Files
clang-p2996/lldb/source/Plugins/Process/Darwin/NativeThreadListDarwin.cpp
Jonas Devlieghere 8b3af63b89 [NFC] Remove ASCII lines from comments
A lot of comments in LLDB are surrounded by an ASCII line to delimit the
begging and end of the comment.

Its use is not really consistent across the code base, sometimes the
lines are longer, sometimes they are shorter and sometimes they are
omitted. Furthermore, it looks kind of weird with the 80 column limit,
where the comment actually extends past the line, but not by much.
Furthermore, when /// is used for Doxygen comments, it looks
particularly odd. And when // is used, it incorrectly gives the
impression that it's actually a Doxygen comment.

I assume these lines were added to improve distinguishing between
comments and code. However, given that todays editors and IDEs do a
great job at highlighting comments, I think it's worth to drop this for
the sake of consistency. The alternative is fixing all the
inconsistencies, which would create a lot more churn.

Differential revision: https://reviews.llvm.org/D60508

llvm-svn: 358135
2019-04-10 20:48:55 +00:00

703 lines
22 KiB
C++

//===-- NativeThreadListDarwin.cpp ------------------------------------*- C++
//-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/19/07.
//
//===----------------------------------------------------------------------===//
#include "NativeThreadListDarwin.h"
// C includes
#include <inttypes.h>
#include <mach/vm_map.h>
#include <sys/sysctl.h>
// LLDB includes
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/Stream.h"
#include "lldb/lldb-enumerations.h"
#include "NativeProcessDarwin.h"
#include "NativeThreadDarwin.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_darwin;
NativeThreadListDarwin::NativeThreadListDarwin()
: m_threads(), m_threads_mutex(), m_is_64_bit(false) {}
NativeThreadListDarwin::~NativeThreadListDarwin() {}
// These methods will be accessed directly from NativeThreadDarwin
#if 0
nub_state_t
NativeThreadListDarwin::GetState(nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetState();
return eStateInvalid;
}
const char *
NativeThreadListDarwin::GetName (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetName();
return NULL;
}
#endif
// TODO: figure out if we need to add this to NativeThreadDarwin yet.
#if 0
ThreadInfo::QoS
NativeThreadListDarwin::GetRequestedQoS (nub_thread_t tid, nub_addr_t tsd, uint64_t dti_qos_class_index)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetRequestedQoS(tsd, dti_qos_class_index);
return ThreadInfo::QoS();
}
nub_addr_t
NativeThreadListDarwin::GetPThreadT (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetPThreadT();
return INVALID_NUB_ADDRESS;
}
nub_addr_t
NativeThreadListDarwin::GetDispatchQueueT (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetDispatchQueueT();
return INVALID_NUB_ADDRESS;
}
nub_addr_t
NativeThreadListDarwin::GetTSDAddressForThread (nub_thread_t tid, uint64_t plo_pthread_tsd_base_address_offset, uint64_t plo_pthread_tsd_base_offset, uint64_t plo_pthread_tsd_entry_size)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetTSDAddressForThread(plo_pthread_tsd_base_address_offset, plo_pthread_tsd_base_offset, plo_pthread_tsd_entry_size);
return INVALID_NUB_ADDRESS;
}
#endif
// TODO implement these
#if 0
nub_thread_t
NativeThreadListDarwin::SetCurrentThread(nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
{
m_current_thread = thread_sp;
return tid;
}
return INVALID_NUB_THREAD;
}
bool
NativeThreadListDarwin::GetThreadStoppedReason(nub_thread_t tid, struct DNBThreadStopInfo *stop_info) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetStopException().GetStopInfo(stop_info);
return false;
}
bool
NativeThreadListDarwin::GetIdentifierInfo (nub_thread_t tid, thread_identifier_info_data_t *ident_info)
{
thread_t mach_port_number = GetMachPortNumberByThreadID (tid);
mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT;
return ::thread_info (mach_port_number, THREAD_IDENTIFIER_INFO, (thread_info_t)ident_info, &count) == KERN_SUCCESS;
}
void
NativeThreadListDarwin::DumpThreadStoppedReason (nub_thread_t tid) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
thread_sp->GetStopException().DumpStopReason();
}
const char *
NativeThreadListDarwin::GetThreadInfo (nub_thread_t tid) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetBasicInfoAsString();
return NULL;
}
#endif
NativeThreadDarwinSP
NativeThreadListDarwin::GetThreadByID(lldb::tid_t tid) const {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
for (auto thread_sp : m_threads) {
if (thread_sp && (thread_sp->GetID() == tid))
return thread_sp;
}
return NativeThreadDarwinSP();
}
NativeThreadDarwinSP NativeThreadListDarwin::GetThreadByMachPortNumber(
::thread_t mach_port_number) const {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
for (auto thread_sp : m_threads) {
if (thread_sp && (thread_sp->GetMachPortNumber() == mach_port_number))
return thread_sp;
}
return NativeThreadDarwinSP();
}
lldb::tid_t NativeThreadListDarwin::GetThreadIDByMachPortNumber(
::thread_t mach_port_number) const {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
for (auto thread_sp : m_threads) {
if (thread_sp && (thread_sp->GetMachPortNumber() == mach_port_number))
return thread_sp->GetID();
}
return LLDB_INVALID_THREAD_ID;
}
// TODO implement
#if 0
thread_t
NativeThreadListDarwin::GetMachPortNumberByThreadID (nub_thread_t globally_unique_id) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
MachThreadSP thread_sp;
const size_t num_threads = m_threads.size();
for (size_t idx = 0; idx < num_threads; ++idx)
{
if (m_threads[idx]->ThreadID() == globally_unique_id)
{
return m_threads[idx]->MachPortNumber();
}
}
return 0;
}
bool
NativeThreadListDarwin::GetRegisterValue (nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *reg_value ) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetRegisterValue(set, reg, reg_value);
return false;
}
bool
NativeThreadListDarwin::SetRegisterValue (nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *reg_value ) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->SetRegisterValue(set, reg, reg_value);
return false;
}
nub_size_t
NativeThreadListDarwin::GetRegisterContext (nub_thread_t tid, void *buf, size_t buf_len)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetRegisterContext (buf, buf_len);
return 0;
}
nub_size_t
NativeThreadListDarwin::SetRegisterContext (nub_thread_t tid, const void *buf, size_t buf_len)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->SetRegisterContext (buf, buf_len);
return 0;
}
uint32_t
NativeThreadListDarwin::SaveRegisterState (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->SaveRegisterState ();
return 0;
}
bool
NativeThreadListDarwin::RestoreRegisterState (nub_thread_t tid, uint32_t save_id)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->RestoreRegisterState (save_id);
return 0;
}
#endif
size_t NativeThreadListDarwin::GetNumberOfThreads() const {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
return static_cast<size_t>(m_threads.size());
}
// TODO implement
#if 0
nub_thread_t
NativeThreadListDarwin::ThreadIDAtIndex (nub_size_t idx) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
if (idx < m_threads.size())
return m_threads[idx]->ThreadID();
return INVALID_NUB_THREAD;
}
nub_thread_t
NativeThreadListDarwin::CurrentThreadID ( )
{
MachThreadSP thread_sp;
CurrentThread(thread_sp);
if (thread_sp.get())
return thread_sp->ThreadID();
return INVALID_NUB_THREAD;
}
#endif
bool NativeThreadListDarwin::NotifyException(MachException::Data &exc) {
auto thread_sp = GetThreadByMachPortNumber(exc.thread_port);
if (thread_sp) {
thread_sp->NotifyException(exc);
return true;
}
return false;
}
void NativeThreadListDarwin::Clear() {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
m_threads.clear();
}
uint32_t NativeThreadListDarwin::UpdateThreadList(NativeProcessDarwin &process,
bool update,
collection *new_threads) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD));
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
if (log)
log->Printf("NativeThreadListDarwin::%s() (pid = %" PRIu64 ", update = "
"%u) process stop count = %u",
__FUNCTION__, process.GetID(), update, process.GetStopID());
if (process.GetStopID() == 0) {
// On our first stop, we'll record details like 32/64 bitness and select
// the proper architecture implementation.
//
int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, (int)process.GetID()};
struct kinfo_proc processInfo;
size_t bufsize = sizeof(processInfo);
if ((sysctl(mib, (unsigned)(sizeof(mib) / sizeof(int)), &processInfo,
&bufsize, NULL, 0) == 0) &&
(bufsize > 0)) {
if (processInfo.kp_proc.p_flag & P_LP64)
m_is_64_bit = true;
}
// TODO implement architecture selection and abstraction.
#if 0
#if defined(__i386__) || defined(__x86_64__)
if (m_is_64_bit)
DNBArchProtocol::SetArchitecture(CPU_TYPE_X86_64);
else
DNBArchProtocol::SetArchitecture(CPU_TYPE_I386);
#elif defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
if (m_is_64_bit)
DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM64);
else
DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM);
#endif
#endif
}
if (m_threads.empty() || update) {
thread_array_t thread_list = nullptr;
mach_msg_type_number_t thread_list_count = 0;
task_t task = process.GetTask();
Status error;
auto mach_err = ::task_threads(task, &thread_list, &thread_list_count);
error.SetError(mach_err, eErrorTypeMachKernel);
if (error.Fail()) {
if (log)
log->Printf("::task_threads(task = 0x%4.4x, thread_list => %p, "
"thread_list_count => %u) failed: %u (%s)",
task, thread_list, thread_list_count, error.GetError(),
error.AsCString());
return 0;
}
if (thread_list_count > 0) {
collection currThreads;
size_t idx;
// Iterator through the current thread list and see which threads we
// already have in our list (keep them), which ones we don't (add them),
// and which ones are not around anymore (remove them).
for (idx = 0; idx < thread_list_count; ++idx) {
// Get the Mach thread port.
const ::thread_t mach_port_num = thread_list[idx];
// Get the unique thread id for the mach port number.
uint64_t unique_thread_id =
NativeThreadDarwin::GetGloballyUniqueThreadIDForMachPortID(
mach_port_num);
// Retrieve the thread if it exists.
auto thread_sp = GetThreadByID(unique_thread_id);
if (thread_sp) {
// We are already tracking it. Keep the existing native thread
// instance.
currThreads.push_back(thread_sp);
} else {
// We don't have a native thread instance for this thread. Create it
// now.
thread_sp.reset(new NativeThreadDarwin(
&process, m_is_64_bit, unique_thread_id, mach_port_num));
// Add the new thread regardless of its is user ready state. Make
// sure the thread is ready to be displayed and shown to users before
// we add this thread to our list...
if (thread_sp->IsUserReady()) {
if (new_threads)
new_threads->push_back(thread_sp);
currThreads.push_back(thread_sp);
}
}
}
m_threads.swap(currThreads);
m_current_thread.reset();
// Free the vm memory given to us by ::task_threads()
vm_size_t thread_list_size =
(vm_size_t)(thread_list_count * sizeof(::thread_t));
::vm_deallocate(::mach_task_self(), (vm_address_t)thread_list,
thread_list_size);
}
}
return static_cast<uint32_t>(m_threads.size());
}
// TODO implement
#if 0
void
NativeThreadListDarwin::CurrentThread (MachThreadSP& thread_sp)
{
// locker will keep a mutex locked until it goes out of scope
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
if (m_current_thread.get() == NULL)
{
// Figure out which thread is going to be our current thread. This is
// currently done by finding the first thread in the list that has a
// valid exception.
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
if (m_threads[idx]->GetStopException().IsValid())
{
m_current_thread = m_threads[idx];
break;
}
}
}
thread_sp = m_current_thread;
}
#endif
void NativeThreadListDarwin::Dump(Stream &stream) const {
bool first = true;
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
for (auto thread_sp : m_threads) {
if (thread_sp) {
// Handle newlines between thread entries.
if (first)
first = false;
else
stream.PutChar('\n');
thread_sp->Dump(stream);
}
}
}
void NativeThreadListDarwin::ProcessWillResume(
NativeProcessDarwin &process, const ResumeActionList &thread_actions) {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
// Update our thread list, because sometimes libdispatch or the kernel will
// spawn threads while a task is suspended.
NativeThreadListDarwin::collection new_threads;
// TODO implement this.
#if 0
// First figure out if we were planning on running only one thread, and if
// so, force that thread to resume.
bool run_one_thread;
thread_t solo_thread = THREAD_NULL;
if ((thread_actions.GetSize() > 0) &&
(thread_actions.NumActionsWithState(eStateStepping) +
thread_actions.NumActionsWithState (eStateRunning) == 1))
{
run_one_thread = true;
const DNBThreadResumeAction *action_ptr = thread_actions.GetFirst();
size_t num_actions = thread_actions.GetSize();
for (size_t i = 0; i < num_actions; i++, action_ptr++)
{
if (action_ptr->state == eStateStepping || action_ptr->state == eStateRunning)
{
solo_thread = action_ptr->tid;
break;
}
}
}
else
run_one_thread = false;
#endif
UpdateThreadList(process, true, &new_threads);
#if 0
DNBThreadResumeAction resume_new_threads = { -1U, eStateRunning, 0, INVALID_NUB_ADDRESS };
// If we are planning to run only one thread, any new threads should be
// suspended.
if (run_one_thread)
resume_new_threads.state = eStateSuspended;
const size_t num_new_threads = new_threads.size();
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
MachThread *thread = m_threads[idx].get();
bool handled = false;
for (uint32_t new_idx = 0; new_idx < num_new_threads; ++new_idx)
{
if (thread == new_threads[new_idx].get())
{
thread->ThreadWillResume(&resume_new_threads);
handled = true;
break;
}
}
if (!handled)
{
const DNBThreadResumeAction *thread_action = thread_actions.GetActionForThread (thread->ThreadID(), true);
// There must always be a thread action for every thread.
assert (thread_action);
bool others_stopped = false;
if (solo_thread == thread->ThreadID())
others_stopped = true;
thread->ThreadWillResume (thread_action, others_stopped);
}
}
if (new_threads.size())
{
for (uint32_t idx = 0; idx < num_new_threads; ++idx)
{
DNBLogThreadedIf (LOG_THREAD, "NativeThreadListDarwin::ProcessWillResume (pid = %4.4x) stop-id=%u, resuming newly discovered thread: 0x%8.8" PRIx64 ", thread-is-user-ready=%i)",
process->ProcessID(),
process->StopCount(),
new_threads[idx]->ThreadID(),
new_threads[idx]->IsUserReady());
}
}
#endif
}
uint32_t NativeThreadListDarwin::ProcessDidStop(NativeProcessDarwin &process) {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
// Update our thread list.
UpdateThreadList(process, true);
for (auto thread_sp : m_threads) {
if (thread_sp)
thread_sp->ThreadDidStop();
}
return (uint32_t)m_threads.size();
}
// Check each thread in our thread list to see if we should notify our client
// of the current halt in execution.
//
// Breakpoints can have callback functions associated with them than can return
// true to stop, or false to continue executing the inferior.
//
// RETURNS
// true if we should stop and notify our clients
// false if we should resume our child process and skip notification
bool NativeThreadListDarwin::ShouldStop(bool &step_more) {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
for (auto thread_sp : m_threads) {
if (thread_sp && thread_sp->ShouldStop(step_more))
return true;
}
return false;
}
// Implement.
#if 0
void
NativeThreadListDarwin::NotifyBreakpointChanged (const DNBBreakpoint *bp)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
m_threads[idx]->NotifyBreakpointChanged(bp);
}
}
uint32_t
NativeThreadListDarwin::EnableHardwareBreakpoint (const DNBBreakpoint* bp) const
{
if (bp != NULL)
{
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->EnableHardwareBreakpoint(bp);
}
return INVALID_NUB_HW_INDEX;
}
bool
NativeThreadListDarwin::DisableHardwareBreakpoint (const DNBBreakpoint* bp) const
{
if (bp != NULL)
{
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->DisableHardwareBreakpoint(bp);
}
return false;
}
// DNBWatchpointSet() -> MachProcess::CreateWatchpoint() ->
// MachProcess::EnableWatchpoint() ->
// NativeThreadListDarwin::EnableHardwareWatchpoint().
uint32_t
NativeThreadListDarwin::EnableHardwareWatchpoint (const DNBBreakpoint* wp) const
{
uint32_t hw_index = INVALID_NUB_HW_INDEX;
if (wp != NULL)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const size_t num_threads = m_threads.size();
// On Mac OS X we have to prime the control registers for new threads.
// We do this using the control register data for the first thread, for
// lack of a better way of choosing.
bool also_set_on_task = true;
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
if ((hw_index = m_threads[idx]->EnableHardwareWatchpoint(wp, also_set_on_task)) == INVALID_NUB_HW_INDEX)
{
// We know that idx failed for some reason. Let's rollback the
// transaction for [0, idx).
for (uint32_t i = 0; i < idx; ++i)
m_threads[i]->RollbackTransForHWP();
return INVALID_NUB_HW_INDEX;
}
also_set_on_task = false;
}
// Notify each thread to commit the pending transaction.
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->FinishTransForHWP();
}
return hw_index;
}
bool
NativeThreadListDarwin::DisableHardwareWatchpoint (const DNBBreakpoint* wp) const
{
if (wp != NULL)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const size_t num_threads = m_threads.size();
// On Mac OS X we have to prime the control registers for new threads.
// We do this using the control register data for the first thread, for
// lack of a better way of choosing.
bool also_set_on_task = true;
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
if (!m_threads[idx]->DisableHardwareWatchpoint(wp, also_set_on_task))
{
// We know that idx failed for some reason. Let's rollback the
// transaction for [0, idx).
for (uint32_t i = 0; i < idx; ++i)
m_threads[i]->RollbackTransForHWP();
return false;
}
also_set_on_task = false;
}
// Notify each thread to commit the pending transaction.
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->FinishTransForHWP();
return true;
}
return false;
}
uint32_t
NativeThreadListDarwin::NumSupportedHardwareWatchpoints () const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const size_t num_threads = m_threads.size();
// Use an arbitrary thread to retrieve the number of supported hardware
// watchpoints.
if (num_threads)
return m_threads[0]->NumSupportedHardwareWatchpoints();
return 0;
}
uint32_t
NativeThreadListDarwin::GetThreadIndexForThreadStoppedWithSignal (const int signo) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
uint32_t should_stop = false;
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; !should_stop && idx < num_threads; ++idx)
{
if (m_threads[idx]->GetStopException().SoftSignal () == signo)
return idx;
}
return UINT32_MAX;
}
#endif