Summary: Currently the dependence analysis in LLVM is unable to compute accurate dependence vectors for multi-dimensional fixed size arrays. This is mainly because the delinearization algorithm in scalar evolution relies on parametric terms to be present in the access functions. In the case of fixed size arrays such parametric terms are not present, but we can use the indexes from GEP instructions to recover the subscripts for each dimension of the arrays. This patch adds this ability under the existing option `-da-disable-delinearization-checks`. Authored By: bmahjour Reviewer: Meinersbur, sebpop, fhahn, dmgreen, grosser, etiotto, bollu Reviewed By: Meinersbur Subscribers: hiraditya, arphaman, Whitney, ppc-slack, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D72178
104 lines
3.7 KiB
LLVM
104 lines
3.7 KiB
LLVM
; RUN: opt < %s -basicaa -loop-interchange -pass-remarks-missed='loop-interchange' \
|
|
; RUN: -pass-remarks-output=%t -verify-loop-info -verify-dom-info -S | FileCheck -check-prefix=IR %s
|
|
; RUN: FileCheck --input-file=%t %s
|
|
|
|
; RUN: opt < %s -basicaa -loop-interchange -pass-remarks-missed='loop-interchange' \
|
|
; RUN: -da-disable-delinearization-checks -pass-remarks-output=%t \
|
|
; RUN: -verify-loop-info -verify-dom-info -S | FileCheck -check-prefix=IR %s
|
|
; RUN: FileCheck --check-prefix=DELIN --input-file=%t %s
|
|
|
|
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
|
|
target triple = "x86_64-unknown-linux-gnu"
|
|
|
|
@A = common global [100 x [100 x i32]] zeroinitializer
|
|
@B = common global [100 x [100 x [100 x i32]]] zeroinitializer
|
|
@C = common global [100 x [100 x i64]] zeroinitializer
|
|
|
|
;;--------------------------------------Test case 01------------------------------------
|
|
;; [FIXME] This loop though valid is currently not interchanged due to the limitation that we cannot split the inner loop latch due to multiple use of inner induction
|
|
;; variable.(used to increment the loop counter and to access A[j+1][i+1]
|
|
;; for(int i=0;i<N-1;i++)
|
|
;; for(int j=1;j<N-1;j++)
|
|
;; A[j+1][i+1] = A[j+1][i+1] + k;
|
|
|
|
; IR-LABEL: @interchange_01
|
|
; IR-NOT: split
|
|
|
|
; CHECK: Name: Dependence
|
|
; CHECK-NEXT: Function: interchange_01
|
|
|
|
; DELIN: Name: UnsupportedInsBetweenInduction
|
|
; DELIN-NEXT: Function: interchange_01
|
|
define void @interchange_01(i32 %k, i32 %N) {
|
|
entry:
|
|
%sub = add nsw i32 %N, -1
|
|
%cmp26 = icmp sgt i32 %N, 1
|
|
br i1 %cmp26, label %for.cond1.preheader.lr.ph, label %for.end17
|
|
|
|
for.cond1.preheader.lr.ph:
|
|
%cmp324 = icmp sgt i32 %sub, 1
|
|
%0 = add i32 %N, -2
|
|
%1 = sext i32 %sub to i64
|
|
br label %for.cond1.preheader
|
|
|
|
for.cond.loopexit:
|
|
%cmp = icmp slt i64 %indvars.iv.next29, %1
|
|
br i1 %cmp, label %for.cond1.preheader, label %for.end17
|
|
|
|
for.cond1.preheader:
|
|
%indvars.iv28 = phi i64 [ 0, %for.cond1.preheader.lr.ph ], [ %indvars.iv.next29, %for.cond.loopexit ]
|
|
%indvars.iv.next29 = add nuw nsw i64 %indvars.iv28, 1
|
|
br i1 %cmp324, label %for.body4, label %for.cond.loopexit
|
|
|
|
for.body4:
|
|
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body4 ], [ 1, %for.cond1.preheader ]
|
|
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
|
|
%arrayidx7 = getelementptr inbounds [100 x [100 x i32]], [100 x [100 x i32]]* @A, i64 0, i64 %indvars.iv.next, i64 %indvars.iv.next29
|
|
%2 = load i32, i32* %arrayidx7
|
|
%add8 = add nsw i32 %2, %k
|
|
store i32 %add8, i32* %arrayidx7
|
|
%lftr.wideiv = trunc i64 %indvars.iv to i32
|
|
%exitcond = icmp eq i32 %lftr.wideiv, %0
|
|
br i1 %exitcond, label %for.cond.loopexit, label %for.body4
|
|
|
|
for.end17:
|
|
ret void
|
|
}
|
|
|
|
; When currently cannot interchange this loop, because transform currently
|
|
; expects the latches to be the exiting blocks too.
|
|
|
|
; IR-LABEL: @interchange_02
|
|
; IR-NOT: split
|
|
;
|
|
; CHECK: Name: ExitingNotLatch
|
|
; CHECK-NEXT: Function: interchange_02
|
|
define void @interchange_02(i64 %k, i64 %N) {
|
|
entry:
|
|
br label %for1.header
|
|
|
|
for1.header:
|
|
%j23 = phi i64 [ 0, %entry ], [ %j.next24, %for1.inc10 ]
|
|
br label %for2
|
|
|
|
for2:
|
|
%j = phi i64 [ %j.next, %latch ], [ 0, %for1.header ]
|
|
%arrayidx5 = getelementptr inbounds [100 x [100 x i64]], [100 x [100 x i64]]* @C, i64 0, i64 %j, i64 %j23
|
|
%lv = load i64, i64* %arrayidx5
|
|
%add = add nsw i64 %lv, %k
|
|
store i64 %add, i64* %arrayidx5
|
|
%exitcond = icmp eq i64 %j, 99
|
|
br i1 %exitcond, label %for1.inc10, label %latch
|
|
latch:
|
|
%j.next = add nuw nsw i64 %j, 1
|
|
br label %for2
|
|
|
|
for1.inc10:
|
|
%j.next24 = add nuw nsw i64 %j23, 1
|
|
%exitcond26 = icmp eq i64 %j23, 99
|
|
br i1 %exitcond26, label %for.end12, label %for1.header
|
|
|
|
for.end12:
|
|
ret void
|
|
}
|