This patch is mechanically generated by clang-llvm-rename tool that I wrote using Clang Refactoring Engine just for creating this patch. You can see the source code of the tool at https://reviews.llvm.org/D64123. There's no manual post-processing; you can generate the same patch by re-running the tool against lld's code base. Here is the main discussion thread to change the LLVM coding style: https://lists.llvm.org/pipermail/llvm-dev/2019-February/130083.html In the discussion thread, I proposed we use lld as a testbed for variable naming scheme change, and this patch does that. I chose to rename variables so that they are in camelCase, just because that is a minimal change to make variables to start with a lowercase letter. Note to downstream patch maintainers: if you are maintaining a downstream lld repo, just rebasing ahead of this commit would cause massive merge conflicts because this patch essentially changes every line in the lld subdirectory. But there's a remedy. clang-llvm-rename tool is a batch tool, so you can rename variables in your downstream repo with the tool. Given that, here is how to rebase your repo to a commit after the mass renaming: 1. rebase to the commit just before the mass variable renaming, 2. apply the tool to your downstream repo to mass-rename variables locally, and 3. rebase again to the head. Most changes made by the tool should be identical for a downstream repo and for the head, so at the step 3, almost all changes should be merged and disappear. I'd expect that there would be some lines that you need to merge by hand, but that shouldn't be too many. Differential Revision: https://reviews.llvm.org/D64121 llvm-svn: 365595
77 lines
2.5 KiB
C++
77 lines
2.5 KiB
C++
//===- AVR.cpp ------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// AVR is a Harvard-architecture 8-bit micrcontroller designed for small
|
|
// baremetal programs. All AVR-family processors have 32 8-bit registers.
|
|
// The tiniest AVR has 32 byte RAM and 1 KiB program memory, and the largest
|
|
// one supports up to 2^24 data address space and 2^22 code address space.
|
|
//
|
|
// Since it is a baremetal programming, there's usually no loader to load
|
|
// ELF files on AVRs. You are expected to link your program against address
|
|
// 0 and pull out a .text section from the result using objcopy, so that you
|
|
// can write the linked code to on-chip flush memory. You can do that with
|
|
// the following commands:
|
|
//
|
|
// ld.lld -Ttext=0 -o foo foo.o
|
|
// objcopy -O binary --only-section=.text foo output.bin
|
|
//
|
|
// Note that the current AVR support is very preliminary so you can't
|
|
// link any useful program yet, though.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "Symbols.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
namespace {
|
|
class AVR final : public TargetInfo {
|
|
public:
|
|
AVR();
|
|
RelExpr getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const override;
|
|
void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
|
|
};
|
|
} // namespace
|
|
|
|
AVR::AVR() { noneRel = R_AVR_NONE; }
|
|
|
|
RelExpr AVR::getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const {
|
|
return R_ABS;
|
|
}
|
|
|
|
void AVR::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
|
|
switch (type) {
|
|
case R_AVR_CALL: {
|
|
uint16_t hi = val >> 17;
|
|
uint16_t lo = val >> 1;
|
|
write16le(loc, read16le(loc) | ((hi >> 1) << 4) | (hi & 1));
|
|
write16le(loc + 2, lo);
|
|
break;
|
|
}
|
|
default:
|
|
error(getErrorLocation(loc) + "unrecognized relocation " + toString(type));
|
|
}
|
|
}
|
|
|
|
TargetInfo *elf::getAVRTargetInfo() {
|
|
static AVR target;
|
|
return ⌖
|
|
}
|