Files
clang-p2996/mlir/test/python/dialects/builtin.py
Mehdi Amini f431d3878a Make Python MLIR Operation not iterable
The current behavior is conveniently allowing to iterate on the regions of an operation
implicitly by exposing an operation as Iterable. However this is also error prone and
code that may intend to iterate on the results or the operands could end up "working"
apparently instead of throwing a runtime error.
The lack of static type checking in Python contributes to the ambiguity here, it seems
safer to not do this and require and explicit qualification to iterate (`op.results`, `op.regions`, ...).

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D111697
2021-10-26 07:21:09 +00:00

223 lines
7.0 KiB
Python

# RUN: %PYTHON %s | FileCheck %s
from mlir.ir import *
import mlir.dialects.builtin as builtin
import mlir.dialects.std as std
def run(f):
print("\nTEST:", f.__name__)
f()
return f
# CHECK-LABEL: TEST: testFromPyFunc
@run
def testFromPyFunc():
with Context() as ctx, Location.unknown() as loc:
ctx.allow_unregistered_dialects = True
m = builtin.ModuleOp()
f32 = F32Type.get()
f64 = F64Type.get()
with InsertionPoint(m.body):
# CHECK-LABEL: func @unary_return(%arg0: f64) -> f64
# CHECK: return %arg0 : f64
@builtin.FuncOp.from_py_func(f64)
def unary_return(a):
return a
# CHECK-LABEL: func @binary_return(%arg0: f32, %arg1: f64) -> (f32, f64)
# CHECK: return %arg0, %arg1 : f32, f64
@builtin.FuncOp.from_py_func(f32, f64)
def binary_return(a, b):
return a, b
# CHECK-LABEL: func @none_return(%arg0: f32, %arg1: f64)
# CHECK: return
@builtin.FuncOp.from_py_func(f32, f64)
def none_return(a, b):
pass
# CHECK-LABEL: func @call_unary
# CHECK: %0 = call @unary_return(%arg0) : (f64) -> f64
# CHECK: return %0 : f64
@builtin.FuncOp.from_py_func(f64)
def call_unary(a):
return unary_return(a)
# CHECK-LABEL: func @call_binary
# CHECK: %0:2 = call @binary_return(%arg0, %arg1) : (f32, f64) -> (f32, f64)
# CHECK: return %0#0, %0#1 : f32, f64
@builtin.FuncOp.from_py_func(f32, f64)
def call_binary(a, b):
return binary_return(a, b)
# We expect coercion of a single result operation to a returned value.
# CHECK-LABEL: func @single_result_op
# CHECK: %0 = "custom.op1"() : () -> f32
# CHECK: return %0 : f32
@builtin.FuncOp.from_py_func()
def single_result_op():
return Operation.create("custom.op1", results=[f32])
# CHECK-LABEL: func @call_none
# CHECK: call @none_return(%arg0, %arg1) : (f32, f64) -> ()
# CHECK: return
@builtin.FuncOp.from_py_func(f32, f64)
def call_none(a, b):
return none_return(a, b)
## Variants and optional feature tests.
# CHECK-LABEL: func @from_name_arg
@builtin.FuncOp.from_py_func(f32, f64, name="from_name_arg")
def explicit_name(a, b):
return b
@builtin.FuncOp.from_py_func(f32, f64)
def positional_func_op(a, b, func_op):
assert isinstance(func_op, builtin.FuncOp)
return b
@builtin.FuncOp.from_py_func(f32, f64)
def kw_func_op(a, b=None, func_op=None):
assert isinstance(func_op, builtin.FuncOp)
return b
@builtin.FuncOp.from_py_func(f32, f64)
def kwargs_func_op(a, b=None, **kwargs):
assert isinstance(kwargs["func_op"], builtin.FuncOp)
return b
# CHECK-LABEL: func @explicit_results(%arg0: f32, %arg1: f64) -> f64
# CHECK: return %arg1 : f64
@builtin.FuncOp.from_py_func(f32, f64, results=[f64])
def explicit_results(a, b):
std.ReturnOp([b])
print(m)
# CHECK-LABEL: TEST: testFromPyFuncErrors
@run
def testFromPyFuncErrors():
with Context() as ctx, Location.unknown() as loc:
m = builtin.ModuleOp()
f32 = F32Type.get()
f64 = F64Type.get()
with InsertionPoint(m.body):
try:
@builtin.FuncOp.from_py_func(f64, results=[f64])
def unary_return(a):
return a
except AssertionError as e:
# CHECK: Capturing a python function with explicit `results=` requires that the wrapped function returns None.
print(e)
# CHECK-LABEL: TEST: testBuildFuncOp
@run
def testBuildFuncOp():
ctx = Context()
with Location.unknown(ctx) as loc:
m = builtin.ModuleOp()
f32 = F32Type.get()
tensor_type = RankedTensorType.get((2, 3, 4), f32)
with InsertionPoint.at_block_begin(m.body):
func = builtin.FuncOp(name="some_func",
type=FunctionType.get(
inputs=[tensor_type, tensor_type],
results=[tensor_type]),
visibility="nested")
# CHECK: Name is: "some_func"
print("Name is: ", func.name)
# CHECK: Type is: (tensor<2x3x4xf32>, tensor<2x3x4xf32>) -> tensor<2x3x4xf32>
print("Type is: ", func.type)
# CHECK: Visibility is: "nested"
print("Visibility is: ", func.visibility)
try:
entry_block = func.entry_block
except IndexError as e:
# CHECK: External function does not have a body
print(e)
with InsertionPoint(func.add_entry_block()):
std.ReturnOp([func.entry_block.arguments[0]])
pass
try:
func.add_entry_block()
except IndexError as e:
# CHECK: The function already has an entry block!
print(e)
# Try the callback builder and passing type as tuple.
func = builtin.FuncOp(name="some_other_func",
type=([tensor_type, tensor_type], [tensor_type]),
visibility="nested",
body_builder=lambda func: std.ReturnOp(
[func.entry_block.arguments[0]]))
# CHECK: module {
# CHECK: func nested @some_func(%arg0: tensor<2x3x4xf32>, %arg1: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
# CHECK: return %arg0 : tensor<2x3x4xf32>
# CHECK: }
# CHECK: func nested @some_other_func(%arg0: tensor<2x3x4xf32>, %arg1: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
# CHECK: return %arg0 : tensor<2x3x4xf32>
# CHECK: }
print(m)
# CHECK-LABEL: TEST: testFuncArgumentAccess
@run
def testFuncArgumentAccess():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
f64 = F64Type.get()
with InsertionPoint(module.body):
func = builtin.FuncOp("some_func", ([f32, f32], [f32, f32]))
with InsertionPoint(func.add_entry_block()):
std.ReturnOp(func.arguments)
func.arg_attrs = ArrayAttr.get([
DictAttr.get({
"foo": StringAttr.get("bar"),
"baz": UnitAttr.get()
}),
DictAttr.get({"qux": ArrayAttr.get([])})
])
func.result_attrs = ArrayAttr.get([
DictAttr.get({"res1": FloatAttr.get(f32, 42.0)}),
DictAttr.get({"res2": FloatAttr.get(f64, 256.0)})
])
other = builtin.FuncOp("other_func", ([f32, f32], []))
with InsertionPoint(other.add_entry_block()):
std.ReturnOp([])
other.arg_attrs = [
DictAttr.get({"foo": StringAttr.get("qux")}),
DictAttr.get()
]
# CHECK: [{baz, foo = "bar"}, {qux = []}]
print(func.arg_attrs)
# CHECK: [{res1 = 4.200000e+01 : f32}, {res2 = 2.560000e+02 : f64}]
print(func.result_attrs)
# CHECK: func @some_func(
# CHECK: %[[ARG0:.*]]: f32 {baz, foo = "bar"},
# CHECK: %[[ARG1:.*]]: f32 {qux = []}) ->
# CHECK: f32 {res1 = 4.200000e+01 : f32},
# CHECK: f32 {res2 = 2.560000e+02 : f64})
# CHECK: return %[[ARG0]], %[[ARG1]] : f32, f32
#
# CHECK: func @other_func(
# CHECK: %{{.*}}: f32 {foo = "qux"},
# CHECK: %{{.*}}: f32)
print(module)