Files
clang-p2996/lld/ELF/Arch/X86_64.cpp
Rui Ueyama 3837f4273f [Coding style change] Rename variables so that they start with a lowercase letter
This patch is mechanically generated by clang-llvm-rename tool that I wrote
using Clang Refactoring Engine just for creating this patch. You can see the
source code of the tool at https://reviews.llvm.org/D64123. There's no manual
post-processing; you can generate the same patch by re-running the tool against
lld's code base.

Here is the main discussion thread to change the LLVM coding style:
https://lists.llvm.org/pipermail/llvm-dev/2019-February/130083.html
In the discussion thread, I proposed we use lld as a testbed for variable
naming scheme change, and this patch does that.

I chose to rename variables so that they are in camelCase, just because that
is a minimal change to make variables to start with a lowercase letter.

Note to downstream patch maintainers: if you are maintaining a downstream lld
repo, just rebasing ahead of this commit would cause massive merge conflicts
because this patch essentially changes every line in the lld subdirectory. But
there's a remedy.

clang-llvm-rename tool is a batch tool, so you can rename variables in your
downstream repo with the tool. Given that, here is how to rebase your repo to
a commit after the mass renaming:

1. rebase to the commit just before the mass variable renaming,
2. apply the tool to your downstream repo to mass-rename variables locally, and
3. rebase again to the head.

Most changes made by the tool should be identical for a downstream repo and
for the head, so at the step 3, almost all changes should be merged and
disappear. I'd expect that there would be some lines that you need to merge by
hand, but that shouldn't be too many.

Differential Revision: https://reviews.llvm.org/D64121

llvm-svn: 365595
2019-07-10 05:00:37 +00:00

702 lines
24 KiB
C++

//===- X86_64.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class X86_64 : public TargetInfo {
public:
X86_64();
int getTlsGdRelaxSkip(RelType type) const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
RelType getDynRel(RelType type) const override;
void writeGotPltHeader(uint8_t *buf) const override;
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
int32_t index, unsigned relOff) const override;
void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
RelExpr expr) const override;
void relaxGot(uint8_t *loc, RelType type, uint64_t val) const override;
void relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const override;
void relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
void relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const override;
void relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
uint8_t stOther) const override;
};
} // namespace
X86_64::X86_64() {
copyRel = R_X86_64_COPY;
gotRel = R_X86_64_GLOB_DAT;
noneRel = R_X86_64_NONE;
pltRel = R_X86_64_JUMP_SLOT;
relativeRel = R_X86_64_RELATIVE;
iRelativeRel = R_X86_64_IRELATIVE;
symbolicRel = R_X86_64_64;
tlsDescRel = R_X86_64_TLSDESC;
tlsGotRel = R_X86_64_TPOFF64;
tlsModuleIndexRel = R_X86_64_DTPMOD64;
tlsOffsetRel = R_X86_64_DTPOFF64;
pltEntrySize = 16;
pltHeaderSize = 16;
trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
// Align to the large page size (known as a superpage or huge page).
// FreeBSD automatically promotes large, superpage-aligned allocations.
defaultImageBase = 0x200000;
}
int X86_64::getTlsGdRelaxSkip(RelType type) const { return 2; }
RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const {
if (type == R_X86_64_GOTTPOFF)
config->hasStaticTlsModel = true;
switch (type) {
case R_X86_64_8:
case R_X86_64_16:
case R_X86_64_32:
case R_X86_64_32S:
case R_X86_64_64:
return R_ABS;
case R_X86_64_DTPOFF32:
case R_X86_64_DTPOFF64:
return R_DTPREL;
case R_X86_64_TPOFF32:
return R_TLS;
case R_X86_64_TLSDESC_CALL:
return R_TLSDESC_CALL;
case R_X86_64_TLSLD:
return R_TLSLD_PC;
case R_X86_64_TLSGD:
return R_TLSGD_PC;
case R_X86_64_SIZE32:
case R_X86_64_SIZE64:
return R_SIZE;
case R_X86_64_PLT32:
return R_PLT_PC;
case R_X86_64_PC8:
case R_X86_64_PC16:
case R_X86_64_PC32:
case R_X86_64_PC64:
return R_PC;
case R_X86_64_GOT32:
case R_X86_64_GOT64:
return R_GOTPLT;
case R_X86_64_GOTPC32_TLSDESC:
return R_TLSDESC_PC;
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
case R_X86_64_GOTTPOFF:
return R_GOT_PC;
case R_X86_64_GOTOFF64:
return R_GOTPLTREL;
case R_X86_64_GOTPC32:
case R_X86_64_GOTPC64:
return R_GOTPLTONLY_PC;
case R_X86_64_NONE:
return R_NONE;
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
void X86_64::writeGotPltHeader(uint8_t *buf) const {
// The first entry holds the value of _DYNAMIC. It is not clear why that is
// required, but it is documented in the psabi and the glibc dynamic linker
// seems to use it (note that this is relevant for linking ld.so, not any
// other program).
write64le(buf, mainPart->dynamic->getVA());
}
void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
// See comments in X86::writeGotPlt.
write64le(buf, s.getPltVA() + 6);
}
void X86_64::writePltHeader(uint8_t *buf) const {
const uint8_t pltData[] = {
0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
0x0f, 0x1f, 0x40, 0x00, // nop
};
memcpy(buf, pltData, sizeof(pltData));
uint64_t gotPlt = in.gotPlt->getVA();
uint64_t plt = in.plt->getVA();
write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
}
void X86_64::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
uint64_t pltEntryAddr, int32_t index,
unsigned relOff) const {
const uint8_t inst[] = {
0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
0x68, 0, 0, 0, 0, // pushq <relocation index>
0xe9, 0, 0, 0, 0, // jmpq plt[0]
};
memcpy(buf, inst, sizeof(inst));
write32le(buf + 2, gotPltEntryAddr - pltEntryAddr - 6);
write32le(buf + 7, index);
write32le(buf + 12, -pltHeaderSize - pltEntrySize * index - 16);
}
RelType X86_64::getDynRel(RelType type) const {
if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
type == R_X86_64_SIZE64)
return type;
return R_X86_64_NONE;
}
void X86_64::relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const {
if (type == R_X86_64_TLSGD) {
// Convert
// .byte 0x66
// leaq x@tlsgd(%rip), %rdi
// .word 0x6666
// rex64
// call __tls_get_addr@plt
// to the following two instructions.
const uint8_t inst[] = {
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
0x00, 0x00, // mov %fs:0x0,%rax
0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax
};
memcpy(loc - 4, inst, sizeof(inst));
// The original code used a pc relative relocation and so we have to
// compensate for the -4 in had in the addend.
write32le(loc + 8, val + 4);
} else {
// Convert
// lea x@tlsgd(%rip), %rax
// call *(%rax)
// to the following two instructions.
assert(type == R_X86_64_GOTPC32_TLSDESC);
if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
"in callq *x@tlsdesc(%rip), %rax");
return;
}
// movq $x@tpoff(%rip),%rax
loc[-2] = 0xc7;
loc[-1] = 0xc0;
write32le(loc, val + 4);
// xchg ax,ax
loc[4] = 0x66;
loc[5] = 0x90;
}
}
void X86_64::relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const {
if (type == R_X86_64_TLSGD) {
// Convert
// .byte 0x66
// leaq x@tlsgd(%rip), %rdi
// .word 0x6666
// rex64
// call __tls_get_addr@plt
// to the following two instructions.
const uint8_t inst[] = {
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
0x00, 0x00, // mov %fs:0x0,%rax
0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax
};
memcpy(loc - 4, inst, sizeof(inst));
// Both code sequences are PC relatives, but since we are moving the
// constant forward by 8 bytes we have to subtract the value by 8.
write32le(loc + 8, val - 8);
} else {
// Convert
// lea x@tlsgd(%rip), %rax
// call *(%rax)
// to the following two instructions.
assert(type == R_X86_64_GOTPC32_TLSDESC);
if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
"in callq *x@tlsdesc(%rip), %rax");
return;
}
// movq x@gottpoff(%rip),%rax
loc[-2] = 0x8b;
write32le(loc, val);
// xchg ax,ax
loc[4] = 0x66;
loc[5] = 0x90;
}
}
// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
// R_X86_64_TPOFF32 so that it does not use GOT.
void X86_64::relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const {
uint8_t *inst = loc - 3;
uint8_t reg = loc[-1] >> 3;
uint8_t *regSlot = loc - 1;
// Note that ADD with RSP or R12 is converted to ADD instead of LEA
// because LEA with these registers needs 4 bytes to encode and thus
// wouldn't fit the space.
if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
// "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
memcpy(inst, "\x48\x81\xc4", 3);
} else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
// "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
memcpy(inst, "\x49\x81\xc4", 3);
} else if (memcmp(inst, "\x4c\x03", 2) == 0) {
// "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
memcpy(inst, "\x4d\x8d", 2);
*regSlot = 0x80 | (reg << 3) | reg;
} else if (memcmp(inst, "\x48\x03", 2) == 0) {
// "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
memcpy(inst, "\x48\x8d", 2);
*regSlot = 0x80 | (reg << 3) | reg;
} else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
// "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
memcpy(inst, "\x49\xc7", 2);
*regSlot = 0xc0 | reg;
} else if (memcmp(inst, "\x48\x8b", 2) == 0) {
// "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
memcpy(inst, "\x48\xc7", 2);
*regSlot = 0xc0 | reg;
} else {
error(getErrorLocation(loc - 3) +
"R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
}
// The original code used a PC relative relocation.
// Need to compensate for the -4 it had in the addend.
write32le(loc, val + 4);
}
void X86_64::relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const {
if (type == R_X86_64_DTPOFF64) {
write64le(loc, val);
return;
}
if (type == R_X86_64_DTPOFF32) {
write32le(loc, val);
return;
}
const uint8_t inst[] = {
0x66, 0x66, // .word 0x6666
0x66, // .byte 0x66
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
};
if (loc[4] == 0xe8) {
// Convert
// leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc>
// callq __tls_get_addr@PLT # e8 <disp32>
// leaq bar@dtpoff(%rax), %rcx
// to
// .word 0x6666
// .byte 0x66
// mov %fs:0,%rax
// leaq bar@tpoff(%rax), %rcx
memcpy(loc - 3, inst, sizeof(inst));
return;
}
if (loc[4] == 0xff && loc[5] == 0x15) {
// Convert
// leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc>
// call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32>
// to
// .long 0x66666666
// movq %fs:0,%rax
// See "Table 11.9: LD -> LE Code Transition (LP64)" in
// https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
loc[-3] = 0x66;
memcpy(loc - 2, inst, sizeof(inst));
return;
}
error(getErrorLocation(loc - 3) +
"expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
}
void X86_64::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
switch (type) {
case R_X86_64_8:
checkIntUInt(loc, val, 8, type);
*loc = val;
break;
case R_X86_64_PC8:
checkInt(loc, val, 8, type);
*loc = val;
break;
case R_X86_64_16:
checkIntUInt(loc, val, 16, type);
write16le(loc, val);
break;
case R_X86_64_PC16:
checkInt(loc, val, 16, type);
write16le(loc, val);
break;
case R_X86_64_32:
checkUInt(loc, val, 32, type);
write32le(loc, val);
break;
case R_X86_64_32S:
case R_X86_64_TPOFF32:
case R_X86_64_GOT32:
case R_X86_64_GOTPC32:
case R_X86_64_GOTPC32_TLSDESC:
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
case R_X86_64_PC32:
case R_X86_64_GOTTPOFF:
case R_X86_64_PLT32:
case R_X86_64_TLSGD:
case R_X86_64_TLSLD:
case R_X86_64_DTPOFF32:
case R_X86_64_SIZE32:
checkInt(loc, val, 32, type);
write32le(loc, val);
break;
case R_X86_64_64:
case R_X86_64_DTPOFF64:
case R_X86_64_PC64:
case R_X86_64_SIZE64:
case R_X86_64_GOT64:
case R_X86_64_GOTOFF64:
case R_X86_64_GOTPC64:
write64le(loc, val);
break;
default:
llvm_unreachable("unknown relocation");
}
}
RelExpr X86_64::adjustRelaxExpr(RelType type, const uint8_t *data,
RelExpr relExpr) const {
if (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX)
return relExpr;
const uint8_t op = data[-2];
const uint8_t modRm = data[-1];
// FIXME: When PIC is disabled and foo is defined locally in the
// lower 32 bit address space, memory operand in mov can be converted into
// immediate operand. Otherwise, mov must be changed to lea. We support only
// latter relaxation at this moment.
if (op == 0x8b)
return R_RELAX_GOT_PC;
// Relax call and jmp.
if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
return R_RELAX_GOT_PC;
// Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
// If PIC then no relaxation is available.
// We also don't relax test/binop instructions without REX byte,
// they are 32bit operations and not common to have.
assert(type == R_X86_64_REX_GOTPCRELX);
return config->isPic ? relExpr : R_RELAX_GOT_PC_NOPIC;
}
// A subset of relaxations can only be applied for no-PIC. This method
// handles such relaxations. Instructions encoding information was taken from:
// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
uint8_t modRm) {
const uint8_t rex = loc[-3];
// Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
if (op == 0x85) {
// See "TEST-Logical Compare" (4-428 Vol. 2B),
// TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
// ModR/M byte has form XX YYY ZZZ, where
// YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
// XX has different meanings:
// 00: The operand's memory address is in reg1.
// 01: The operand's memory address is reg1 + a byte-sized displacement.
// 10: The operand's memory address is reg1 + a word-sized displacement.
// 11: The operand is reg1 itself.
// If an instruction requires only one operand, the unused reg2 field
// holds extra opcode bits rather than a register code
// 0xC0 == 11 000 000 binary.
// 0x38 == 00 111 000 binary.
// We transfer reg2 to reg1 here as operand.
// See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
// Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
// See "TEST-Logical Compare" (4-428 Vol. 2B).
loc[-2] = 0xf7;
// Move R bit to the B bit in REX byte.
// REX byte is encoded as 0100WRXB, where
// 0100 is 4bit fixed pattern.
// REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
// default operand size is used (which is 32-bit for most but not all
// instructions).
// REX.R This 1-bit value is an extension to the MODRM.reg field.
// REX.X This 1-bit value is an extension to the SIB.index field.
// REX.B This 1-bit value is an extension to the MODRM.rm field or the
// SIB.base field.
// See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
write32le(loc, val);
return;
}
// If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
// or xor operations.
// Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
// Logic is close to one for test instruction above, but we also
// write opcode extension here, see below for details.
loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
// Primary opcode is 0x81, opcode extension is one of:
// 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
// 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
// This value was wrote to MODRM.reg in a line above.
// See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
// "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
// descriptions about each operation.
loc[-2] = 0x81;
loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
write32le(loc, val);
}
void X86_64::relaxGot(uint8_t *loc, RelType type, uint64_t val) const {
const uint8_t op = loc[-2];
const uint8_t modRm = loc[-1];
// Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
if (op == 0x8b) {
loc[-2] = 0x8d;
write32le(loc, val);
return;
}
if (op != 0xff) {
// We are relaxing a rip relative to an absolute, so compensate
// for the old -4 addend.
assert(!config->isPic);
relaxGotNoPic(loc, val + 4, op, modRm);
return;
}
// Convert call/jmp instructions.
if (modRm == 0x15) {
// ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
// Instead we convert to "addr32 call foo" where addr32 is an instruction
// prefix. That makes result expression to be a single instruction.
loc[-2] = 0x67; // addr32 prefix
loc[-1] = 0xe8; // call
write32le(loc, val);
return;
}
// Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
// jmp doesn't return, so it is fine to use nop here, it is just a stub.
assert(modRm == 0x25);
loc[-2] = 0xe9; // jmp
loc[3] = 0x90; // nop
write32le(loc - 1, val + 1);
}
// A split-stack prologue starts by checking the amount of stack remaining
// in one of two ways:
// A) Comparing of the stack pointer to a field in the tcb.
// B) Or a load of a stack pointer offset with an lea to r10 or r11.
bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
uint8_t stOther) const {
if (!config->is64) {
error("Target doesn't support split stacks.");
return false;
}
if (loc + 8 >= end)
return false;
// Replace "cmp %fs:0x70,%rsp" and subsequent branch
// with "stc, nopl 0x0(%rax,%rax,1)"
if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
return true;
}
// Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
// be r10 or r11. The lea instruction feeds a subsequent compare which checks
// if there is X available stack space. Making X larger effectively reserves
// that much additional space. The stack grows downward so subtract the value.
if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
// The offset bytes are encoded four bytes after the start of the
// instruction.
write32le(loc + 4, read32le(loc + 4) - 0x4000);
return true;
}
return false;
}
// These nonstandard PLT entries are to migtigate Spectre v2 security
// vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
// branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
// entries, we use a CALL followed by MOV and RET to do the same thing as an
// indirect jump. That instruction sequence is so-called "retpoline".
//
// We have two types of retpoline PLTs as a size optimization. If `-z now`
// is specified, all dynamic symbols are resolved at load-time. Thus, when
// that option is given, we can omit code for symbol lazy resolution.
namespace {
class Retpoline : public X86_64 {
public:
Retpoline();
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
int32_t index, unsigned relOff) const override;
};
class RetpolineZNow : public X86_64 {
public:
RetpolineZNow();
void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
int32_t index, unsigned relOff) const override;
};
} // namespace
Retpoline::Retpoline() {
pltHeaderSize = 48;
pltEntrySize = 32;
}
void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
write64le(buf, s.getPltVA() + 17);
}
void Retpoline::writePltHeader(uint8_t *buf) const {
const uint8_t insn[] = {
0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip)
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11
0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next
0xf3, 0x90, // 12: loop: pause
0x0f, 0xae, 0xe8, // 14: lfence
0xeb, 0xf9, // 17: jmp loop
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp)
0xc3, // 24: ret
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding
0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding
};
memcpy(buf, insn, sizeof(insn));
uint64_t gotPlt = in.gotPlt->getVA();
uint64_t plt = in.plt->getVA();
write32le(buf + 2, gotPlt - plt - 6 + 8);
write32le(buf + 9, gotPlt - plt - 13 + 16);
}
void Retpoline::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
uint64_t pltEntryAddr, int32_t index,
unsigned relOff) const {
const uint8_t insn[] = {
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11
0xe8, 0, 0, 0, 0, // 7: callq plt+0x20
0xe9, 0, 0, 0, 0, // c: jmp plt+0x12
0x68, 0, 0, 0, 0, // 11: pushq <relocation index>
0xe9, 0, 0, 0, 0, // 16: jmp plt+0
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
};
memcpy(buf, insn, sizeof(insn));
uint64_t off = pltHeaderSize + pltEntrySize * index;
write32le(buf + 3, gotPltEntryAddr - pltEntryAddr - 7);
write32le(buf + 8, -off - 12 + 32);
write32le(buf + 13, -off - 17 + 18);
write32le(buf + 18, index);
write32le(buf + 23, -off - 27);
}
RetpolineZNow::RetpolineZNow() {
pltHeaderSize = 32;
pltEntrySize = 16;
}
void RetpolineZNow::writePltHeader(uint8_t *buf) const {
const uint8_t insn[] = {
0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next
0xf3, 0x90, // 5: loop: pause
0x0f, 0xae, 0xe8, // 7: lfence
0xeb, 0xf9, // a: jmp loop
0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16
0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp)
0xc3, // 14: ret
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
0xcc, // 1f: int3; padding
};
memcpy(buf, insn, sizeof(insn));
}
void RetpolineZNow::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
uint64_t pltEntryAddr, int32_t index,
unsigned relOff) const {
const uint8_t insn[] = {
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11
0xe9, 0, 0, 0, 0, // jmp plt+0
0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
};
memcpy(buf, insn, sizeof(insn));
write32le(buf + 3, gotPltEntryAddr - pltEntryAddr - 7);
write32le(buf + 8, -pltHeaderSize - pltEntrySize * index - 12);
}
static TargetInfo *getTargetInfo() {
if (config->zRetpolineplt) {
if (config->zNow) {
static RetpolineZNow t;
return &t;
}
static Retpoline t;
return &t;
}
static X86_64 t;
return &t;
}
TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }