GadgetCount;
}
};
LLVM_DEBUG(dbgs() << "Analyzing def-use chains to find gadgets\n");
// Analyze function arguments
NodeAddr<BlockNode *> EntryBlock = DFG.getFunc().Addr->getEntryBlock(DFG);
for (NodeAddr<PhiNode *> ArgPhi :
EntryBlock.Addr->members_if(DataFlowGraph::IsPhi, DFG)) {
NodeList Defs = ArgPhi.Addr->members_if(DataFlowGraph::IsDef, DFG);
llvm::for_each(Defs, AnalyzeDef);
}
// Analyze every instruction in MF
for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
for (NodeAddr<StmtNode *> SA :
BA.Addr->members_if(DataFlowGraph::IsCode<NodeAttrs::Stmt>, DFG)) {
MachineInstr *MI = SA.Addr->getCode();
if (isFence(MI)) {
MaybeAddNode(MI);
++FenceCount;
} else if (MI->mayLoad()) {
NodeList Defs = SA.Addr->members_if(DataFlowGraph::IsDef, DFG);
llvm::for_each(Defs, AnalyzeDef);
}
}
}
LLVM_DEBUG(dbgs() << "Found " << FenceCount << " fences\n");
LLVM_DEBUG(dbgs() << "Found " << GadgetCount << " gadgets\n");
if (GadgetCount == 0)
return nullptr;
NumGadgets += GadgetCount;
// Traverse CFG to build the rest of the graph
SmallSet<MachineBasicBlock *, 8> BlocksVisited;
std::function<void(MachineBasicBlock *, GraphIter, unsigned)> TraverseCFG =
[&](MachineBasicBlock *MBB, GraphIter GI, unsigned ParentDepth) {
unsigned LoopDepth = MLI.getLoopDepth(MBB);
if (!MBB->empty()) {
// Always add the first instruction in each block
auto NI = MBB->begin();
auto BeginBB = MaybeAddNode(&*NI);
Builder.addEdge(ParentDepth, GI, BeginBB.first);
if (!BlocksVisited.insert(MBB).second)
return;
// Add any instructions within the block that are gadget components
GI = BeginBB.first;
while (++NI != MBB->end()) {
auto Ref = NodeMap.find(&*NI);
if (Ref != NodeMap.end()) {
Builder.addEdge(LoopDepth, GI, Ref->getSecond());
GI = Ref->getSecond();
}
}
// Always add the terminator instruction, if one exists
auto T = MBB->getFirstTerminator();
if (T != MBB->end()) {
auto EndBB = MaybeAddNode(&*T);
if (EndBB.second)
Builder.addEdge(LoopDepth, GI, EndBB.first);
GI = EndBB.first;
}
}
for (MachineBasicBlock *Succ : MBB->successors())
TraverseCFG(Succ, GI, LoopDepth);
};
// ArgNodeSentinel is a pseudo-instruction that represents MF args in the
// GadgetGraph
GraphIter ArgNode = MaybeAddNode(MachineGadgetGraph::ArgNodeSentinel).first;
TraverseCFG(&MF.front(), ArgNode, 0);
std::unique_ptr<MachineGadgetGraph> G{Builder.get(FenceCount, GadgetCount)};
LLVM_DEBUG(dbgs() << "Found " << G->nodes_size() << " nodes\n");
return G;
}
// Returns the number of remaining gadget edges that could not be eliminated
int X86LoadValueInjectionLoadHardeningPass::elimMitigatedEdgesAndNodes(
MachineGadgetGraph &G, MachineGadgetGraph::EdgeSet &ElimEdges /* in, out */,
MachineGadgetGraph::NodeSet &ElimNodes /* in, out */) const {
if (G.NumFences > 0) {
// Eliminate fences and CFG edges that ingress and egress the fence, as
// they are trivially mitigated.
for (const auto &E : G.edges()) {
const MachineGadgetGraph::Node *Dest = E.getDest();
if (isFence(Dest->getValue())) {
ElimNodes.insert(*Dest);
ElimEdges.insert(E);
for (const auto &DE : Dest->edges())
ElimEdges.insert(DE);
}
}
}
// Find and eliminate gadget edges that have been mitigated.
int MitigatedGadgets = 0, RemainingGadgets = 0;
MachineGadgetGraph::NodeSet ReachableNodes{G};
for (const auto &RootN : G.nodes()) {
if (llvm::none_of(RootN.edges(), MachineGadgetGraph::isGadgetEdge))
continue; // skip this node if it isn't a gadget source
// Find all of the nodes that are CFG-reachable from RootN using DFS
ReachableNodes.clear();
std::function<void(const MachineGadgetGraph::Node *, bool)>
FindReachableNodes =
[&](const MachineGadgetGraph::Node *N, bool FirstNode) {
if (!FirstNode)
ReachableNodes.insert(*N);
for (const auto &E : N->edges()) {
const MachineGadgetGraph::Node *Dest = E.getDest();
if (MachineGadgetGraph::isCFGEdge(E) &&
!ElimEdges.contains(E) && !ReachableNodes.contains(*Dest))
FindReachableNodes(Dest, false);
}
};
FindReachableNodes(&RootN, true);
// Any gadget whose sink is unreachable has been mitigated
for (const auto &E : RootN.edges()) {
if (MachineGadgetGraph::isGadgetEdge(E)) {
if (ReachableNodes.contains(*E.getDest())) {
// This gadget's sink is reachable
++RemainingGadgets;
} else { // This gadget's sink is unreachable, and therefore mitigated
++MitigatedGadgets;
ElimEdges.insert(E);
}
}
}
}
return RemainingGadgets;
}
std::unique_ptr<MachineGadgetGraph>
X86LoadValueInjectionLoadHardeningPass::trimMitigatedEdges(
std::unique_ptr<MachineGadgetGraph> Graph) const {
MachineGadgetGraph::NodeSet ElimNodes{*Graph};
MachineGadgetGraph::EdgeSet ElimEdges{*Graph};
int RemainingGadgets =
elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes);
if (ElimEdges.empty() && ElimNodes.empty()) {
Graph->NumFences = 0;
Graph->NumGadgets = RemainingGadgets;
} else {
Graph = GraphBuilder::trim(*Graph, ElimNodes, ElimEdges, 0 /* NumFences */,
RemainingGadgets);
}
return Graph;
}
int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithPlugin(
MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
int FencesInserted = 0;
do {
LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
Graph = trimMitigatedEdges(std::move(Graph));
LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
if (Graph->NumGadgets == 0)
break;
LLVM_DEBUG(dbgs() << "Cutting edges...\n");
EdgeSet CutEdges{*Graph};
auto Nodes = std::make_unique<unsigned int[]>(Graph->nodes_size() +
1 /* terminator node */);
auto Edges = std::make_unique<unsigned int[]>(Graph->edges_size());
auto EdgeCuts = std::make_unique<int[]>(Graph->edges_size());
auto EdgeValues = std::make_unique<int[]>(Graph->edges_size());
for (const auto &N : Graph->nodes()) {
Nodes[Graph->getNodeIndex(N)] = Graph->getEdgeIndex(*N.edges_begin());
}
Nodes[Graph->nodes_size()] = Graph->edges_size(); // terminator node
for (const auto &E : Graph->edges()) {
Edges[Graph->getEdgeIndex(E)] = Graph->getNodeIndex(*E.getDest());
EdgeValues[Graph->getEdgeIndex(E)] = E.getValue();
}
OptimizeCut(Nodes.get(), Graph->nodes_size(), Edges.get(), EdgeValues.get(),
EdgeCuts.get(), Graph->edges_size());
for (int I = 0; I < Graph->edges_size(); ++I)
if (EdgeCuts[I])
CutEdges.set(I);
LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
FencesInserted += insertFences(MF, *Graph, CutEdges);
LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
Graph = GraphBuilder::trim(*Graph, MachineGadgetGraph::NodeSet{*Graph},
CutEdges);
} while (true);
return FencesInserted;
}
int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithGreedyHeuristic(
MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
Graph = trimMitigatedEdges(std::move(Graph));
LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
if (Graph->NumGadgets == 0)
return 0;
LLVM_DEBUG(dbgs() << "Cutting edges...\n");
MachineGadgetGraph::NodeSet ElimNodes{*Graph}, GadgetSinks{*Graph};
MachineGadgetGraph::EdgeSet ElimEdges{*Graph}, CutEdges{*Graph};
auto IsCFGEdge = [&ElimEdges, &CutEdges](const MachineGadgetGraph::Edge &E) {
return !ElimEdges.contains(E) && !CutEdges.contains(E) &&
MachineGadgetGraph::isCFGEdge(E);
};
auto IsGadgetEdge = [&ElimEdges,
&CutEdges](const MachineGadgetGraph::Edge &E) {
return !ElimEdges.contains(E) && !CutEdges.contains(E) &&
MachineGadgetGraph::isGadgetEdge(E);
};
// FIXME: this is O(E^2), we could probably do better.
do {
// Find the cheapest CFG edge that will eliminate a gadget (by being
// egress from a SOURCE node or ingress to a SINK node), and cut it.
const MachineGadgetGraph::Edge *CheapestSoFar = nullptr;
// First, collect all gadget source and sink nodes.
MachineGadgetGraph::NodeSet GadgetSources{*Graph}, GadgetSinks{*Graph};
for (const auto &N : Graph->nodes()) {
if (ElimNodes.contains(N))
continue;
for (const auto &E : N.edges()) {
if (IsGadgetEdge(E)) {
GadgetSources.insert(N);
GadgetSinks.insert(*E.getDest());
}
}
}
// Next, look for the cheapest CFG edge which, when cut, is guaranteed to
// mitigate at least one gadget by either:
// (a) being egress from a gadget source, or
// (b) being ingress to a gadget sink.
for (const auto &N : Graph->nodes()) {
if (ElimNodes.contains(N))
continue;
for (const auto &E : N.edges()) {
if (IsCFGEdge(E)) {
if (GadgetSources.contains(N) || GadgetSinks.contains(*E.getDest())) {
if (!CheapestSoFar || E.getValue() < CheapestSoFar->getValue())
CheapestSoFar = &E;
}
}
}
}
assert(CheapestSoFar && "Failed to cut an edge");
CutEdges.insert(*CheapestSoFar);
ElimEdges.insert(*CheapestSoFar);
} while (elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes));
LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
int FencesInserted = insertFences(MF, *Graph, CutEdges);
LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
return FencesInserted;
}
int X86LoadValueInjectionLoadHardeningPass::insertFences(
MachineFunction &MF, MachineGadgetGraph &G,
EdgeSet &CutEdges /* in, out */) const {
int FencesInserted = 0;
for (const auto &N : G.nodes()) {
for (const auto &E : N.edges()) {
if (CutEdges.contains(E)) {
MachineInstr *MI = N.getValue(), *Prev;
MachineBasicBlock *MBB; // Insert an LFENCE in this MBB
MachineBasicBlock::iterator InsertionPt; // ...at this point
if (MI == MachineGadgetGraph::ArgNodeSentinel) {
// insert LFENCE at beginning of entry block
MBB = &MF.front();
InsertionPt = MBB->begin();
Prev = nullptr;
} else if (MI->isBranch()) { // insert the LFENCE before the branch
MBB = MI->getParent();
InsertionPt = MI;
Prev = MI->getPrevNode();
// Remove all egress CFG edges from this branch because the inserted
// LFENCE prevents gadgets from crossing the branch.
for (const auto &E : N.edges()) {
if (MachineGadgetGraph::isCFGEdge(E))
CutEdges.insert(E);
}
} else { // insert the LFENCE after the instruction
MBB = MI->getParent();
InsertionPt = MI->getNextNode() ? MI->getNextNode() : MBB->end();
Prev = InsertionPt == MBB->end()
? (MBB->empty() ? nullptr : &MBB->back())
: InsertionPt->getPrevNode();
}
// Ensure this insertion is not redundant (two LFENCEs in sequence).
if ((InsertionPt == MBB->end() || !isFence(&*InsertionPt)) &&
(!Prev || !isFence(Prev))) {
BuildMI(*MBB, InsertionPt, DebugLoc(), TII->get(X86::LFENCE));
++FencesInserted;
}
}
}
}
return FencesInserted;
}
bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToAccessMemory(
const MachineInstr &MI, unsigned Reg) const {
if (!MI.mayLoadOrStore() || MI.getOpcode() == X86::MFENCE ||
MI.getOpcode() == X86::SFENCE || MI.getOpcode() == X86::LFENCE)
return false;
// FIXME: This does not handle pseudo loading instruction like TCRETURN*
const MCInstrDesc &Desc = MI.getDesc();
int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
if (MemRefBeginIdx < 0) {
LLVM_DEBUG(dbgs() << "Warning: unable to obtain memory operand for loading "
"instruction:\n";
MI.print(dbgs()); dbgs() << '\n';);
return false;
}
MemRefBeginIdx += X86II::getOperandBias(Desc);
const MachineOperand &BaseMO =
MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
const MachineOperand &IndexMO =
MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
return (BaseMO.isReg() && BaseMO.getReg() != X86::NoRegister &&
TRI->regsOverlap(BaseMO.getReg(), Reg)) ||
(IndexMO.isReg() && IndexMO.getReg() != X86::NoRegister &&
TRI->regsOverlap(IndexMO.getReg(), Reg));
}
bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToBranch(
const MachineInstr &MI, unsigned Reg) const {
if (!MI.isConditionalBranch())
return false;
for (const MachineOperand &Use : MI.uses())
if (Use.isReg() && Use.getReg() == Reg)
return true;
return false;
}
INITIALIZE_PASS_BEGIN(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
"X86 LVI load hardening", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
INITIALIZE_PASS_END(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
"X86 LVI load hardening", false, false)
FunctionPass *llvm::createX86LoadValueInjectionLoadHardeningPass() {
return new X86LoadValueInjectionLoadHardeningPass();
}