Use the custom upper bound computation in hoisting by the new getUpperBoundForIndex method. Depends On D113546 Reviewed By: nicolasvasilache Differential Revision: https://reviews.llvm.org/D113547
488 lines
20 KiB
C++
488 lines
20 KiB
C++
//===- HoistPadding.cpp - Hoisting transformation for PadTensorOp ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements functions concerned with hoisting padding operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "mlir/Dialect/Affine/Utils.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/SCF/Utils.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Vector/VectorOps.h"
|
|
#include "mlir/Dialect/Vector/VectorUtils.h"
|
|
#include "mlir/IR/AsmState.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/Transforms/LoopUtils.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using llvm::dbgs;
|
|
|
|
#define DEBUG_TYPE "hoist-padding"
|
|
|
|
#define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ")
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
/// Analysis class to support PadTensorOp hoisting across multiple enclosing
|
|
/// loops. The failure conditions are:
|
|
/// 1. Pad op has a use that is not an input of a LinalgOp.
|
|
/// 2. There is no immediately enclosing scf::ForOp.
|
|
/// 3. The backward slice from the pad op to the scf::ForOp to hoist above
|
|
/// contains an unknown op with a region.
|
|
/// 4. The backward slice from the pad op to the scf::ForOp to hoist above is
|
|
/// empty.
|
|
/// 5. The source tensor of pad op is not defined by an extract slice op.
|
|
/// 6. The source tensor of the extract slice op is not defined outside of
|
|
/// the outermost enclosing scf::ForOp.
|
|
/// 7. There is no enclosing scf::ForOp that indexes the padded data.
|
|
/// Other cases succeed and will trigger hoisting of the pad op.
|
|
struct HoistingAnalysis {
|
|
HoistingAnalysis(PadTensorOp padTensorOp, int numLoops);
|
|
|
|
bool isValid() { return valid; }
|
|
|
|
/// Footprint of the packedTensor, computed from the packingLoops.
|
|
SmallVector<Value> getPackedTensorSizes(ImplicitLocOpBuilder &b);
|
|
|
|
/// The outermost loop, determined by `nLevels` above which `padTensorOp` will
|
|
/// be hoisted.
|
|
scf::ForOp outermostEnclosingForOp;
|
|
|
|
/// Backward slice rooted at `padTensorOp` and nested under
|
|
/// `outermostEnclosingForOp`.
|
|
SetVector<Operation *> backwardSlice;
|
|
|
|
/// The scf::ForOp immediately enclosing `padTensorOp` such that:
|
|
/// 1. they are nested under `outermostEnclosingForOp` (inclusive)
|
|
/// 2. whose induction variable is used, directly or indirectly, in the
|
|
/// computation of `padTensorOp`.
|
|
/// The span of these loops determines the footprint of the packed tensor.
|
|
SmallVector<scf::ForOp> packingLoops;
|
|
|
|
private:
|
|
/// Returns the loops in `backwardSlice` used to index the padded data. The
|
|
/// method starts from `padTensorOp` and `sliceOp`, follows the use-def
|
|
/// chains of their index operands, and stores any enclosing loop whose
|
|
/// induction variable is part of the walked index computation.
|
|
///
|
|
/// Example:
|
|
/// ```
|
|
/// %source = linalg.fill(%cst, %arg0)
|
|
/// scf.for %i
|
|
/// scf.for %j
|
|
/// scf.for %k // not used to index %source!
|
|
/// %ubi = affine.min #map(%i)
|
|
/// %ubj = affine.min #map(%j)
|
|
/// %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj]
|
|
/// %padded_slice = linalg.pad_tensor %slice
|
|
/// ```
|
|
/// getIndexingLoops(%padded_slice, %slice) returns [scf.for %i, scf.for %j]
|
|
SmallVector<scf::ForOp> getIndexingLoops(PadTensorOp padTensorOp,
|
|
tensor::ExtractSliceOp sliceOp);
|
|
|
|
/// Encodes whether the analysis is valid and hoisting can proceed.
|
|
bool valid;
|
|
};
|
|
|
|
/// Return true if all uses of `padTensorOp` are an input tensor of some
|
|
/// LinalgOp.
|
|
static bool isOnlyUsedAsInputOfLinalgOp(PadTensorOp padTensorOp) {
|
|
for (OpOperand &use : padTensorOp.result().getUses()) {
|
|
auto linalgUser = dyn_cast<linalg::LinalgOp>(use.getOwner());
|
|
if (!linalgUser || !linalgUser.isInputTensor(&use)) {
|
|
LLVM_DEBUG(DBGS() << "Found a use of " << *(padTensorOp)
|
|
<< "\nthat is not an input tensor of a LinalgOp, "
|
|
<< "cannot hoist\n"
|
|
<< *(use.getOwner()) << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Return at most nLevels of immediately enclosing scf::ForOp loops.
|
|
/// Stops at the first parent that is not an scf::ForOp.
|
|
/// Multi-loops such as scf.parallel or linalg.tiled_loop are not modeled atm.
|
|
/// Control-flow and other containing ops with regions are not modeled atm.
|
|
static void
|
|
getAtMostNEnclosingLoops(PadTensorOp padTensorOp, int nLevels,
|
|
SmallVector<scf::ForOp> &reverseEnclosingLoops) {
|
|
AsmState state(padTensorOp->getParentOfType<mlir::FuncOp>());
|
|
(void)state;
|
|
scf::ForOp outermostEnclosingForOp = nullptr;
|
|
Operation *nextEnclosingOp = padTensorOp->getParentOp();
|
|
while (nLevels-- > 0 &&
|
|
(outermostEnclosingForOp = dyn_cast<scf::ForOp>(nextEnclosingOp))) {
|
|
LLVM_DEBUG(
|
|
DBGS() << "loops: ";
|
|
outermostEnclosingForOp.getInductionVar().printAsOperand(dbgs(), state);
|
|
dbgs() << "\n");
|
|
reverseEnclosingLoops.push_back(outermostEnclosingForOp);
|
|
nextEnclosingOp = outermostEnclosingForOp->getParentOp();
|
|
}
|
|
}
|
|
|
|
HoistingAnalysis::HoistingAnalysis(PadTensorOp padTensorOp, int numLoops) {
|
|
valid = false;
|
|
|
|
// Bail on any use that isn't an input of a Linalg op.
|
|
// Hoisting of inplace updates happens after vectorization.
|
|
if (!isOnlyUsedAsInputOfLinalgOp(padTensorOp))
|
|
return;
|
|
|
|
// Get at most nLevels of immediately enclosing loops.
|
|
SmallVector<scf::ForOp> reverseEnclosingLoops;
|
|
getAtMostNEnclosingLoops(padTensorOp, numLoops, reverseEnclosingLoops);
|
|
if (reverseEnclosingLoops.empty()) {
|
|
LLVM_DEBUG(DBGS() << "No immediately enclosing loop -> skip\n");
|
|
return;
|
|
}
|
|
|
|
outermostEnclosingForOp = reverseEnclosingLoops.back();
|
|
|
|
// Get all the ops in the backwards slice starting from `padTensorOp` and that
|
|
// are dominated by the outermost enclosing loop.
|
|
// Bail on any op with a region that is not either a scf::ForOp or a LinalgOp.
|
|
bool analysisFailure = false;
|
|
DominanceInfo domInfo(outermostEnclosingForOp);
|
|
getBackwardSlice(
|
|
padTensorOp.getOperation(), &backwardSlice, [&](Operation *op) {
|
|
if (!domInfo.dominates(outermostEnclosingForOp, op))
|
|
return false;
|
|
if (op != padTensorOp && op->getNumRegions() > 0 &&
|
|
!isa<scf::ForOp, LinalgOp>(op)) {
|
|
analysisFailure = true;
|
|
LLVM_DEBUG(DBGS()
|
|
<< "Unsupported op with region: " << *op << " -> skip\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
|
|
if (analysisFailure || backwardSlice.empty())
|
|
return;
|
|
|
|
// Get the `sliceOp` that defines the source tensor of `padTensorOp` and
|
|
// check its source is defined outside of the outermost loop. This check
|
|
// ensures the padded data is available for packing before entering the
|
|
// outermost enclosing loop.
|
|
//
|
|
// Example:
|
|
// ```
|
|
// %source = linalg.fill(%cst, %arg0)
|
|
// // %source is available for packing here!
|
|
// scf.for %i
|
|
// scf.for %j
|
|
// scf.for %k
|
|
// %slice = tensor.extract_slice %source [%i, %j]
|
|
// %padded_slice = linalg.pad_tensor %slice
|
|
// ```
|
|
auto sliceOp = padTensorOp.source().getDefiningOp<tensor::ExtractSliceOp>();
|
|
if (!sliceOp) {
|
|
LLVM_DEBUG(DBGS() << "Cannot find the extract slice op -> skip\n");
|
|
return;
|
|
}
|
|
if (!outermostEnclosingForOp.isDefinedOutsideOfLoop(sliceOp.source())) {
|
|
LLVM_DEBUG(DBGS() << "Source not defined outside of loops -> skip\n");
|
|
return;
|
|
}
|
|
|
|
// Search the loops found in `backwardSlice` used to index the padded data.
|
|
SmallVector<scf::ForOp> indexingLoops =
|
|
getIndexingLoops(padTensorOp, sliceOp);
|
|
|
|
// Add only the loops part of `indexingLoops` to the packing loops. All other
|
|
// loops are not used to index the padded data and consequently access the
|
|
// same data in every loop iteration. Adding them to the packing loops would
|
|
// increase the cache footprint of the packed data by storing the same data
|
|
// multiple times.
|
|
for (scf::ForOp forOp : llvm::reverse(reverseEnclosingLoops))
|
|
if (!indexingLoops.empty() && indexingLoops.back() == forOp)
|
|
packingLoops.push_back(indexingLoops.pop_back_val());
|
|
assert(indexingLoops.empty() &&
|
|
"expect the all indexing loops are enclosing loops");
|
|
|
|
if (packingLoops.empty()) {
|
|
LLVM_DEBUG(DBGS() << "Cannot find a packing loop -> skip\n");
|
|
return;
|
|
}
|
|
|
|
// The analysis is valid and hoisting can occur.
|
|
valid = true;
|
|
}
|
|
|
|
SmallVector<scf::ForOp>
|
|
HoistingAnalysis::getIndexingLoops(PadTensorOp padTensorOp,
|
|
tensor::ExtractSliceOp sliceOp) {
|
|
// Set of all values used for index computation.
|
|
SetVector<Value> indexEdges;
|
|
|
|
// Add all index operands of `operation` to `indexEdges`. An index operand is
|
|
// an operand of type index.
|
|
auto addIndexOperandsToIndexEdges = [&](Operation *operation) {
|
|
for (Value operand : operation->getOperands())
|
|
if (operand.getType().isIndex())
|
|
indexEdges.insert(operand);
|
|
};
|
|
|
|
// Starting from `padTensorOp` and `sliceOp` walk the use-def edges of index
|
|
// type in `backwardSlice`. Add the index operands of an operation to
|
|
// `indexEdges` if one of its results is an index edge found so far and store
|
|
// all loops part of the index computation to `indexingLoops`.
|
|
//
|
|
// Example:
|
|
// ```
|
|
// %source = linalg.fill(%cst, %arg0)
|
|
// scf.for %i
|
|
// scf.for %j
|
|
// scf.for %k // not used to index %source!
|
|
// %ubi = affine.min #map(%i)
|
|
// %ubj = affine.min #map(%j)
|
|
// %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj]
|
|
// %padded_slice = linalg.pad_tensor %slice
|
|
// ```
|
|
// After iterating `backwardSlice` we obtain:
|
|
// indexEdges = [%i, %j, %ubi, %ubj]
|
|
// indexingLoops = [scf.for %i, scf.for %j]
|
|
SmallVector<scf::ForOp> indexingLoops;
|
|
for (Operation *op : llvm::reverse(backwardSlice)) {
|
|
// Add the index operands of `padTensorOp` and `sliceOp` to start the
|
|
// exploration of the index computation.
|
|
if (op == padTensorOp || op == sliceOp) {
|
|
addIndexOperandsToIndexEdges(op);
|
|
continue;
|
|
}
|
|
// Add the index operands of the loop if its induction variable is
|
|
// used for index computation. Additionally, insert the loop into
|
|
// `indexingLoops`
|
|
if (auto forOp = dyn_cast<scf::ForOp>(op)) {
|
|
if (indexEdges.contains(forOp.getInductionVar())) {
|
|
addIndexOperandsToIndexEdges(op);
|
|
indexingLoops.push_back(forOp);
|
|
continue;
|
|
}
|
|
}
|
|
// Add the index operands of all other operations if at least one result is
|
|
// used for index computation.
|
|
if (llvm::any_of(op->getResults(),
|
|
[&](Value result) { return indexEdges.contains(result); }))
|
|
addIndexOperandsToIndexEdges(op);
|
|
}
|
|
return indexingLoops;
|
|
}
|
|
|
|
SmallVector<Value>
|
|
HoistingAnalysis::getPackedTensorSizes(ImplicitLocOpBuilder &b) {
|
|
SmallVector<Value> dynamicTensorSizes;
|
|
|
|
// Upper bound the packing loop lengths to size the packed tensor. Taking
|
|
// upper bounds can make the sizes of the packed tensor independent of the
|
|
// enclosing loops. This independence is a prerequisite for reusing the same
|
|
// buffer for all enclosing loop iterations and hoisting its allocation out of
|
|
// the enclosing loops.
|
|
for (auto forOp : packingLoops) {
|
|
// Compute an upper bound `ubVal` for the upper bound of `forOp`.
|
|
AffineMap boundMap;
|
|
SmallVector<Value> boundOperands;
|
|
getUpperBoundForIndex(forOp.upperBound(), boundMap, boundOperands);
|
|
Value ubVal = b.createOrFold<AffineMinOp>(boundMap, boundOperands);
|
|
// Compute the maximal packing loop length as (ub - lb).ceilDiv(step) and
|
|
// store the result to `dynamicTensorSizes`.
|
|
// TODO: instead of using the lower bound of `forOp` directly, implement a
|
|
// lower bound computation similar to the upper bound computation.
|
|
AffineExpr lb, ub, step;
|
|
bindDims(b.getContext(), lb, ub);
|
|
bindSymbols(b.getContext(), step);
|
|
Value res = b.createOrFold<AffineApplyOp>(
|
|
(ub - lb).ceilDiv(step),
|
|
ValueRange{forOp.lowerBound(), ubVal, cast<scf::ForOp>(forOp).step()});
|
|
dynamicTensorSizes.push_back(res);
|
|
}
|
|
|
|
return dynamicTensorSizes;
|
|
}
|
|
|
|
static bool isDefinedOutsideOrConstant(scf::ForOp outer, Value v) {
|
|
return outer.isDefinedOutsideOfLoop(v) || v.getDefiningOp<ConstantOp>();
|
|
}
|
|
|
|
/// Return the current iteration number in the loop (iv - lb).ceilDiv(step).
|
|
/// The returned Value is guaranteed not to depend on any loop comprised in
|
|
/// [`outer`, `forOp`].
|
|
/// Return null if such a loop-independent quantity cannot be computed.
|
|
static Value buildLoopIterationCount(OpBuilder &b, scf::ForOp outer,
|
|
scf::ForOp forOp) {
|
|
MLIRContext *ctx = forOp->getContext();
|
|
AffineExpr iv, lb, step;
|
|
bindDims(ctx, iv, lb);
|
|
bindSymbols(ctx, step);
|
|
if (!isDefinedOutsideOrConstant(outer, forOp.lowerBound()) ||
|
|
!isDefinedOutsideOrConstant(outer, forOp.step()))
|
|
return Value();
|
|
Value ivVal = forOp.getInductionVar(), lbVal = forOp.lowerBound(),
|
|
stepVal = forOp.step();
|
|
auto loc = forOp->getLoc();
|
|
return b.createOrFold<AffineApplyOp>(loc, (iv - lb).ceilDiv(step),
|
|
ValueRange{ivVal, lbVal, stepVal});
|
|
}
|
|
|
|
FailureOr<Value> mlir::linalg::hoistPaddingOnTensors(PadTensorOp opToHoist,
|
|
int numLoops,
|
|
PadTensorOp &hoistedOp) {
|
|
LLVM_DEBUG(DBGS() << "Try to hoist " << *(opToHoist) << " by " << numLoops
|
|
<< " loops\n");
|
|
HoistingAnalysis analysis(opToHoist, numLoops);
|
|
if (!analysis.isValid()) {
|
|
LLVM_DEBUG(DBGS() << "Analysis failed -> Skip\n");
|
|
return failure();
|
|
}
|
|
|
|
scf::ForOp outer = analysis.outermostEnclosingForOp;
|
|
ImplicitLocOpBuilder b(outer->getLoc(), outer);
|
|
|
|
SmallVector<Value> dynamicTensorSizes = analysis.getPackedTensorSizes(b);
|
|
|
|
// Update actual number of loops, which may be smaller.
|
|
int nPackedLoops = analysis.packingLoops.size();
|
|
|
|
Location loc = opToHoist->getLoc();
|
|
RankedTensorType paddedTensorType = opToHoist.getResultType();
|
|
int paddedRank = paddedTensorType.getRank();
|
|
|
|
// Create the packed tensor<?x?x..?xpadded_shape> into which we amortize
|
|
// padding.
|
|
SmallVector<int64_t> packedShape(nPackedLoops, ShapedType::kDynamicSize);
|
|
// TODO: go grab dims when necessary, for now PadTensorOp returns a static
|
|
// tensor.
|
|
llvm::append_range(packedShape, paddedTensorType.getShape());
|
|
auto packedTensorType =
|
|
RankedTensorType::get(packedShape, paddedTensorType.getElementType());
|
|
Value packedTensor = b.create<linalg::InitTensorOp>(
|
|
loc, dynamicTensorSizes, packedTensorType.getShape(),
|
|
packedTensorType.getElementType());
|
|
|
|
// Clone the operations involved in the backward slice, iteratively stepping
|
|
// into the loops that we encounter.
|
|
// The implementation proceeds in a stack-like fashion:
|
|
// 1. Iteratively clone and step into the loops, pushing the `packedTensor`
|
|
// deeper in the stack.
|
|
// 2. Create a InsertSliceOp at the top of the stack.
|
|
// 3. Iteratively pop and yield the result of the InsertSliceOp across
|
|
// the cloned loops.
|
|
SmallVector<Value> clonedLoopIvs, leadingPackedTensorIndexings;
|
|
clonedLoopIvs.reserve(nPackedLoops);
|
|
leadingPackedTensorIndexings.reserve(nPackedLoops);
|
|
BlockAndValueMapping bvm;
|
|
// Insert `opToHoist` into the backwardSlice so we clone it too.
|
|
analysis.backwardSlice.insert(opToHoist);
|
|
// Stack step 1. iteratively clone loops and push `packedTensor`.
|
|
for (Operation *op : analysis.backwardSlice) {
|
|
// Specifically sit out in the extract_slice(packedTensor) case: this is the
|
|
// piece we seek to replace.
|
|
if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(op))
|
|
if (bvm.lookupOrDefault(sliceOp.source()) == packedTensor)
|
|
continue;
|
|
auto effects = dyn_cast<MemoryEffectOpInterface>(op);
|
|
bool hasNoEffects = !effects || effects.hasNoEffect();
|
|
if (hasNoEffects &&
|
|
(op->getNumRegions() == 0 || isa<linalg::PadTensorOp>(op))) {
|
|
b.clone(*op, bvm);
|
|
continue;
|
|
}
|
|
// TODO: support more cases as they appear.
|
|
auto forOp = dyn_cast<scf::ForOp>(op);
|
|
assert(forOp && "Expected scf::ForOp when hoisting pad ops");
|
|
// Unused loop, just skip it.
|
|
if (!llvm::is_contained(analysis.packingLoops, forOp))
|
|
continue;
|
|
|
|
auto clonedForOp =
|
|
b.create<scf::ForOp>(loc, bvm.lookupOrDefault(forOp.lowerBound()),
|
|
bvm.lookupOrDefault(forOp.upperBound()),
|
|
bvm.lookupOrDefault(forOp.step()), packedTensor);
|
|
// Map the induction var, region args and results to the `clonedForOp`.
|
|
bvm.map(forOp.getInductionVar(), clonedForOp.getInductionVar());
|
|
bvm.map(forOp.getRegionIterArgs(), clonedForOp.getRegionIterArgs());
|
|
bvm.map(forOp.getResults(), clonedForOp.getResults());
|
|
assert(clonedForOp->getNumRegions() == 1);
|
|
clonedLoopIvs.push_back(clonedForOp.getInductionVar());
|
|
|
|
b.setInsertionPointToStart(&clonedForOp->getRegion(0).front());
|
|
Value loopIndependentIterationCount =
|
|
buildLoopIterationCount(b, outer, clonedForOp);
|
|
// Assert the loop-independent iteration count can be computed.
|
|
if (!loopIndependentIterationCount)
|
|
llvm_unreachable("loop independence prerequisite not met");
|
|
leadingPackedTensorIndexings.push_back(loopIndependentIterationCount);
|
|
packedTensor = clonedForOp.getRegionIterArgs().front();
|
|
}
|
|
|
|
// Stack step 2. create InsertSliceOp at the top of the stack.
|
|
// offsets = [clonedLoopIvs, 0 .. 0].
|
|
SmallVector<OpFoldResult> offsets(leadingPackedTensorIndexings.begin(),
|
|
leadingPackedTensorIndexings.end());
|
|
offsets.append(paddedRank, b.getIndexAttr(0));
|
|
// sizes = [1 .. 1, paddedShape].
|
|
SmallVector<OpFoldResult> sizes(nPackedLoops, b.getIndexAttr(1));
|
|
for (int64_t sz : paddedTensorType.getShape()) {
|
|
// TODO: go grab dims when necessary, for now PadTensorOp returns a static
|
|
// tensor.
|
|
assert(!ShapedType::isDynamic(sz) && "padded tensor needs static sizes");
|
|
sizes.push_back(b.getIndexAttr(sz));
|
|
}
|
|
// strides = [1 .. 1].
|
|
SmallVector<OpFoldResult> strides(nPackedLoops + paddedRank,
|
|
b.getIndexAttr(1));
|
|
|
|
Value inserted =
|
|
b.create<tensor::InsertSliceOp>(loc, bvm.lookup(opToHoist.result()),
|
|
packedTensor, offsets, sizes, strides);
|
|
|
|
// Stack step 3. iteratively pop the stack and propagate the yield.
|
|
Value valueToYield = inserted;
|
|
for (Value iv : llvm::reverse(clonedLoopIvs)) {
|
|
auto forOp = scf::getForInductionVarOwner(iv);
|
|
b.setInsertionPointToEnd(&forOp.getRegion().front());
|
|
b.create<scf::YieldOp>(loc, valueToYield);
|
|
valueToYield = forOp.getResult(0);
|
|
}
|
|
|
|
// Now the packed tensor is ready, replace the original padding op by a
|
|
// 1x..x1 slice [originalLoopIvs, 0 .. 0][1 .. 1, paddedShape][1 .. 1].
|
|
b.setInsertionPoint(opToHoist);
|
|
SmallVector<Value> loopIterationCounts = llvm::to_vector<4>(
|
|
llvm::map_range(analysis.packingLoops, [&](Operation *loop) {
|
|
return buildLoopIterationCount(b, outer, cast<scf::ForOp>(loop));
|
|
}));
|
|
// Assert all loop iteration counts can be computed.
|
|
if (llvm::any_of(loopIterationCounts, [](Value v) { return !v; }))
|
|
llvm_unreachable("loop independence prerequisite not met");
|
|
// offsets = [originalLoopIvs, 0 .. 0].
|
|
offsets.assign(loopIterationCounts.begin(), loopIterationCounts.end());
|
|
offsets.append(paddedRank, b.getIndexAttr(0));
|
|
// sizes = [1 .. 1, paddedShape] (definedabove).
|
|
// strides = [1 .. 1] (defined above)
|
|
packedTensor =
|
|
scf::getForInductionVarOwner(clonedLoopIvs.front())->getResult(0);
|
|
Value newResult = b.create<tensor::ExtractSliceOp>(
|
|
loc, opToHoist.getResultType(), packedTensor, offsets, sizes, strides);
|
|
|
|
// Make the newly cloned `opToHoist` available to the caller.
|
|
hoistedOp = cast<PadTensorOp>(bvm.lookup(opToHoist.result()).getDefiningOp());
|
|
return newResult;
|
|
}
|