Files
clang-p2996/compiler-rt/lib/msan/msan_allocator.cc
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

350 lines
12 KiB
C++

//===-- msan_allocator.cc --------------------------- ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemorySanitizer.
//
// MemorySanitizer allocator.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_allocator_report.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "msan.h"
#include "msan_allocator.h"
#include "msan_origin.h"
#include "msan_thread.h"
#include "msan_poisoning.h"
namespace __msan {
struct Metadata {
uptr requested_size;
};
struct MsanMapUnmapCallback {
void OnMap(uptr p, uptr size) const {}
void OnUnmap(uptr p, uptr size) const {
__msan_unpoison((void *)p, size);
// We are about to unmap a chunk of user memory.
// Mark the corresponding shadow memory as not needed.
uptr shadow_p = MEM_TO_SHADOW(p);
ReleaseMemoryPagesToOS(shadow_p, shadow_p + size);
if (__msan_get_track_origins()) {
uptr origin_p = MEM_TO_ORIGIN(p);
ReleaseMemoryPagesToOS(origin_p, origin_p + size);
}
}
};
#if defined(__mips64)
static const uptr kMaxAllowedMallocSize = 2UL << 30;
static const uptr kRegionSizeLog = 20;
static const uptr kNumRegions = SANITIZER_MMAP_RANGE_SIZE >> kRegionSizeLog;
typedef TwoLevelByteMap<(kNumRegions >> 12), 1 << 12> ByteMap;
struct AP32 {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
static const uptr kMetadataSize = sizeof(Metadata);
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = __msan::kRegionSizeLog;
using AddressSpaceView = LocalAddressSpaceView;
using ByteMap = __msan::ByteMap;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
#elif defined(__x86_64__)
#if SANITIZER_NETBSD || \
(SANITIZER_LINUX && !defined(MSAN_LINUX_X86_64_OLD_MAPPING))
static const uptr kAllocatorSpace = 0x700000000000ULL;
#else
static const uptr kAllocatorSpace = 0x600000000000ULL;
#endif
static const uptr kMaxAllowedMallocSize = 8UL << 30;
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
static const uptr kSpaceBeg = kAllocatorSpace;
static const uptr kSpaceSize = 0x40000000000; // 4T.
static const uptr kMetadataSize = sizeof(Metadata);
typedef DefaultSizeClassMap SizeClassMap;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
using AddressSpaceView = LocalAddressSpaceView;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#elif defined(__powerpc64__)
static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
static const uptr kSpaceBeg = 0x300000000000;
static const uptr kSpaceSize = 0x020000000000; // 2T.
static const uptr kMetadataSize = sizeof(Metadata);
typedef DefaultSizeClassMap SizeClassMap;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
using AddressSpaceView = LocalAddressSpaceView;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#elif defined(__aarch64__)
static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
static const uptr kRegionSizeLog = 20;
static const uptr kNumRegions = SANITIZER_MMAP_RANGE_SIZE >> kRegionSizeLog;
typedef TwoLevelByteMap<(kNumRegions >> 12), 1 << 12> ByteMap;
struct AP32 {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
static const uptr kMetadataSize = sizeof(Metadata);
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = __msan::kRegionSizeLog;
using AddressSpaceView = LocalAddressSpaceView;
using ByteMap = __msan::ByteMap;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
#endif
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<MsanMapUnmapCallback> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
SecondaryAllocator> Allocator;
static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static StaticSpinMutex fallback_mutex;
void MsanAllocatorInit() {
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
}
AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
}
void MsanThreadLocalMallocStorage::CommitBack() {
allocator.SwallowCache(GetAllocatorCache(this));
}
static void *MsanAllocate(StackTrace *stack, uptr size, uptr alignment,
bool zeroise) {
if (size > kMaxAllowedMallocSize) {
if (AllocatorMayReturnNull()) {
Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size);
return nullptr;
}
ReportAllocationSizeTooBig(size, kMaxAllowedMallocSize, stack);
}
MsanThread *t = GetCurrentThread();
void *allocated;
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocated = allocator.Allocate(cache, size, alignment);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, size, alignment);
}
if (UNLIKELY(!allocated)) {
SetAllocatorOutOfMemory();
if (AllocatorMayReturnNull())
return nullptr;
ReportOutOfMemory(size, stack);
}
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
meta->requested_size = size;
if (zeroise) {
__msan_clear_and_unpoison(allocated, size);
} else if (flags()->poison_in_malloc) {
__msan_poison(allocated, size);
if (__msan_get_track_origins()) {
stack->tag = StackTrace::TAG_ALLOC;
Origin o = Origin::CreateHeapOrigin(stack);
__msan_set_origin(allocated, size, o.raw_id());
}
}
MSAN_MALLOC_HOOK(allocated, size);
return allocated;
}
void MsanDeallocate(StackTrace *stack, void *p) {
CHECK(p);
MSAN_FREE_HOOK(p);
Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
uptr size = meta->requested_size;
meta->requested_size = 0;
// This memory will not be reused by anyone else, so we are free to keep it
// poisoned.
if (flags()->poison_in_free) {
__msan_poison(p, size);
if (__msan_get_track_origins()) {
stack->tag = StackTrace::TAG_DEALLOC;
Origin o = Origin::CreateHeapOrigin(stack);
__msan_set_origin(p, size, o.raw_id());
}
}
MsanThread *t = GetCurrentThread();
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocator.Deallocate(cache, p);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocator.Deallocate(cache, p);
}
}
void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size,
uptr alignment) {
Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
uptr old_size = meta->requested_size;
uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
if (new_size <= actually_allocated_size) {
// We are not reallocating here.
meta->requested_size = new_size;
if (new_size > old_size) {
if (flags()->poison_in_malloc) {
stack->tag = StackTrace::TAG_ALLOC;
PoisonMemory((char *)old_p + old_size, new_size - old_size, stack);
}
}
return old_p;
}
uptr memcpy_size = Min(new_size, old_size);
void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/);
if (new_p) {
CopyMemory(new_p, old_p, memcpy_size, stack);
MsanDeallocate(stack, old_p);
}
return new_p;
}
void *MsanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
if (AllocatorMayReturnNull())
return nullptr;
ReportCallocOverflow(nmemb, size, stack);
}
return MsanAllocate(stack, nmemb * size, sizeof(u64), true);
}
static uptr AllocationSize(const void *p) {
if (!p) return 0;
const void *beg = allocator.GetBlockBegin(p);
if (beg != p) return 0;
Metadata *b = (Metadata *)allocator.GetMetaData(p);
return b->requested_size;
}
void *msan_malloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
}
void *msan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
return SetErrnoOnNull(MsanCalloc(stack, nmemb, size));
}
void *msan_realloc(void *ptr, uptr size, StackTrace *stack) {
if (!ptr)
return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
if (size == 0) {
MsanDeallocate(stack, ptr);
return nullptr;
}
return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64)));
}
void *msan_valloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false));
}
void *msan_pvalloc(uptr size, StackTrace *stack) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportPvallocOverflow(size, stack);
}
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false));
}
void *msan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAlignedAllocAlignment(size, alignment, stack);
}
return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
}
void *msan_memalign(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAllocationAlignment(alignment, stack);
}
return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
}
int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
if (AllocatorMayReturnNull())
return errno_EINVAL;
ReportInvalidPosixMemalignAlignment(alignment, stack);
}
void *ptr = MsanAllocate(stack, size, alignment, false);
if (UNLIKELY(!ptr))
// OOM error is already taken care of by MsanAllocate.
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
} // namespace __msan
using namespace __msan;
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() { return 1; }
uptr __sanitizer_get_unmapped_bytes() { return 1; }
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }