Files
clang-p2996/lldb/source/Plugins/Process/minidump/MinidumpParser.cpp
Pavel Labath 71b88b91f7 Minidump: extend UUID byte-swapping to windows platform
Summary:
D59433 added code to swap bytes UUIDs coming from minidump files, but
only enabled it for apple platforms. Based on my research, I believe
this is the correct thing to do for windows as well, as the natural way
of printing U(G)UIDs on this platforms is to print the first three
components as (4 or 2)-byte integers printed in natural (big-endian)
order. This makes the UUID string coming out of lldb match the strings
produced by other windows tools.

The decision to byte-swap the age field is somewhat arbitrary, because
the age field is usually printed separately from the file GUID (and
often in decimal). However, for our purposes (telling whether two files
are identical), including it in the UUID is correct, and printing it in
big-endian makes it easier to recognize the age value.

This also makes the UUIDs generated here (almost) match up with the
UUIDs computed for breakpad symbol files
(BreakpadRecords.cpp:parseModuleId), which already implemented the
byte-swapping. The "almost" is here because ObjectFileBreakpad does not
swap the age field, but I'll fix that in a follow-up.

There is no UUID support in ObjectFileCOFF at the moment, but ideally
the algorithms used here and in ObjectFileCOFF should be in sync so that
object file matching works correctly.

Reviewers: clayborg, amccarth, markmentovai, asmith

Subscribers: lldb-commits

Differential Revision: https://reviews.llvm.org/D60501

llvm-svn: 358169
2019-04-11 14:14:07 +00:00

613 lines
20 KiB
C++

//===-- MinidumpParser.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MinidumpParser.h"
#include "NtStructures.h"
#include "RegisterContextMinidump_x86_32.h"
#include "Plugins/Process/Utility/LinuxProcMaps.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
// C includes
// C++ includes
#include <algorithm>
#include <map>
#include <vector>
#include <utility>
using namespace lldb_private;
using namespace minidump;
llvm::Expected<MinidumpParser>
MinidumpParser::Create(const lldb::DataBufferSP &data_sp) {
auto ExpectedFile = llvm::object::MinidumpFile::create(
llvm::MemoryBufferRef(toStringRef(data_sp->GetData()), "minidump"));
if (!ExpectedFile)
return ExpectedFile.takeError();
return MinidumpParser(data_sp, std::move(*ExpectedFile));
}
MinidumpParser::MinidumpParser(lldb::DataBufferSP data_sp,
std::unique_ptr<llvm::object::MinidumpFile> file)
: m_data_sp(std::move(data_sp)), m_file(std::move(file)) {}
llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
m_data_sp->GetByteSize());
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetStream(StreamType stream_type) {
return m_file->getRawStream(stream_type)
.getValueOr(llvm::ArrayRef<uint8_t>());
}
UUID MinidumpParser::GetModuleUUID(const minidump::Module *module) {
auto cv_record =
GetData().slice(module->CvRecord.RVA, module->CvRecord.DataSize);
// Read the CV record signature
const llvm::support::ulittle32_t *signature = nullptr;
Status error = consumeObject(cv_record, signature);
if (error.Fail())
return UUID();
const CvSignature cv_signature =
static_cast<CvSignature>(static_cast<uint32_t>(*signature));
if (cv_signature == CvSignature::Pdb70) {
const CvRecordPdb70 *pdb70_uuid = nullptr;
Status error = consumeObject(cv_record, pdb70_uuid);
if (error.Fail())
return UUID();
CvRecordPdb70 swapped;
if (!GetArchitecture().GetTriple().isOSBinFormatELF()) {
// LLDB's UUID class treats the data as a sequence of bytes, but breakpad
// interprets it as a sequence of little-endian fields, which it converts
// to big-endian when converting to text. Swap the bytes to big endian so
// that the string representation comes out right.
swapped = *pdb70_uuid;
llvm::sys::swapByteOrder(swapped.Uuid.Data1);
llvm::sys::swapByteOrder(swapped.Uuid.Data2);
llvm::sys::swapByteOrder(swapped.Uuid.Data3);
llvm::sys::swapByteOrder(swapped.Age);
pdb70_uuid = &swapped;
}
if (pdb70_uuid->Age != 0)
return UUID::fromOptionalData(pdb70_uuid, sizeof(*pdb70_uuid));
return UUID::fromOptionalData(&pdb70_uuid->Uuid, sizeof(pdb70_uuid->Uuid));
} else if (cv_signature == CvSignature::ElfBuildId)
return UUID::fromOptionalData(cv_record);
return UUID();
}
llvm::ArrayRef<MinidumpThread> MinidumpParser::GetThreads() {
llvm::ArrayRef<uint8_t> data = GetStream(StreamType::ThreadList);
if (data.size() == 0)
return llvm::None;
return MinidumpThread::ParseThreadList(data);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const LocationDescriptor &location) {
if (location.RVA + location.DataSize > GetData().size())
return {};
return GetData().slice(location.RVA, location.DataSize);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const MinidumpThread &td) {
return GetThreadContext(td.thread_context);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContextWow64(const MinidumpThread &td) {
// On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If
// the minidump was captured with a 64-bit debugger, then the CONTEXT we just
// grabbed from the mini_dump_thread is the one for the 64-bit "native"
// process rather than the 32-bit "guest" process we care about. In this
// case, we can get the 32-bit CONTEXT from the TEB (Thread Environment
// Block) of the 64-bit process.
auto teb_mem = GetMemory(td.teb, sizeof(TEB64));
if (teb_mem.empty())
return {};
const TEB64 *wow64teb;
Status error = consumeObject(teb_mem, wow64teb);
if (error.Fail())
return {};
// Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
// that includes the 32-bit CONTEXT (after a ULONG). See:
// https://msdn.microsoft.com/en-us/library/ms681670.aspx
auto context =
GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
if (context.size() < sizeof(MinidumpContext_x86_32))
return {};
return context;
// NOTE: We don't currently use the TEB for anything else. If we
// need it in the future, the 32-bit TEB is located according to the address
// stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}
ArchSpec MinidumpParser::GetArchitecture() {
if (m_arch.IsValid())
return m_arch;
// Set the architecture in m_arch
llvm::Expected<const SystemInfo &> system_info = m_file->getSystemInfo();
if (!system_info) {
LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
system_info.takeError(),
"Failed to read SystemInfo stream: {0}");
return m_arch;
}
// TODO what to do about big endiand flavors of arm ?
// TODO set the arm subarch stuff if the minidump has info about it
llvm::Triple triple;
triple.setVendor(llvm::Triple::VendorType::UnknownVendor);
switch (system_info->ProcessorArch) {
case ProcessorArchitecture::X86:
triple.setArch(llvm::Triple::ArchType::x86);
break;
case ProcessorArchitecture::AMD64:
triple.setArch(llvm::Triple::ArchType::x86_64);
break;
case ProcessorArchitecture::ARM:
triple.setArch(llvm::Triple::ArchType::arm);
break;
case ProcessorArchitecture::ARM64:
triple.setArch(llvm::Triple::ArchType::aarch64);
break;
default:
triple.setArch(llvm::Triple::ArchType::UnknownArch);
break;
}
// TODO add all of the OSes that Minidump/breakpad distinguishes?
switch (system_info->PlatformId) {
case OSPlatform::Win32S:
case OSPlatform::Win32Windows:
case OSPlatform::Win32NT:
case OSPlatform::Win32CE:
triple.setOS(llvm::Triple::OSType::Win32);
break;
case OSPlatform::Linux:
triple.setOS(llvm::Triple::OSType::Linux);
break;
case OSPlatform::MacOSX:
triple.setOS(llvm::Triple::OSType::MacOSX);
triple.setVendor(llvm::Triple::Apple);
break;
case OSPlatform::IOS:
triple.setOS(llvm::Triple::OSType::IOS);
triple.setVendor(llvm::Triple::Apple);
break;
case OSPlatform::Android:
triple.setOS(llvm::Triple::OSType::Linux);
triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
break;
default: {
triple.setOS(llvm::Triple::OSType::UnknownOS);
auto ExpectedCSD = m_file->getString(system_info->CSDVersionRVA);
if (!ExpectedCSD) {
LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
ExpectedCSD.takeError(),
"Failed to CSD Version string: {0}");
} else {
if (ExpectedCSD->find("Linux") != std::string::npos)
triple.setOS(llvm::Triple::OSType::Linux);
}
break;
}
}
m_arch.SetTriple(triple);
return m_arch;
}
const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
llvm::ArrayRef<uint8_t> data = GetStream(StreamType::MiscInfo);
if (data.size() == 0)
return nullptr;
return MinidumpMiscInfo::Parse(data);
}
llvm::Optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
llvm::ArrayRef<uint8_t> data = GetStream(StreamType::LinuxProcStatus);
if (data.size() == 0)
return llvm::None;
return LinuxProcStatus::Parse(data);
}
llvm::Optional<lldb::pid_t> MinidumpParser::GetPid() {
const MinidumpMiscInfo *misc_info = GetMiscInfo();
if (misc_info != nullptr) {
return misc_info->GetPid();
}
llvm::Optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
if (proc_status.hasValue()) {
return proc_status->GetPid();
}
return llvm::None;
}
llvm::ArrayRef<minidump::Module> MinidumpParser::GetModuleList() {
auto ExpectedModules = GetMinidumpFile().getModuleList();
if (ExpectedModules)
return *ExpectedModules;
LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES),
ExpectedModules.takeError(),
"Failed to read module list: {0}");
return {};
}
std::vector<const minidump::Module *> MinidumpParser::GetFilteredModuleList() {
Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
auto ExpectedModules = GetMinidumpFile().getModuleList();
if (!ExpectedModules) {
LLDB_LOG_ERROR(log, ExpectedModules.takeError(),
"Failed to read module list: {0}");
return {};
}
// map module_name -> filtered_modules index
typedef llvm::StringMap<size_t> MapType;
MapType module_name_to_filtered_index;
std::vector<const minidump::Module *> filtered_modules;
for (const auto &module : *ExpectedModules) {
auto ExpectedName = m_file->getString(module.ModuleNameRVA);
if (!ExpectedName) {
LLDB_LOG_ERROR(log, ExpectedName.takeError(),
"Failed to module name: {0}");
continue;
}
MapType::iterator iter;
bool inserted;
// See if we have inserted this module aready into filtered_modules. If we
// haven't insert an entry into module_name_to_filtered_index with the
// index where we will insert it if it isn't in the vector already.
std::tie(iter, inserted) = module_name_to_filtered_index.try_emplace(
*ExpectedName, filtered_modules.size());
if (inserted) {
// This module has not been seen yet, insert it into filtered_modules at
// the index that was inserted into module_name_to_filtered_index using
// "filtered_modules.size()" above.
filtered_modules.push_back(&module);
} else {
// This module has been seen. Modules are sometimes mentioned multiple
// times when they are mapped discontiguously, so find the module with
// the lowest "base_of_image" and use that as the filtered module.
auto dup_module = filtered_modules[iter->second];
if (module.BaseOfImage < dup_module->BaseOfImage)
filtered_modules[iter->second] = &module;
}
}
return filtered_modules;
}
const MinidumpExceptionStream *MinidumpParser::GetExceptionStream() {
llvm::ArrayRef<uint8_t> data = GetStream(StreamType::Exception);
if (data.size() == 0)
return nullptr;
return MinidumpExceptionStream::Parse(data);
}
llvm::Optional<minidump::Range>
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
llvm::ArrayRef<uint8_t> data = GetStream(StreamType::MemoryList);
llvm::ArrayRef<uint8_t> data64 = GetStream(StreamType::Memory64List);
if (data.empty() && data64.empty())
return llvm::None;
if (!data.empty()) {
llvm::ArrayRef<MinidumpMemoryDescriptor> memory_list =
MinidumpMemoryDescriptor::ParseMemoryList(data);
if (memory_list.empty())
return llvm::None;
for (const auto &memory_desc : memory_list) {
const LocationDescriptor &loc_desc = memory_desc.memory;
const lldb::addr_t range_start = memory_desc.start_of_memory_range;
const size_t range_size = loc_desc.DataSize;
if (loc_desc.RVA + loc_desc.DataSize > GetData().size())
return llvm::None;
if (range_start <= addr && addr < range_start + range_size) {
return minidump::Range(range_start,
GetData().slice(loc_desc.RVA, range_size));
}
}
}
// Some Minidumps have a Memory64ListStream that captures all the heap memory
// (full-memory Minidumps). We can't exactly use the same loop as above,
// because the Minidump uses slightly different data structures to describe
// those
if (!data64.empty()) {
llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
uint64_t base_rva;
std::tie(memory64_list, base_rva) =
MinidumpMemoryDescriptor64::ParseMemory64List(data64);
if (memory64_list.empty())
return llvm::None;
for (const auto &memory_desc64 : memory64_list) {
const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
const size_t range_size = memory_desc64.data_size;
if (base_rva + range_size > GetData().size())
return llvm::None;
if (range_start <= addr && addr < range_start + range_size) {
return minidump::Range(range_start,
GetData().slice(base_rva, range_size));
}
base_rva += range_size;
}
}
return llvm::None;
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
size_t size) {
// I don't have a sense of how frequently this is called or how many memory
// ranges a Minidump typically has, so I'm not sure if searching for the
// appropriate range linearly each time is stupid. Perhaps we should build
// an index for faster lookups.
llvm::Optional<minidump::Range> range = FindMemoryRange(addr);
if (!range)
return {};
// There's at least some overlap between the beginning of the desired range
// (addr) and the current range. Figure out where the overlap begins and how
// much overlap there is.
const size_t offset = addr - range->start;
if (addr < range->start || offset >= range->range_ref.size())
return {};
const size_t overlap = std::min(size, range->range_ref.size() - offset);
return range->range_ref.slice(offset, overlap);
}
static bool
CreateRegionsCacheFromLinuxMaps(MinidumpParser &parser,
std::vector<MemoryRegionInfo> &regions) {
auto data = parser.GetStream(StreamType::LinuxMaps);
if (data.empty())
return false;
ParseLinuxMapRegions(llvm::toStringRef(data),
[&](const lldb_private::MemoryRegionInfo &region,
const lldb_private::Status &status) -> bool {
if (status.Success())
regions.push_back(region);
return true;
});
return !regions.empty();
}
static bool
CreateRegionsCacheFromMemoryInfoList(MinidumpParser &parser,
std::vector<MemoryRegionInfo> &regions) {
auto data = parser.GetStream(StreamType::MemoryInfoList);
if (data.empty())
return false;
auto mem_info_list = MinidumpMemoryInfo::ParseMemoryInfoList(data);
if (mem_info_list.empty())
return false;
constexpr auto yes = MemoryRegionInfo::eYes;
constexpr auto no = MemoryRegionInfo::eNo;
regions.reserve(mem_info_list.size());
for (const auto &entry : mem_info_list) {
MemoryRegionInfo region;
region.GetRange().SetRangeBase(entry->base_address);
region.GetRange().SetByteSize(entry->region_size);
region.SetReadable(entry->isReadable() ? yes : no);
region.SetWritable(entry->isWritable() ? yes : no);
region.SetExecutable(entry->isExecutable() ? yes : no);
region.SetMapped(entry->isMapped() ? yes : no);
regions.push_back(region);
}
return !regions.empty();
}
static bool
CreateRegionsCacheFromMemoryList(MinidumpParser &parser,
std::vector<MemoryRegionInfo> &regions) {
auto data = parser.GetStream(StreamType::MemoryList);
if (data.empty())
return false;
auto memory_list = MinidumpMemoryDescriptor::ParseMemoryList(data);
if (memory_list.empty())
return false;
regions.reserve(memory_list.size());
for (const auto &memory_desc : memory_list) {
if (memory_desc.memory.DataSize == 0)
continue;
MemoryRegionInfo region;
region.GetRange().SetRangeBase(memory_desc.start_of_memory_range);
region.GetRange().SetByteSize(memory_desc.memory.DataSize);
region.SetReadable(MemoryRegionInfo::eYes);
region.SetMapped(MemoryRegionInfo::eYes);
regions.push_back(region);
}
regions.shrink_to_fit();
return !regions.empty();
}
static bool
CreateRegionsCacheFromMemory64List(MinidumpParser &parser,
std::vector<MemoryRegionInfo> &regions) {
llvm::ArrayRef<uint8_t> data =
parser.GetStream(StreamType::Memory64List);
if (data.empty())
return false;
llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
uint64_t base_rva;
std::tie(memory64_list, base_rva) =
MinidumpMemoryDescriptor64::ParseMemory64List(data);
if (memory64_list.empty())
return false;
regions.reserve(memory64_list.size());
for (const auto &memory_desc : memory64_list) {
if (memory_desc.data_size == 0)
continue;
MemoryRegionInfo region;
region.GetRange().SetRangeBase(memory_desc.start_of_memory_range);
region.GetRange().SetByteSize(memory_desc.data_size);
region.SetReadable(MemoryRegionInfo::eYes);
region.SetMapped(MemoryRegionInfo::eYes);
regions.push_back(region);
}
regions.shrink_to_fit();
return !regions.empty();
}
MemoryRegionInfo
MinidumpParser::FindMemoryRegion(lldb::addr_t load_addr) const {
auto begin = m_regions.begin();
auto end = m_regions.end();
auto pos = std::lower_bound(begin, end, load_addr);
if (pos != end && pos->GetRange().Contains(load_addr))
return *pos;
MemoryRegionInfo region;
if (pos == begin)
region.GetRange().SetRangeBase(0);
else {
auto prev = pos - 1;
if (prev->GetRange().Contains(load_addr))
return *prev;
region.GetRange().SetRangeBase(prev->GetRange().GetRangeEnd());
}
if (pos == end)
region.GetRange().SetRangeEnd(UINT64_MAX);
else
region.GetRange().SetRangeEnd(pos->GetRange().GetRangeBase());
region.SetReadable(MemoryRegionInfo::eNo);
region.SetWritable(MemoryRegionInfo::eNo);
region.SetExecutable(MemoryRegionInfo::eNo);
region.SetMapped(MemoryRegionInfo::eNo);
return region;
}
MemoryRegionInfo
MinidumpParser::GetMemoryRegionInfo(lldb::addr_t load_addr) {
if (!m_parsed_regions)
GetMemoryRegions();
return FindMemoryRegion(load_addr);
}
const MemoryRegionInfos &MinidumpParser::GetMemoryRegions() {
if (!m_parsed_regions) {
m_parsed_regions = true;
// We haven't cached our memory regions yet we will create the region cache
// once. We create the region cache using the best source. We start with
// the linux maps since they are the most complete and have names for the
// regions. Next we try the MemoryInfoList since it has
// read/write/execute/map data, and then fall back to the MemoryList and
// Memory64List to just get a list of the memory that is mapped in this
// core file
if (!CreateRegionsCacheFromLinuxMaps(*this, m_regions))
if (!CreateRegionsCacheFromMemoryInfoList(*this, m_regions))
if (!CreateRegionsCacheFromMemoryList(*this, m_regions))
CreateRegionsCacheFromMemory64List(*this, m_regions);
llvm::sort(m_regions.begin(), m_regions.end());
}
return m_regions;
}
#define ENUM_TO_CSTR(ST) \
case StreamType::ST: \
return #ST
llvm::StringRef
MinidumpParser::GetStreamTypeAsString(StreamType stream_type) {
switch (stream_type) {
ENUM_TO_CSTR(Unused);
ENUM_TO_CSTR(ThreadList);
ENUM_TO_CSTR(ModuleList);
ENUM_TO_CSTR(MemoryList);
ENUM_TO_CSTR(Exception);
ENUM_TO_CSTR(SystemInfo);
ENUM_TO_CSTR(ThreadExList);
ENUM_TO_CSTR(Memory64List);
ENUM_TO_CSTR(CommentA);
ENUM_TO_CSTR(CommentW);
ENUM_TO_CSTR(HandleData);
ENUM_TO_CSTR(FunctionTable);
ENUM_TO_CSTR(UnloadedModuleList);
ENUM_TO_CSTR(MiscInfo);
ENUM_TO_CSTR(MemoryInfoList);
ENUM_TO_CSTR(ThreadInfoList);
ENUM_TO_CSTR(HandleOperationList);
ENUM_TO_CSTR(Token);
ENUM_TO_CSTR(JavascriptData);
ENUM_TO_CSTR(SystemMemoryInfo);
ENUM_TO_CSTR(ProcessVMCounters);
ENUM_TO_CSTR(LastReserved);
ENUM_TO_CSTR(BreakpadInfo);
ENUM_TO_CSTR(AssertionInfo);
ENUM_TO_CSTR(LinuxCPUInfo);
ENUM_TO_CSTR(LinuxProcStatus);
ENUM_TO_CSTR(LinuxLSBRelease);
ENUM_TO_CSTR(LinuxCMDLine);
ENUM_TO_CSTR(LinuxEnviron);
ENUM_TO_CSTR(LinuxAuxv);
ENUM_TO_CSTR(LinuxMaps);
ENUM_TO_CSTR(LinuxDSODebug);
ENUM_TO_CSTR(LinuxProcStat);
ENUM_TO_CSTR(LinuxProcUptime);
ENUM_TO_CSTR(LinuxProcFD);
ENUM_TO_CSTR(FacebookAppCustomData);
ENUM_TO_CSTR(FacebookBuildID);
ENUM_TO_CSTR(FacebookAppVersionName);
ENUM_TO_CSTR(FacebookJavaStack);
ENUM_TO_CSTR(FacebookDalvikInfo);
ENUM_TO_CSTR(FacebookUnwindSymbols);
ENUM_TO_CSTR(FacebookDumpErrorLog);
ENUM_TO_CSTR(FacebookAppStateLog);
ENUM_TO_CSTR(FacebookAbortReason);
ENUM_TO_CSTR(FacebookThreadName);
ENUM_TO_CSTR(FacebookLogcat);
}
return "unknown stream type";
}