Files
clang-p2996/mlir/lib/Conversion/LoopToStandard/LoopToStandard.cpp
River Riddle 9a277af2d4 [mlir][Pass] Add support for generating pass utilities via tablegen
This revision adds support for generating utilities for passes such as options/statistics/etc. that can be inferred from the tablegen definition. This removes additional boilerplate from the pass, and also makes it easier to remove the reliance on the pass registry to provide certain things(e.g. the pass argument).

Differential Revision: https://reviews.llvm.org/D76659
2020-04-01 02:10:46 -07:00

371 lines
16 KiB
C++

//===- LoopToStandard.cpp - ControlFlow to CFG conversion -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert loop.for, loop.if and loop.terminator
// ops into standard CFG ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LoopToStandard/ConvertLoopToStandard.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/Functional.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
using namespace mlir;
using namespace mlir::loop;
namespace {
struct LoopToStandardPass : public OperationPass<LoopToStandardPass> {
/// Include the generated pass utilities.
#define GEN_PASS_ConvertLoopToStandard
#include "mlir/Conversion/Passes.h.inc"
void runOnOperation() override;
};
// Create a CFG subgraph for the loop around its body blocks (if the body
// contained other loops, they have been already lowered to a flow of blocks).
// Maintain the invariants that a CFG subgraph created for any loop has a single
// entry and a single exit, and that the entry/exit blocks are respectively
// first/last blocks in the parent region. The original loop operation is
// replaced by the initialization operations that set up the initial value of
// the loop induction variable (%iv) and computes the loop bounds that are loop-
// invariant for affine loops. The operations following the original loop.for
// are split out into a separate continuation (exit) block. A condition block is
// created before the continuation block. It checks the exit condition of the
// loop and branches either to the continuation block, or to the first block of
// the body. The condition block takes as arguments the values of the induction
// variable followed by loop-carried values. Since it dominates both the body
// blocks and the continuation block, loop-carried values are visible in all of
// those blocks. Induction variable modification is appended to the last block
// of the body (which is the exit block from the body subgraph thanks to the
// invariant we maintain) along with a branch that loops back to the condition
// block. Loop-carried values are the loop terminator operands, which are
// forwarded to the branch.
//
// +---------------------------------+
// | <code before the ForOp> |
// | <definitions of %init...> |
// | <compute initial %iv value> |
// | br cond(%iv, %init...) |
// +---------------------------------+
// |
// -------| |
// | v v
// | +--------------------------------+
// | | cond(%iv, %init...): |
// | | <compare %iv to upper bound> |
// | | cond_br %r, body, end |
// | +--------------------------------+
// | | |
// | | -------------|
// | v |
// | +--------------------------------+ |
// | | body-first: | |
// | | <%init visible by dominance> | |
// | | <body contents> | |
// | +--------------------------------+ |
// | | |
// | ... |
// | | |
// | +--------------------------------+ |
// | | body-last: | |
// | | <body contents> | |
// | | <operands of yield = %yields>| |
// | | %new_iv =<add step to %iv> | |
// | | br cond(%new_iv, %yields) | |
// | +--------------------------------+ |
// | | |
// |----------- |--------------------
// v
// +--------------------------------+
// | end: |
// | <code after the ForOp> |
// | <%init visible by dominance> |
// +--------------------------------+
//
struct ForLowering : public OpRewritePattern<ForOp> {
using OpRewritePattern<ForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const override;
};
// Create a CFG subgraph for the loop.if operation (including its "then" and
// optional "else" operation blocks). We maintain the invariants that the
// subgraph has a single entry and a single exit point, and that the entry/exit
// blocks are respectively the first/last block of the enclosing region. The
// operations following the loop.if are split into a continuation (subgraph
// exit) block. The condition is lowered to a chain of blocks that implement the
// short-circuit scheme. Condition blocks are created by splitting out an empty
// block from the block that contains the loop.if operation. They
// conditionally branch to either the first block of the "then" region, or to
// the first block of the "else" region. If the latter is absent, they branch
// to the continuation block instead. The last blocks of "then" and "else"
// regions (which are known to be exit blocks thanks to the invariant we
// maintain).
//
// +--------------------------------+
// | <code before the IfOp> |
// | cond_br %cond, %then, %else |
// +--------------------------------+
// | |
// | --------------|
// v |
// +--------------------------------+ |
// | then: | |
// | <then contents> | |
// | br continue | |
// +--------------------------------+ |
// | |
// |---------- |-------------
// | V
// | +--------------------------------+
// | | else: |
// | | <else contents> |
// | | br continue |
// | +--------------------------------+
// | |
// ------| |
// v v
// +--------------------------------+
// | continue: |
// | <code after the IfOp> |
// +--------------------------------+
//
struct IfLowering : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp ifOp,
PatternRewriter &rewriter) const override;
};
struct ParallelLowering : public OpRewritePattern<mlir::loop::ParallelOp> {
using OpRewritePattern<mlir::loop::ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(mlir::loop::ParallelOp parallelOp,
PatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ForLowering::matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const {
Location loc = forOp.getLoc();
// Start by splitting the block containing the 'loop.for' into two parts.
// The part before will get the init code, the part after will be the end
// point.
auto *initBlock = rewriter.getInsertionBlock();
auto initPosition = rewriter.getInsertionPoint();
auto *endBlock = rewriter.splitBlock(initBlock, initPosition);
// Use the first block of the loop body as the condition block since it is the
// block that has the induction variable and loop-carried values as arguments.
// Split out all operations from the first block into a new block. Move all
// body blocks from the loop body region to the region containing the loop.
auto *conditionBlock = &forOp.region().front();
auto *firstBodyBlock =
rewriter.splitBlock(conditionBlock, conditionBlock->begin());
auto *lastBodyBlock = &forOp.region().back();
rewriter.inlineRegionBefore(forOp.region(), endBlock);
auto iv = conditionBlock->getArgument(0);
// Append the induction variable stepping logic to the last body block and
// branch back to the condition block. Loop-carried values are taken from
// operands of the loop terminator.
Operation *terminator = lastBodyBlock->getTerminator();
rewriter.setInsertionPointToEnd(lastBodyBlock);
auto step = forOp.step();
auto stepped = rewriter.create<AddIOp>(loc, iv, step).getResult();
if (!stepped)
return failure();
SmallVector<Value, 8> loopCarried;
loopCarried.push_back(stepped);
loopCarried.append(terminator->operand_begin(), terminator->operand_end());
rewriter.create<BranchOp>(loc, conditionBlock, loopCarried);
rewriter.eraseOp(terminator);
// Compute loop bounds before branching to the condition.
rewriter.setInsertionPointToEnd(initBlock);
Value lowerBound = forOp.lowerBound();
Value upperBound = forOp.upperBound();
if (!lowerBound || !upperBound)
return failure();
// The initial values of loop-carried values is obtained from the operands
// of the loop operation.
SmallVector<Value, 8> destOperands;
destOperands.push_back(lowerBound);
auto iterOperands = forOp.getIterOperands();
destOperands.append(iterOperands.begin(), iterOperands.end());
rewriter.create<BranchOp>(loc, conditionBlock, destOperands);
// With the body block done, we can fill in the condition block.
rewriter.setInsertionPointToEnd(conditionBlock);
auto comparison =
rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, iv, upperBound);
rewriter.create<CondBranchOp>(loc, comparison, firstBodyBlock,
ArrayRef<Value>(), endBlock, ArrayRef<Value>());
// The result of the loop operation is the values of the condition block
// arguments except the induction variable on the last iteration.
rewriter.replaceOp(forOp, conditionBlock->getArguments().drop_front());
return success();
}
LogicalResult IfLowering::matchAndRewrite(IfOp ifOp,
PatternRewriter &rewriter) const {
auto loc = ifOp.getLoc();
// Start by splitting the block containing the 'loop.if' into two parts.
// The part before will contain the condition, the part after will be the
// continuation point.
auto *condBlock = rewriter.getInsertionBlock();
auto opPosition = rewriter.getInsertionPoint();
auto *continueBlock = rewriter.splitBlock(condBlock, opPosition);
// Move blocks from the "then" region to the region containing 'loop.if',
// place it before the continuation block, and branch to it.
auto &thenRegion = ifOp.thenRegion();
auto *thenBlock = &thenRegion.front();
rewriter.eraseOp(thenRegion.back().getTerminator());
rewriter.setInsertionPointToEnd(&thenRegion.back());
rewriter.create<BranchOp>(loc, continueBlock);
rewriter.inlineRegionBefore(thenRegion, continueBlock);
// Move blocks from the "else" region (if present) to the region containing
// 'loop.if', place it before the continuation block and branch to it. It
// will be placed after the "then" regions.
auto *elseBlock = continueBlock;
auto &elseRegion = ifOp.elseRegion();
if (!elseRegion.empty()) {
elseBlock = &elseRegion.front();
rewriter.eraseOp(elseRegion.back().getTerminator());
rewriter.setInsertionPointToEnd(&elseRegion.back());
rewriter.create<BranchOp>(loc, continueBlock);
rewriter.inlineRegionBefore(elseRegion, continueBlock);
}
rewriter.setInsertionPointToEnd(condBlock);
rewriter.create<CondBranchOp>(loc, ifOp.condition(), thenBlock,
/*trueArgs=*/ArrayRef<Value>(), elseBlock,
/*falseArgs=*/ArrayRef<Value>());
// Ok, we're done!
rewriter.eraseOp(ifOp);
return success();
}
LogicalResult
ParallelLowering::matchAndRewrite(ParallelOp parallelOp,
PatternRewriter &rewriter) const {
Location loc = parallelOp.getLoc();
BlockAndValueMapping mapping;
// For a parallel loop, we essentially need to create an n-dimensional loop
// nest. We do this by translating to loop.for ops and have those lowered in
// a further rewrite. If a parallel loop contains reductions (and thus returns
// values), forward the initial values for the reductions down the loop
// hierarchy and bubble up the results by modifying the "yield" terminator.
SmallVector<Value, 4> iterArgs = llvm::to_vector<4>(parallelOp.initVals());
bool first = true;
SmallVector<Value, 4> loopResults(iterArgs);
for (auto loop_operands :
llvm::zip(parallelOp.getInductionVars(), parallelOp.lowerBound(),
parallelOp.upperBound(), parallelOp.step())) {
Value iv, lower, upper, step;
std::tie(iv, lower, upper, step) = loop_operands;
ForOp forOp = rewriter.create<ForOp>(loc, lower, upper, step, iterArgs);
mapping.map(iv, forOp.getInductionVar());
auto iterRange = forOp.getRegionIterArgs();
iterArgs.assign(iterRange.begin(), iterRange.end());
if (first) {
// Store the results of the outermost loop that will be used to replace
// the results of the parallel loop when it is fully rewritten.
loopResults.assign(forOp.result_begin(), forOp.result_end());
first = false;
} else {
// A loop is constructed with an empty "yield" terminator by default.
// Replace it with another "yield" that forwards the results of the nested
// loop to the parent loop. We need to explicitly make sure the new
// terminator is the last operation in the block because further
// transforms rely on this.
rewriter.setInsertionPointToEnd(rewriter.getInsertionBlock());
rewriter.replaceOpWithNewOp<YieldOp>(
rewriter.getInsertionBlock()->getTerminator(), forOp.getResults());
}
rewriter.setInsertionPointToStart(forOp.getBody());
}
// Now copy over the contents of the body.
SmallVector<Value, 4> yieldOperands;
yieldOperands.reserve(parallelOp.getNumResults());
for (auto &op : parallelOp.getBody()->without_terminator()) {
// Reduction blocks are handled differently.
auto reduce = dyn_cast<ReduceOp>(op);
if (!reduce) {
rewriter.clone(op, mapping);
continue;
}
// Clone the body of the reduction operation into the body of the loop,
// using operands of "loop.reduce" and iteration arguments corresponding
// to the reduction value to replace arguments of the reduction block.
// Collect operands of "loop.reduce.return" to be returned by a final
// "loop.yield" instead.
Value arg = iterArgs[yieldOperands.size()];
Block &reduceBlock = reduce.reductionOperator().front();
mapping.map(reduceBlock.getArgument(0), mapping.lookupOrDefault(arg));
mapping.map(reduceBlock.getArgument(1),
mapping.lookupOrDefault(reduce.operand()));
for (auto &nested : reduceBlock.without_terminator())
rewriter.clone(nested, mapping);
yieldOperands.push_back(
mapping.lookup(reduceBlock.getTerminator()->getOperand(0)));
}
rewriter.setInsertionPointToEnd(rewriter.getInsertionBlock());
rewriter.replaceOpWithNewOp<YieldOp>(
rewriter.getInsertionBlock()->getTerminator(), yieldOperands);
rewriter.replaceOp(parallelOp, loopResults);
return success();
}
void mlir::populateLoopToStdConversionPatterns(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
patterns.insert<ForLowering, IfLowering, ParallelLowering>(ctx);
}
void LoopToStandardPass::runOnOperation() {
OwningRewritePatternList patterns;
populateLoopToStdConversionPatterns(patterns, &getContext());
ConversionTarget target(getContext());
target.addLegalDialect<StandardOpsDialect>();
if (failed(applyPartialConversion(getOperation(), target, patterns)))
signalPassFailure();
}
std::unique_ptr<Pass> mlir::createLowerToCFGPass() {
return std::make_unique<LoopToStandardPass>();
}