Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
Aart Bik b24788abd8 [mlir][sparse] implement sparse tensor init operation
Next step towards supporting sparse tensors outputs.
Also some minor refactoring of enum constants as well
as replacing tensor arguments with proper buffer arguments
(latter is required for more general sizes arguments for
the sparse_tensor.init operation, as well as more general
spares_tensor.convert operations later)

Reviewed By: wrengr

Differential Revision: https://reviews.llvm.org/D111771
2021-10-15 09:33:16 -07:00

140 lines
5.4 KiB
C++

//===- SparseTensorPasses.cpp - Pass for autogen sparse tensor code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Passes declaration.
//===----------------------------------------------------------------------===//
#define GEN_PASS_CLASSES
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
//===----------------------------------------------------------------------===//
// Passes implementation.
//===----------------------------------------------------------------------===//
struct SparsificationPass : public SparsificationBase<SparsificationPass> {
SparsificationPass() = default;
SparsificationPass(const SparsificationPass &pass)
: SparsificationBase<SparsificationPass>() {}
/// Returns parallelization strategy given on command line.
SparseParallelizationStrategy parallelOption() {
switch (parallelization) {
default:
return SparseParallelizationStrategy::kNone;
case 1:
return SparseParallelizationStrategy::kDenseOuterLoop;
case 2:
return SparseParallelizationStrategy::kAnyStorageOuterLoop;
case 3:
return SparseParallelizationStrategy::kDenseAnyLoop;
case 4:
return SparseParallelizationStrategy::kAnyStorageAnyLoop;
}
}
/// Returns vectorization strategy given on command line.
SparseVectorizationStrategy vectorOption() {
switch (vectorization) {
default:
return SparseVectorizationStrategy::kNone;
case 1:
return SparseVectorizationStrategy::kDenseInnerLoop;
case 2:
return SparseVectorizationStrategy::kAnyStorageInnerLoop;
}
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
// Translate strategy flags to strategy options.
SparsificationOptions options(parallelOption(), vectorOption(),
vectorLength, enableSIMDIndex32);
// Apply rewriting.
populateSparsificationPatterns(patterns, options);
vector::populateVectorToVectorCanonicalizationPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
class SparseTensorTypeConverter : public TypeConverter {
public:
SparseTensorTypeConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorTypes);
}
// Maps each sparse tensor type to an opaque pointer.
static Optional<Type> convertSparseTensorTypes(Type type) {
if (getSparseTensorEncoding(type) != nullptr)
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
return llvm::None;
}
};
struct SparseTensorConversionPass
: public SparseTensorConversionBase<SparseTensorConversionPass> {
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
SparseTensorTypeConverter converter;
ConversionTarget target(*ctx);
target.addIllegalOp<ConvertOp, NewOp, ToIndicesOp, ToPointersOp, ToTensorOp,
ToValuesOp>();
// All dynamic rules below accept new function, call, return, and dimop
// operations as legal output of the rewriting provided that all sparse
// tensor types have been fully rewritten.
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
target.addDynamicallyLegalOp<CallOp>([&](CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<ReturnOp>(
[&](ReturnOp op) { return converter.isLegal(op.getOperandTypes()); });
target.addDynamicallyLegalOp<tensor::DimOp>([&](tensor::DimOp op) {
return converter.isLegal(op.getOperandTypes());
});
// The following operations and dialects may be introduced by the
// rewriting rules, and are therefore marked as legal.
target.addLegalOp<arith::CmpFOp, arith::CmpIOp, arith::ConstantOp,
arith::IndexCastOp, tensor::CastOp, tensor::ExtractOp>();
target.addLegalDialect<LLVM::LLVMDialect, memref::MemRefDialect,
scf::SCFDialect>();
// Populate with rules and apply rewriting rules.
populateFuncOpTypeConversionPattern(patterns, converter);
populateCallOpTypeConversionPattern(patterns, converter);
populateSparseTensorConversionPatterns(converter, patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // end anonymous namespace
std::unique_ptr<Pass> mlir::createSparsificationPass() {
return std::make_unique<SparsificationPass>();
}
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() {
return std::make_unique<SparseTensorConversionPass>();
}