This revision adds support for generating utilities for passes such as options/statistics/etc. that can be inferred from the tablegen definition. This removes additional boilerplate from the pass, and also makes it easier to remove the reliance on the pass registry to provide certain things(e.g. the pass argument). Differential Revision: https://reviews.llvm.org/D76659
472 lines
20 KiB
C++
472 lines
20 KiB
C++
//===- ConvertLaunchFuncToCudaCalls.cpp - MLIR CUDA lowering passes -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass to convert gpu.launch_func op into a sequence of
|
|
// CUDA runtime calls. As the CUDA runtime does not have a stable published ABI,
|
|
// this pass uses a slim runtime layer that builds on top of the public API from
|
|
// the CUDA headers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/GPUToCUDA/GPUToCUDAPass.h"
|
|
|
|
#include "mlir/Dialect/GPU/GPUDialect.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
|
|
using namespace mlir;
|
|
|
|
// To avoid name mangling, these are defined in the mini-runtime file.
|
|
static constexpr const char *cuModuleLoadName = "mcuModuleLoad";
|
|
static constexpr const char *cuModuleGetFunctionName = "mcuModuleGetFunction";
|
|
static constexpr const char *cuLaunchKernelName = "mcuLaunchKernel";
|
|
static constexpr const char *cuGetStreamHelperName = "mcuGetStreamHelper";
|
|
static constexpr const char *cuStreamSynchronizeName = "mcuStreamSynchronize";
|
|
static constexpr const char *kMcuMemHostRegister = "mcuMemHostRegister";
|
|
|
|
static constexpr const char *kCubinAnnotation = "nvvm.cubin";
|
|
static constexpr const char *kCubinStorageSuffix = "_cubin_cst";
|
|
|
|
namespace {
|
|
|
|
/// A pass to convert gpu.launch_func operations into a sequence of CUDA
|
|
/// runtime calls.
|
|
///
|
|
/// In essence, a gpu.launch_func operations gets compiled into the following
|
|
/// sequence of runtime calls:
|
|
///
|
|
/// * mcuModuleLoad -- loads the module given the cubin data
|
|
/// * mcuModuleGetFunction -- gets a handle to the actual kernel function
|
|
/// * mcuGetStreamHelper -- initializes a new CUDA stream
|
|
/// * mcuLaunchKernelName -- launches the kernel on a stream
|
|
/// * mcuStreamSynchronize -- waits for operations on the stream to finish
|
|
///
|
|
/// Intermediate data structures are allocated on the stack.
|
|
class GpuLaunchFuncToCudaCallsPass
|
|
: public ModulePass<GpuLaunchFuncToCudaCallsPass> {
|
|
private:
|
|
/// Include the generated pass utilities.
|
|
#define GEN_PASS_ConvertGpuLaunchFuncToCudaCalls
|
|
#include "mlir/Conversion/Passes.h.inc"
|
|
|
|
LLVM::LLVMDialect *getLLVMDialect() { return llvmDialect; }
|
|
|
|
llvm::LLVMContext &getLLVMContext() {
|
|
return getLLVMDialect()->getLLVMContext();
|
|
}
|
|
|
|
void initializeCachedTypes() {
|
|
const llvm::Module &module = llvmDialect->getLLVMModule();
|
|
llvmVoidType = LLVM::LLVMType::getVoidTy(llvmDialect);
|
|
llvmPointerType = LLVM::LLVMType::getInt8PtrTy(llvmDialect);
|
|
llvmPointerPointerType = llvmPointerType.getPointerTo();
|
|
llvmInt8Type = LLVM::LLVMType::getInt8Ty(llvmDialect);
|
|
llvmInt32Type = LLVM::LLVMType::getInt32Ty(llvmDialect);
|
|
llvmInt64Type = LLVM::LLVMType::getInt64Ty(llvmDialect);
|
|
llvmIntPtrType = LLVM::LLVMType::getIntNTy(
|
|
llvmDialect, module.getDataLayout().getPointerSizeInBits());
|
|
}
|
|
|
|
LLVM::LLVMType getVoidType() { return llvmVoidType; }
|
|
|
|
LLVM::LLVMType getPointerType() { return llvmPointerType; }
|
|
|
|
LLVM::LLVMType getPointerPointerType() { return llvmPointerPointerType; }
|
|
|
|
LLVM::LLVMType getInt8Type() { return llvmInt8Type; }
|
|
|
|
LLVM::LLVMType getInt32Type() { return llvmInt32Type; }
|
|
|
|
LLVM::LLVMType getInt64Type() { return llvmInt64Type; }
|
|
|
|
LLVM::LLVMType getIntPtrType() {
|
|
const llvm::Module &module = getLLVMDialect()->getLLVMModule();
|
|
return LLVM::LLVMType::getIntNTy(
|
|
getLLVMDialect(), module.getDataLayout().getPointerSizeInBits());
|
|
}
|
|
|
|
LLVM::LLVMType getCUResultType() {
|
|
// This is declared as an enum in CUDA but helpers use i32.
|
|
return getInt32Type();
|
|
}
|
|
|
|
// Allocate a void pointer on the stack.
|
|
Value allocatePointer(OpBuilder &builder, Location loc) {
|
|
auto one = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
|
|
builder.getI32IntegerAttr(1));
|
|
return builder.create<LLVM::AllocaOp>(loc, getPointerPointerType(), one,
|
|
/*alignment=*/0);
|
|
}
|
|
|
|
void declareCudaFunctions(Location loc);
|
|
void addParamToList(OpBuilder &builder, Location loc, Value param, Value list,
|
|
unsigned pos, Value one);
|
|
Value setupParamsArray(gpu::LaunchFuncOp launchOp, OpBuilder &builder);
|
|
Value generateKernelNameConstant(StringRef name, Location loc,
|
|
OpBuilder &builder);
|
|
void translateGpuLaunchCalls(mlir::gpu::LaunchFuncOp launchOp);
|
|
|
|
public:
|
|
// Run the dialect converter on the module.
|
|
void runOnModule() override {
|
|
// Cache the LLVMDialect for the current module.
|
|
llvmDialect = getContext().getRegisteredDialect<LLVM::LLVMDialect>();
|
|
// Cache the used LLVM types.
|
|
initializeCachedTypes();
|
|
|
|
getModule().walk([this](mlir::gpu::LaunchFuncOp op) {
|
|
translateGpuLaunchCalls(op);
|
|
});
|
|
|
|
// GPU kernel modules are no longer necessary since we have a global
|
|
// constant with the CUBIN data.
|
|
for (auto m :
|
|
llvm::make_early_inc_range(getModule().getOps<gpu::GPUModuleOp>()))
|
|
m.erase();
|
|
}
|
|
|
|
private:
|
|
LLVM::LLVMDialect *llvmDialect;
|
|
LLVM::LLVMType llvmVoidType;
|
|
LLVM::LLVMType llvmPointerType;
|
|
LLVM::LLVMType llvmPointerPointerType;
|
|
LLVM::LLVMType llvmInt8Type;
|
|
LLVM::LLVMType llvmInt32Type;
|
|
LLVM::LLVMType llvmInt64Type;
|
|
LLVM::LLVMType llvmIntPtrType;
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
// Adds declarations for the needed helper functions from the CUDA wrapper.
|
|
// The types in comments give the actual types expected/returned but the API
|
|
// uses void pointers. This is fine as they have the same linkage in C.
|
|
void GpuLaunchFuncToCudaCallsPass::declareCudaFunctions(Location loc) {
|
|
ModuleOp module = getModule();
|
|
OpBuilder builder(module.getBody()->getTerminator());
|
|
if (!module.lookupSymbol(cuModuleLoadName)) {
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, cuModuleLoadName,
|
|
LLVM::LLVMType::getFunctionTy(
|
|
getCUResultType(),
|
|
{
|
|
getPointerPointerType(), /* CUmodule *module */
|
|
getPointerType() /* void *cubin */
|
|
},
|
|
/*isVarArg=*/false));
|
|
}
|
|
if (!module.lookupSymbol(cuModuleGetFunctionName)) {
|
|
// The helper uses void* instead of CUDA's opaque CUmodule and
|
|
// CUfunction.
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, cuModuleGetFunctionName,
|
|
LLVM::LLVMType::getFunctionTy(
|
|
getCUResultType(),
|
|
{
|
|
getPointerPointerType(), /* void **function */
|
|
getPointerType(), /* void *module */
|
|
getPointerType() /* char *name */
|
|
},
|
|
/*isVarArg=*/false));
|
|
}
|
|
if (!module.lookupSymbol(cuLaunchKernelName)) {
|
|
// Other than the CUDA api, the wrappers use uintptr_t to match the
|
|
// LLVM type if MLIR's index type, which the GPU dialect uses.
|
|
// Furthermore, they use void* instead of CUDA's opaque CUfunction and
|
|
// CUstream.
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, cuLaunchKernelName,
|
|
LLVM::LLVMType::getFunctionTy(
|
|
getCUResultType(),
|
|
{
|
|
getPointerType(), /* void* f */
|
|
getIntPtrType(), /* intptr_t gridXDim */
|
|
getIntPtrType(), /* intptr_t gridyDim */
|
|
getIntPtrType(), /* intptr_t gridZDim */
|
|
getIntPtrType(), /* intptr_t blockXDim */
|
|
getIntPtrType(), /* intptr_t blockYDim */
|
|
getIntPtrType(), /* intptr_t blockZDim */
|
|
getInt32Type(), /* unsigned int sharedMemBytes */
|
|
getPointerType(), /* void *hstream */
|
|
getPointerPointerType(), /* void **kernelParams */
|
|
getPointerPointerType() /* void **extra */
|
|
},
|
|
/*isVarArg=*/false));
|
|
}
|
|
if (!module.lookupSymbol(cuGetStreamHelperName)) {
|
|
// Helper function to get the current CUDA stream. Uses void* instead of
|
|
// CUDAs opaque CUstream.
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, cuGetStreamHelperName,
|
|
LLVM::LLVMType::getFunctionTy(getPointerType(), /*isVarArg=*/false));
|
|
}
|
|
if (!module.lookupSymbol(cuStreamSynchronizeName)) {
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, cuStreamSynchronizeName,
|
|
LLVM::LLVMType::getFunctionTy(getCUResultType(),
|
|
getPointerType() /* CUstream stream */,
|
|
/*isVarArg=*/false));
|
|
}
|
|
if (!module.lookupSymbol(kMcuMemHostRegister)) {
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, kMcuMemHostRegister,
|
|
LLVM::LLVMType::getFunctionTy(getVoidType(),
|
|
{
|
|
getPointerType(), /* void *ptr */
|
|
getInt64Type() /* int64 sizeBytes*/
|
|
},
|
|
/*isVarArg=*/false));
|
|
}
|
|
}
|
|
|
|
/// Emits the IR with the following structure:
|
|
///
|
|
/// %data = llvm.alloca 1 x type-of(<param>)
|
|
/// llvm.store <param>, %data
|
|
/// %typeErased = llvm.bitcast %data to !llvm<"i8*">
|
|
/// %addr = llvm.getelementptr <list>[<pos>]
|
|
/// llvm.store %typeErased, %addr
|
|
///
|
|
/// This is necessary to construct the list of arguments passed to the kernel
|
|
/// function as accepted by cuLaunchKernel, i.e. as a void** that points to list
|
|
/// of stack-allocated type-erased pointers to the actual arguments.
|
|
void GpuLaunchFuncToCudaCallsPass::addParamToList(OpBuilder &builder,
|
|
Location loc, Value param,
|
|
Value list, unsigned pos,
|
|
Value one) {
|
|
auto memLocation = builder.create<LLVM::AllocaOp>(
|
|
loc, param.getType().cast<LLVM::LLVMType>().getPointerTo(), one,
|
|
/*alignment=*/1);
|
|
builder.create<LLVM::StoreOp>(loc, param, memLocation);
|
|
auto casted =
|
|
builder.create<LLVM::BitcastOp>(loc, getPointerType(), memLocation);
|
|
|
|
auto index = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
|
|
builder.getI32IntegerAttr(pos));
|
|
auto gep = builder.create<LLVM::GEPOp>(loc, getPointerPointerType(), list,
|
|
ArrayRef<Value>{index});
|
|
builder.create<LLVM::StoreOp>(loc, casted, gep);
|
|
}
|
|
|
|
// Generates a parameters array to be used with a CUDA kernel launch call. The
|
|
// arguments are extracted from the launchOp.
|
|
// The generated code is essentially as follows:
|
|
//
|
|
// %array = alloca(numparams * sizeof(void *))
|
|
// for (i : [0, NumKernelOperands))
|
|
// %array[i] = cast<void*>(KernelOperand[i])
|
|
// return %array
|
|
Value GpuLaunchFuncToCudaCallsPass::setupParamsArray(gpu::LaunchFuncOp launchOp,
|
|
OpBuilder &builder) {
|
|
|
|
// Get the launch target.
|
|
auto containingModule = launchOp.getParentOfType<ModuleOp>();
|
|
if (!containingModule)
|
|
return {};
|
|
auto gpuModule = containingModule.lookupSymbol<gpu::GPUModuleOp>(
|
|
launchOp.getKernelModuleName());
|
|
if (!gpuModule)
|
|
return {};
|
|
auto gpuFunc = gpuModule.lookupSymbol<LLVM::LLVMFuncOp>(launchOp.kernel());
|
|
if (!gpuFunc)
|
|
return {};
|
|
|
|
unsigned numArgs = gpuFunc.getNumArguments();
|
|
|
|
auto numKernelOperands = launchOp.getNumKernelOperands();
|
|
Location loc = launchOp.getLoc();
|
|
auto one = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
|
|
builder.getI32IntegerAttr(1));
|
|
auto arraySize = builder.create<LLVM::ConstantOp>(
|
|
loc, getInt32Type(), builder.getI32IntegerAttr(numArgs));
|
|
auto array = builder.create<LLVM::AllocaOp>(loc, getPointerPointerType(),
|
|
arraySize, /*alignment=*/0);
|
|
|
|
unsigned pos = 0;
|
|
for (unsigned idx = 0; idx < numKernelOperands; ++idx) {
|
|
auto operand = launchOp.getKernelOperand(idx);
|
|
auto llvmType = operand.getType().cast<LLVM::LLVMType>();
|
|
|
|
// Assume all struct arguments come from MemRef. If this assumption does not
|
|
// hold anymore then we `launchOp` to lower from MemRefType and not after
|
|
// LLVMConversion has taken place and the MemRef information is lost.
|
|
if (!llvmType.isStructTy()) {
|
|
addParamToList(builder, loc, operand, array, pos++, one);
|
|
continue;
|
|
}
|
|
|
|
// Put individual components of a memref descriptor into the flat argument
|
|
// list. We cannot use unpackMemref from LLVM lowering here because we have
|
|
// no access to MemRefType that had been lowered away.
|
|
for (int32_t j = 0, ej = llvmType.getStructNumElements(); j < ej; ++j) {
|
|
auto elemType = llvmType.getStructElementType(j);
|
|
if (elemType.isArrayTy()) {
|
|
for (int32_t k = 0, ek = elemType.getArrayNumElements(); k < ek; ++k) {
|
|
Value elem = builder.create<LLVM::ExtractValueOp>(
|
|
loc, elemType.getArrayElementType(), operand,
|
|
builder.getI32ArrayAttr({j, k}));
|
|
addParamToList(builder, loc, elem, array, pos++, one);
|
|
}
|
|
} else {
|
|
assert((elemType.isIntegerTy() || elemType.isFloatTy() ||
|
|
elemType.isDoubleTy() || elemType.isPointerTy()) &&
|
|
"expected scalar type");
|
|
Value strct = builder.create<LLVM::ExtractValueOp>(
|
|
loc, elemType, operand, builder.getI32ArrayAttr(j));
|
|
addParamToList(builder, loc, strct, array, pos++, one);
|
|
}
|
|
}
|
|
}
|
|
|
|
return array;
|
|
}
|
|
|
|
// Generates an LLVM IR dialect global that contains the name of the given
|
|
// kernel function as a C string, and returns a pointer to its beginning.
|
|
// The code is essentially:
|
|
//
|
|
// llvm.global constant @kernel_name("function_name\00")
|
|
// func(...) {
|
|
// %0 = llvm.addressof @kernel_name
|
|
// %1 = llvm.constant (0 : index)
|
|
// %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*">
|
|
// }
|
|
Value GpuLaunchFuncToCudaCallsPass::generateKernelNameConstant(
|
|
StringRef name, Location loc, OpBuilder &builder) {
|
|
// Make sure the trailing zero is included in the constant.
|
|
std::vector<char> kernelName(name.begin(), name.end());
|
|
kernelName.push_back('\0');
|
|
|
|
std::string globalName = std::string(llvm::formatv("{0}_kernel_name", name));
|
|
return LLVM::createGlobalString(
|
|
loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()),
|
|
LLVM::Linkage::Internal, llvmDialect);
|
|
}
|
|
|
|
// Emits LLVM IR to launch a kernel function. Expects the module that contains
|
|
// the compiled kernel function as a cubin in the 'nvvm.cubin' attribute of the
|
|
// kernel function in the IR.
|
|
// While MLIR has no global constants, also expects a cubin getter function in
|
|
// an 'nvvm.cubingetter' attribute. Such function is expected to return a
|
|
// pointer to the cubin blob when invoked.
|
|
// With these given, the generated code in essence is
|
|
//
|
|
// %0 = call %cubingetter
|
|
// %1 = alloca sizeof(void*)
|
|
// call %mcuModuleLoad(%2, %1)
|
|
// %2 = alloca sizeof(void*)
|
|
// %3 = load %1
|
|
// %4 = <see generateKernelNameConstant>
|
|
// call %mcuModuleGetFunction(%2, %3, %4)
|
|
// %5 = call %mcuGetStreamHelper()
|
|
// %6 = load %2
|
|
// %7 = <see setupParamsArray>
|
|
// call %mcuLaunchKernel(%6, <launchOp operands 0..5>, 0, %5, %7, nullptr)
|
|
// call %mcuStreamSynchronize(%5)
|
|
void GpuLaunchFuncToCudaCallsPass::translateGpuLaunchCalls(
|
|
mlir::gpu::LaunchFuncOp launchOp) {
|
|
OpBuilder builder(launchOp);
|
|
Location loc = launchOp.getLoc();
|
|
declareCudaFunctions(loc);
|
|
|
|
auto zero = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
|
|
builder.getI32IntegerAttr(0));
|
|
// Create an LLVM global with CUBIN extracted from the kernel annotation and
|
|
// obtain a pointer to the first byte in it.
|
|
auto kernelModule = getModule().lookupSymbol<gpu::GPUModuleOp>(
|
|
launchOp.getKernelModuleName());
|
|
assert(kernelModule && "expected a kernel module");
|
|
|
|
auto cubinAttr = kernelModule.getAttrOfType<StringAttr>(kCubinAnnotation);
|
|
if (!cubinAttr) {
|
|
kernelModule.emitOpError()
|
|
<< "missing " << kCubinAnnotation << " attribute";
|
|
return signalPassFailure();
|
|
}
|
|
|
|
SmallString<128> nameBuffer(kernelModule.getName());
|
|
nameBuffer.append(kCubinStorageSuffix);
|
|
Value data = LLVM::createGlobalString(
|
|
loc, builder, nameBuffer.str(), cubinAttr.getValue(),
|
|
LLVM::Linkage::Internal, getLLVMDialect());
|
|
|
|
// Emit the load module call to load the module data. Error checking is done
|
|
// in the called helper function.
|
|
auto cuModule = allocatePointer(builder, loc);
|
|
auto cuModuleLoad =
|
|
getModule().lookupSymbol<LLVM::LLVMFuncOp>(cuModuleLoadName);
|
|
builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{getCUResultType()},
|
|
builder.getSymbolRefAttr(cuModuleLoad),
|
|
ArrayRef<Value>{cuModule, data});
|
|
// Get the function from the module. The name corresponds to the name of
|
|
// the kernel function.
|
|
auto cuOwningModuleRef =
|
|
builder.create<LLVM::LoadOp>(loc, getPointerType(), cuModule);
|
|
auto kernelName = generateKernelNameConstant(launchOp.kernel(), loc, builder);
|
|
auto cuFunction = allocatePointer(builder, loc);
|
|
auto cuModuleGetFunction =
|
|
getModule().lookupSymbol<LLVM::LLVMFuncOp>(cuModuleGetFunctionName);
|
|
builder.create<LLVM::CallOp>(
|
|
loc, ArrayRef<Type>{getCUResultType()},
|
|
builder.getSymbolRefAttr(cuModuleGetFunction),
|
|
ArrayRef<Value>{cuFunction, cuOwningModuleRef, kernelName});
|
|
// Grab the global stream needed for execution.
|
|
auto cuGetStreamHelper =
|
|
getModule().lookupSymbol<LLVM::LLVMFuncOp>(cuGetStreamHelperName);
|
|
auto cuStream = builder.create<LLVM::CallOp>(
|
|
loc, ArrayRef<Type>{getPointerType()},
|
|
builder.getSymbolRefAttr(cuGetStreamHelper), ArrayRef<Value>{});
|
|
// Invoke the function with required arguments.
|
|
auto cuLaunchKernel =
|
|
getModule().lookupSymbol<LLVM::LLVMFuncOp>(cuLaunchKernelName);
|
|
auto cuFunctionRef =
|
|
builder.create<LLVM::LoadOp>(loc, getPointerType(), cuFunction);
|
|
auto paramsArray = setupParamsArray(launchOp, builder);
|
|
if (!paramsArray) {
|
|
launchOp.emitOpError() << "cannot pass given parameters to the kernel";
|
|
return signalPassFailure();
|
|
}
|
|
auto nullpointer =
|
|
builder.create<LLVM::IntToPtrOp>(loc, getPointerPointerType(), zero);
|
|
builder.create<LLVM::CallOp>(
|
|
loc, ArrayRef<Type>{getCUResultType()},
|
|
builder.getSymbolRefAttr(cuLaunchKernel),
|
|
ArrayRef<Value>{cuFunctionRef, launchOp.getOperand(0),
|
|
launchOp.getOperand(1), launchOp.getOperand(2),
|
|
launchOp.getOperand(3), launchOp.getOperand(4),
|
|
launchOp.getOperand(5), zero, /* sharedMemBytes */
|
|
cuStream.getResult(0), /* stream */
|
|
paramsArray, /* kernel params */
|
|
nullpointer /* extra */});
|
|
// Sync on the stream to make it synchronous.
|
|
auto cuStreamSync =
|
|
getModule().lookupSymbol<LLVM::LLVMFuncOp>(cuStreamSynchronizeName);
|
|
builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{getCUResultType()},
|
|
builder.getSymbolRefAttr(cuStreamSync),
|
|
ArrayRef<Value>(cuStream.getResult(0)));
|
|
launchOp.erase();
|
|
}
|
|
|
|
std::unique_ptr<mlir::OpPassBase<mlir::ModuleOp>>
|
|
mlir::createConvertGpuLaunchFuncToCudaCallsPass() {
|
|
return std::make_unique<GpuLaunchFuncToCudaCallsPass>();
|
|
}
|