This change introduces subtarget features to predicate certain instructions and system registers that are available only on 'A' profile targets. Those features are not present when targeting a generic CPU, which is the default processor. In other words the generic CPU now means the intersection of 'A' and 'R' profiles. To maintain backwards compatibility we enable the features that correspond to -march=armv8-a when the architecture is not explicitly specified on the command line. References: https://developer.arm.com/documentation/ddi0600/latest Differential Revision: https://reviews.llvm.org/D110065
292 lines
8.9 KiB
C++
292 lines
8.9 KiB
C++
//===-- AArch64TargetParser - Parser for AArch64 features -------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a target parser to recognise AArch64 hardware features
|
|
// such as FPU/CPU/ARCH and extension names.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/AArch64TargetParser.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include <cctype>
|
|
|
|
using namespace llvm;
|
|
|
|
static unsigned checkArchVersion(llvm::StringRef Arch) {
|
|
if (Arch.size() >= 2 && Arch[0] == 'v' && std::isdigit(Arch[1]))
|
|
return (Arch[1] - 48);
|
|
return 0;
|
|
}
|
|
|
|
unsigned AArch64::getDefaultFPU(StringRef CPU, AArch64::ArchKind AK) {
|
|
if (CPU == "generic")
|
|
return AArch64ARCHNames[static_cast<unsigned>(AK)].DefaultFPU;
|
|
|
|
return StringSwitch<unsigned>(CPU)
|
|
#define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
|
|
.Case(NAME, ARM::DEFAULT_FPU)
|
|
#include "../../include/llvm/Support/AArch64TargetParser.def"
|
|
.Default(ARM::FK_INVALID);
|
|
}
|
|
|
|
uint64_t AArch64::getDefaultExtensions(StringRef CPU, AArch64::ArchKind AK) {
|
|
if (CPU == "generic")
|
|
return AArch64ARCHNames[static_cast<unsigned>(AK)].ArchBaseExtensions;
|
|
|
|
return StringSwitch<uint64_t>(CPU)
|
|
#define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
|
|
.Case(NAME, AArch64ARCHNames[static_cast<unsigned>(ArchKind::ID)] \
|
|
.ArchBaseExtensions | \
|
|
DEFAULT_EXT)
|
|
#include "../../include/llvm/Support/AArch64TargetParser.def"
|
|
.Default(AArch64::AEK_INVALID);
|
|
}
|
|
|
|
AArch64::ArchKind AArch64::getCPUArchKind(StringRef CPU) {
|
|
if (CPU == "generic")
|
|
return ArchKind::ARMV8A;
|
|
|
|
return StringSwitch<AArch64::ArchKind>(CPU)
|
|
#define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
|
|
.Case(NAME, ArchKind::ID)
|
|
#include "../../include/llvm/Support/AArch64TargetParser.def"
|
|
.Default(ArchKind::INVALID);
|
|
}
|
|
|
|
bool AArch64::getExtensionFeatures(uint64_t Extensions,
|
|
std::vector<StringRef> &Features) {
|
|
if (Extensions == AArch64::AEK_INVALID)
|
|
return false;
|
|
|
|
if (Extensions & AEK_FP)
|
|
Features.push_back("+fp-armv8");
|
|
if (Extensions & AEK_SIMD)
|
|
Features.push_back("+neon");
|
|
if (Extensions & AEK_CRC)
|
|
Features.push_back("+crc");
|
|
if (Extensions & AEK_CRYPTO)
|
|
Features.push_back("+crypto");
|
|
if (Extensions & AEK_DOTPROD)
|
|
Features.push_back("+dotprod");
|
|
if (Extensions & AEK_FP16FML)
|
|
Features.push_back("+fp16fml");
|
|
if (Extensions & AEK_FP16)
|
|
Features.push_back("+fullfp16");
|
|
if (Extensions & AEK_PROFILE)
|
|
Features.push_back("+spe");
|
|
if (Extensions & AEK_RAS)
|
|
Features.push_back("+ras");
|
|
if (Extensions & AEK_LSE)
|
|
Features.push_back("+lse");
|
|
if (Extensions & AEK_RDM)
|
|
Features.push_back("+rdm");
|
|
if (Extensions & AEK_SVE)
|
|
Features.push_back("+sve");
|
|
if (Extensions & AEK_SVE2)
|
|
Features.push_back("+sve2");
|
|
if (Extensions & AEK_SVE2AES)
|
|
Features.push_back("+sve2-aes");
|
|
if (Extensions & AEK_SVE2SM4)
|
|
Features.push_back("+sve2-sm4");
|
|
if (Extensions & AEK_SVE2SHA3)
|
|
Features.push_back("+sve2-sha3");
|
|
if (Extensions & AEK_SVE2BITPERM)
|
|
Features.push_back("+sve2-bitperm");
|
|
if (Extensions & AArch64::AEK_TME)
|
|
Features.push_back("+tme");
|
|
if (Extensions & AEK_RCPC)
|
|
Features.push_back("+rcpc");
|
|
if (Extensions & AEK_BRBE)
|
|
Features.push_back("+brbe");
|
|
if (Extensions & AEK_PAUTH)
|
|
Features.push_back("+pauth");
|
|
if (Extensions & AEK_FLAGM)
|
|
Features.push_back("+flagm");
|
|
if (Extensions & AArch64::AEK_SME)
|
|
Features.push_back("+sme");
|
|
if (Extensions & AArch64::AEK_SMEF64)
|
|
Features.push_back("+sme-f64");
|
|
if (Extensions & AArch64::AEK_SMEI64)
|
|
Features.push_back("+sme-i64");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AArch64::getArchFeatures(AArch64::ArchKind AK,
|
|
std::vector<StringRef> &Features) {
|
|
if (AK == ArchKind::ARMV8A)
|
|
Features.push_back("+v8a");
|
|
if (AK == ArchKind::ARMV8_1A)
|
|
Features.push_back("+v8.1a");
|
|
if (AK == ArchKind::ARMV8_2A)
|
|
Features.push_back("+v8.2a");
|
|
if (AK == ArchKind::ARMV8_3A)
|
|
Features.push_back("+v8.3a");
|
|
if (AK == ArchKind::ARMV8_4A)
|
|
Features.push_back("+v8.4a");
|
|
if (AK == ArchKind::ARMV8_5A)
|
|
Features.push_back("+v8.5a");
|
|
if (AK == AArch64::ArchKind::ARMV8_6A)
|
|
Features.push_back("+v8.6a");
|
|
if (AK == AArch64::ArchKind::ARMV8_7A)
|
|
Features.push_back("+v8.7a");
|
|
if (AK == AArch64::ArchKind::ARMV9A)
|
|
Features.push_back("+v9a");
|
|
if (AK == AArch64::ArchKind::ARMV9_1A)
|
|
Features.push_back("+v9.1a");
|
|
if (AK == AArch64::ArchKind::ARMV9_2A)
|
|
Features.push_back("+v9.2a");
|
|
if(AK == AArch64::ArchKind::ARMV8R)
|
|
Features.push_back("+v8r");
|
|
|
|
return AK != ArchKind::INVALID;
|
|
}
|
|
|
|
StringRef AArch64::getArchName(AArch64::ArchKind AK) {
|
|
return AArch64ARCHNames[static_cast<unsigned>(AK)].getName();
|
|
}
|
|
|
|
StringRef AArch64::getCPUAttr(AArch64::ArchKind AK) {
|
|
return AArch64ARCHNames[static_cast<unsigned>(AK)].getCPUAttr();
|
|
}
|
|
|
|
StringRef AArch64::getSubArch(AArch64::ArchKind AK) {
|
|
return AArch64ARCHNames[static_cast<unsigned>(AK)].getSubArch();
|
|
}
|
|
|
|
unsigned AArch64::getArchAttr(AArch64::ArchKind AK) {
|
|
return AArch64ARCHNames[static_cast<unsigned>(AK)].ArchAttr;
|
|
}
|
|
|
|
StringRef AArch64::getArchExtName(unsigned ArchExtKind) {
|
|
for (const auto &AE : AArch64ARCHExtNames)
|
|
if (ArchExtKind == AE.ID)
|
|
return AE.getName();
|
|
return StringRef();
|
|
}
|
|
|
|
StringRef AArch64::getArchExtFeature(StringRef ArchExt) {
|
|
if (ArchExt.startswith("no")) {
|
|
StringRef ArchExtBase(ArchExt.substr(2));
|
|
for (const auto &AE : AArch64ARCHExtNames) {
|
|
if (AE.NegFeature && ArchExtBase == AE.getName())
|
|
return StringRef(AE.NegFeature);
|
|
}
|
|
}
|
|
|
|
for (const auto &AE : AArch64ARCHExtNames)
|
|
if (AE.Feature && ArchExt == AE.getName())
|
|
return StringRef(AE.Feature);
|
|
return StringRef();
|
|
}
|
|
|
|
StringRef AArch64::getDefaultCPU(StringRef Arch) {
|
|
ArchKind AK = parseArch(Arch);
|
|
if (AK == ArchKind::INVALID)
|
|
return StringRef();
|
|
|
|
// Look for multiple AKs to find the default for pair AK+Name.
|
|
for (const auto &CPU : AArch64CPUNames)
|
|
if (CPU.ArchID == AK && CPU.Default)
|
|
return CPU.getName();
|
|
|
|
// If we can't find a default then target the architecture instead
|
|
return "generic";
|
|
}
|
|
|
|
void AArch64::fillValidCPUArchList(SmallVectorImpl<StringRef> &Values) {
|
|
for (const auto &Arch : AArch64CPUNames) {
|
|
if (Arch.ArchID != ArchKind::INVALID)
|
|
Values.push_back(Arch.getName());
|
|
}
|
|
}
|
|
|
|
bool AArch64::isX18ReservedByDefault(const Triple &TT) {
|
|
return TT.isAndroid() || TT.isOSDarwin() || TT.isOSFuchsia() ||
|
|
TT.isOSWindows();
|
|
}
|
|
|
|
// Allows partial match, ex. "v8a" matches "armv8a".
|
|
AArch64::ArchKind AArch64::parseArch(StringRef Arch) {
|
|
Arch = ARM::getCanonicalArchName(Arch);
|
|
if (checkArchVersion(Arch) < 8)
|
|
return ArchKind::INVALID;
|
|
|
|
StringRef Syn = ARM::getArchSynonym(Arch);
|
|
for (const auto &A : AArch64ARCHNames) {
|
|
if (A.getName().endswith(Syn))
|
|
return A.ID;
|
|
}
|
|
return ArchKind::INVALID;
|
|
}
|
|
|
|
AArch64::ArchExtKind AArch64::parseArchExt(StringRef ArchExt) {
|
|
for (const auto &A : AArch64ARCHExtNames) {
|
|
if (ArchExt == A.getName())
|
|
return static_cast<ArchExtKind>(A.ID);
|
|
}
|
|
return AArch64::AEK_INVALID;
|
|
}
|
|
|
|
AArch64::ArchKind AArch64::parseCPUArch(StringRef CPU) {
|
|
for (const auto &C : AArch64CPUNames) {
|
|
if (CPU == C.getName())
|
|
return C.ArchID;
|
|
}
|
|
return ArchKind::INVALID;
|
|
}
|
|
|
|
// Parse a branch protection specification, which has the form
|
|
// standard | none | [bti,pac-ret[+b-key,+leaf]*]
|
|
// Returns true on success, with individual elements of the specification
|
|
// returned in `PBP`. Returns false in error, with `Err` containing
|
|
// an erroneous part of the spec.
|
|
bool AArch64::parseBranchProtection(StringRef Spec, ParsedBranchProtection &PBP,
|
|
StringRef &Err) {
|
|
PBP = {"none", "a_key", false};
|
|
if (Spec == "none")
|
|
return true; // defaults are ok
|
|
|
|
if (Spec == "standard") {
|
|
PBP.Scope = "non-leaf";
|
|
PBP.BranchTargetEnforcement = true;
|
|
return true;
|
|
}
|
|
|
|
SmallVector<StringRef, 4> Opts;
|
|
Spec.split(Opts, "+");
|
|
for (int I = 0, E = Opts.size(); I != E; ++I) {
|
|
StringRef Opt = Opts[I].trim();
|
|
if (Opt == "bti") {
|
|
PBP.BranchTargetEnforcement = true;
|
|
continue;
|
|
}
|
|
if (Opt == "pac-ret") {
|
|
PBP.Scope = "non-leaf";
|
|
for (; I + 1 != E; ++I) {
|
|
StringRef PACOpt = Opts[I + 1].trim();
|
|
if (PACOpt == "leaf")
|
|
PBP.Scope = "all";
|
|
else if (PACOpt == "b-key")
|
|
PBP.Key = "b_key";
|
|
else
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
if (Opt == "")
|
|
Err = "<empty>";
|
|
else
|
|
Err = Opt;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|