Files
clang-p2996/flang-rt/lib/runtime/pointer.cpp
Valentin Clement (バレンタイン クレメン) c8898b09f9 [flang][rt] Use allocator registry to allocate the pointer payload (#129992)
pointer allocation is done through `AllocateValidatedPointerPayload`.
This function was not updated to use the registered allocators in the
descriptor to perform the allocation. This patch makes use of the
allocator.
The footer word is not set and not checked for allocator other than the
default one. The support will likely come in a follow up patch but this
will necessitate more functions to be registered to be able to set and
get the footer value when the allocation in on the device.
2025-03-06 08:47:27 -08:00

282 lines
10 KiB
C++

//===-- lib/runtime/pointer.cpp ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Runtime/pointer.h"
#include "flang-rt/runtime/allocator-registry.h"
#include "flang-rt/runtime/assign-impl.h"
#include "flang-rt/runtime/derived.h"
#include "flang-rt/runtime/environment.h"
#include "flang-rt/runtime/stat.h"
#include "flang-rt/runtime/terminator.h"
#include "flang-rt/runtime/tools.h"
#include "flang-rt/runtime/type-info.h"
namespace Fortran::runtime {
extern "C" {
RT_EXT_API_GROUP_BEGIN
void RTDEF(PointerNullifyIntrinsic)(Descriptor &pointer, TypeCategory category,
int kind, int rank, int corank) {
INTERNAL_CHECK(corank == 0);
pointer.Establish(TypeCode{category, kind},
Descriptor::BytesFor(category, kind), nullptr, rank, nullptr,
CFI_attribute_pointer);
}
void RTDEF(PointerNullifyCharacter)(Descriptor &pointer, SubscriptValue length,
int kind, int rank, int corank) {
INTERNAL_CHECK(corank == 0);
pointer.Establish(
kind, length, nullptr, rank, nullptr, CFI_attribute_pointer);
}
void RTDEF(PointerNullifyDerived)(Descriptor &pointer,
const typeInfo::DerivedType &derivedType, int rank, int corank) {
INTERNAL_CHECK(corank == 0);
pointer.Establish(derivedType, nullptr, rank, nullptr, CFI_attribute_pointer);
}
void RTDEF(PointerSetBounds)(Descriptor &pointer, int zeroBasedDim,
SubscriptValue lower, SubscriptValue upper) {
INTERNAL_CHECK(zeroBasedDim >= 0 && zeroBasedDim < pointer.rank());
pointer.GetDimension(zeroBasedDim).SetBounds(lower, upper);
// The byte strides are computed when the pointer is allocated.
}
// TODO: PointerSetCoBounds
void RTDEF(PointerSetDerivedLength)(
Descriptor &pointer, int which, SubscriptValue x) {
DescriptorAddendum *addendum{pointer.Addendum()};
INTERNAL_CHECK(addendum != nullptr);
addendum->SetLenParameterValue(which, x);
}
void RTDEF(PointerApplyMold)(
Descriptor &pointer, const Descriptor &mold, int rank) {
pointer.ApplyMold(mold, rank);
}
void RTDEF(PointerAssociateScalar)(Descriptor &pointer, void *target) {
pointer.set_base_addr(target);
}
void RTDEF(PointerAssociate)(Descriptor &pointer, const Descriptor &target) {
pointer = target;
pointer.raw().attribute = CFI_attribute_pointer;
}
void RTDEF(PointerAssociateLowerBounds)(Descriptor &pointer,
const Descriptor &target, const Descriptor &lowerBounds) {
pointer = target;
pointer.raw().attribute = CFI_attribute_pointer;
int rank{pointer.rank()};
Terminator terminator{__FILE__, __LINE__};
std::size_t boundElementBytes{lowerBounds.ElementBytes()};
for (int j{0}; j < rank; ++j) {
Dimension &dim{pointer.GetDimension(j)};
dim.SetLowerBound(dim.Extent() == 0
? 1
: GetInt64(lowerBounds.ZeroBasedIndexedElement<const char>(j),
boundElementBytes, terminator));
}
}
void RTDEF(PointerAssociateRemapping)(Descriptor &pointer,
const Descriptor &target, const Descriptor &bounds, const char *sourceFile,
int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
SubscriptValue byteStride{/*captured from first dimension*/};
std::size_t boundElementBytes{bounds.ElementBytes()};
std::size_t boundsRank{
static_cast<std::size_t>(bounds.GetDimension(1).Extent())};
// We cannot just assign target into pointer descriptor, because
// the ranks may mismatch. Use target as a mold for initializing
// the pointer descriptor.
INTERNAL_CHECK(static_cast<std::size_t>(pointer.rank()) == boundsRank);
pointer.ApplyMold(target, boundsRank);
pointer.set_base_addr(target.raw().base_addr);
pointer.raw().attribute = CFI_attribute_pointer;
for (unsigned j{0}; j < boundsRank; ++j) {
auto &dim{pointer.GetDimension(j)};
dim.SetBounds(GetInt64(bounds.ZeroBasedIndexedElement<const char>(2 * j),
boundElementBytes, terminator),
GetInt64(bounds.ZeroBasedIndexedElement<const char>(2 * j + 1),
boundElementBytes, terminator));
if (j == 0) {
byteStride = dim.ByteStride() * dim.Extent();
} else {
dim.SetByteStride(byteStride);
byteStride *= dim.Extent();
}
}
if (pointer.Elements() > target.Elements()) {
terminator.Crash("PointerAssociateRemapping: too many elements in remapped "
"pointer (%zd > %zd)",
pointer.Elements(), target.Elements());
}
}
RT_API_ATTRS void *AllocateValidatedPointerPayload(
std::size_t byteSize, int allocatorIdx) {
// Add space for a footer to validate during deallocation.
constexpr std::size_t align{sizeof(std::uintptr_t)};
byteSize = ((byteSize + align - 1) / align) * align;
std::size_t total{byteSize + sizeof(std::uintptr_t)};
AllocFct alloc{allocatorRegistry.GetAllocator(allocatorIdx)};
void *p{alloc(total)};
if (p && allocatorIdx == 0) {
// Fill the footer word with the XOR of the ones' complement of
// the base address, which is a value that would be highly unlikely
// to appear accidentally at the right spot.
std::uintptr_t *footer{
reinterpret_cast<std::uintptr_t *>(static_cast<char *>(p) + byteSize)};
*footer = ~reinterpret_cast<std::uintptr_t>(p);
}
return p;
}
int RTDEF(PointerAllocate)(Descriptor &pointer, bool hasStat,
const Descriptor *errMsg, const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
if (!pointer.IsPointer()) {
return ReturnError(terminator, StatInvalidDescriptor, errMsg, hasStat);
}
std::size_t elementBytes{pointer.ElementBytes()};
if (static_cast<std::int64_t>(elementBytes) < 0) {
// F'2023 7.4.4.2 p5: "If the character length parameter value evaluates
// to a negative value, the length of character entities declared is zero."
elementBytes = pointer.raw().elem_len = 0;
}
std::size_t byteSize{pointer.Elements() * elementBytes};
void *p{AllocateValidatedPointerPayload(byteSize, pointer.GetAllocIdx())};
if (!p) {
return ReturnError(terminator, CFI_ERROR_MEM_ALLOCATION, errMsg, hasStat);
}
pointer.set_base_addr(p);
pointer.SetByteStrides();
int stat{StatOk};
if (const DescriptorAddendum * addendum{pointer.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noInitializationNeeded()) {
stat = Initialize(pointer, *derived, terminator, hasStat, errMsg);
}
}
}
return ReturnError(terminator, stat, errMsg, hasStat);
}
int RTDEF(PointerAllocateSource)(Descriptor &pointer, const Descriptor &source,
bool hasStat, const Descriptor *errMsg, const char *sourceFile,
int sourceLine) {
int stat{RTNAME(PointerAllocate)(
pointer, hasStat, errMsg, sourceFile, sourceLine)};
if (stat == StatOk) {
Terminator terminator{sourceFile, sourceLine};
DoFromSourceAssign(pointer, source, terminator);
}
return stat;
}
static RT_API_ATTRS std::size_t GetByteSize(
const ISO::CFI_cdesc_t &descriptor) {
std::size_t rank{descriptor.rank};
const ISO::CFI_dim_t *dim{descriptor.dim};
std::size_t byteSize{descriptor.elem_len};
for (std::size_t j{0}; j < rank; ++j) {
byteSize *= dim[j].extent;
}
return byteSize;
}
bool RT_API_ATTRS ValidatePointerPayload(const ISO::CFI_cdesc_t &desc) {
std::size_t byteSize{GetByteSize(desc)};
constexpr std::size_t align{sizeof(std::uintptr_t)};
byteSize = ((byteSize + align - 1) / align) * align;
const void *p{desc.base_addr};
const std::uintptr_t *footer{reinterpret_cast<const std::uintptr_t *>(
static_cast<const char *>(p) + byteSize)};
return *footer == ~reinterpret_cast<std::uintptr_t>(p);
}
int RTDEF(PointerDeallocate)(Descriptor &pointer, bool hasStat,
const Descriptor *errMsg, const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
if (!pointer.IsPointer()) {
return ReturnError(terminator, StatInvalidDescriptor, errMsg, hasStat);
}
if (!pointer.IsAllocated()) {
return ReturnError(terminator, StatBaseNull, errMsg, hasStat);
}
if (executionEnvironment.checkPointerDeallocation &&
pointer.GetAllocIdx() == kDefaultAllocator &&
!ValidatePointerPayload(pointer.raw())) {
return ReturnError(terminator, StatBadPointerDeallocation, errMsg, hasStat);
}
return ReturnError(terminator,
pointer.Destroy(/*finalize=*/true, /*destroyPointers=*/true, &terminator),
errMsg, hasStat);
}
int RTDEF(PointerDeallocatePolymorphic)(Descriptor &pointer,
const typeInfo::DerivedType *derivedType, bool hasStat,
const Descriptor *errMsg, const char *sourceFile, int sourceLine) {
int stat{RTNAME(PointerDeallocate)(
pointer, hasStat, errMsg, sourceFile, sourceLine)};
if (stat == StatOk) {
if (DescriptorAddendum * addendum{pointer.Addendum()}) {
addendum->set_derivedType(derivedType);
pointer.raw().type = derivedType ? CFI_type_struct : CFI_type_other;
} else {
// Unlimited polymorphic descriptors initialized with
// PointerNullifyIntrinsic do not have an addendum. Make sure the
// derivedType is null in that case.
INTERNAL_CHECK(!derivedType);
pointer.raw().type = CFI_type_other;
}
}
return stat;
}
bool RTDEF(PointerIsAssociated)(const Descriptor &pointer) {
return pointer.raw().base_addr != nullptr;
}
bool RTDEF(PointerIsAssociatedWith)(
const Descriptor &pointer, const Descriptor *target) {
if (!target) {
return pointer.raw().base_addr != nullptr;
}
if (!target->raw().base_addr ||
(target->raw().type != CFI_type_struct && target->ElementBytes() == 0)) {
return false;
}
int rank{pointer.rank()};
if (pointer.raw().base_addr != target->raw().base_addr ||
pointer.ElementBytes() != target->ElementBytes() ||
rank != target->rank()) {
return false;
}
for (int j{0}; j < rank; ++j) {
const Dimension &pDim{pointer.GetDimension(j)};
const Dimension &tDim{target->GetDimension(j)};
auto pExtent{pDim.Extent()};
if (pExtent == 0 || pExtent != tDim.Extent() ||
(pExtent != 1 && pDim.ByteStride() != tDim.ByteStride())) {
return false;
}
}
return true;
}
// TODO: PointerCheckLengthParameter
RT_EXT_API_GROUP_END
} // extern "C"
} // namespace Fortran::runtime