Files
clang-p2996/bolt/lib/Passes/ContinuityStats.cpp
ShatianWang 4cab01f072 [BOLT] Profile quality stats -- CFG discontinuity (#109683)
In a perfect profile, each positive-execution-count block in the
function’s CFG should be reachable from a positive-execution-count
function entry block through a positive-execution-count path. This new
pass checks how well the BOLT input profile satisfies this “CFG
continuity” property.

More specifically, for each of the hottest 1000 functions, the pass
calculates the function’s fraction of basic block execution counts that
is “unreachable”. It then reports the 95th percentile of the
distribution of the 1000 unreachable fractions in a single BOLT-INFO
line. The smaller the reported value is, the better the BOLT profile
satisfies the CFG continuity property.

The default value of 1000 above can be changed via the hidden BOLT
option `-num-functions-for-continuity-check=[N]`. If more detailed stats
are needed, `-v=1` can be added to the BOLT invocation: the hottest N
functions will be grouped into 5 equally-sized buckets, from the hottest
to the coldest; for each bucket, various summary statistics of the
distribution of the fractions and the raw unreachable execution counts
will be reported.
2024-10-08 19:07:43 -04:00

251 lines
9.3 KiB
C++

//===- bolt/Passes/ContinuityStats.cpp --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the continuity stats calculation pass.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/ContinuityStats.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/Support/CommandLine.h"
#include <queue>
#include <unordered_map>
#include <unordered_set>
#define DEBUG_TYPE "bolt-opts"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::opt<unsigned> Verbosity;
cl::opt<unsigned> NumFunctionsForContinuityCheck(
"num-functions-for-continuity-check",
cl::desc("number of hottest functions to print aggregated "
"CFG discontinuity stats of."),
cl::init(1000), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory));
} // namespace opts
namespace {
using FunctionListType = std::vector<const BinaryFunction *>;
using function_iterator = FunctionListType::iterator;
template <typename T>
void printDistribution(raw_ostream &OS, std::vector<T> &values,
bool Fraction = false) {
if (values.empty())
return;
// Sort values from largest to smallest and print the MAX, TOP 1%, 5%, 10%,
// 20%, 50%, 80%, MIN. If Fraction is true, then values are printed as
// fractions instead of integers.
std::sort(values.begin(), values.end());
auto printLine = [&](std::string Text, double Percent) {
int Rank = int(values.size() * (1.0 - Percent / 100));
if (Percent == 0)
Rank = values.size() - 1;
if (Fraction)
OS << " " << Text << std::string(9 - Text.length(), ' ') << ": "
<< format("%.2lf%%", values[Rank] * 100) << "\n";
else
OS << " " << Text << std::string(9 - Text.length(), ' ') << ": "
<< values[Rank] << "\n";
};
printLine("MAX", 0);
const int percentages[] = {1, 5, 10, 20, 50, 80};
for (size_t i = 0; i < sizeof(percentages) / sizeof(percentages[0]); ++i) {
printLine("TOP " + std::to_string(percentages[i]) + "%", percentages[i]);
}
printLine("MIN", 100);
}
void printCFGContinuityStats(raw_ostream &OS,
iterator_range<function_iterator> &Functions) {
// Given a perfect profile, every positive-execution-count BB should be
// connected to an entry of the function through a positive-execution-count
// directed path in the control flow graph.
std::vector<size_t> NumUnreachables;
std::vector<size_t> SumECUnreachables;
std::vector<double> FractionECUnreachables;
for (auto it = Functions.begin(); it != Functions.end(); ++it) {
const BinaryFunction *Function = *it;
if (Function->size() <= 1)
continue;
// Compute the sum of all BB execution counts (ECs).
size_t NumPosECBBs = 0;
size_t SumAllBBEC = 0;
for (const BinaryBasicBlock &BB : *Function) {
const size_t BBEC = BB.getKnownExecutionCount();
NumPosECBBs += BBEC > 0 ? 1 : 0;
SumAllBBEC += BBEC;
}
// Perform BFS on subgraph of CFG induced by positive weight edges.
// Compute the number of BBs reachable from the entry(s) of the function and
// the sum of their execution counts (ECs).
std::unordered_map<unsigned, const BinaryBasicBlock *> IndexToBB;
std::unordered_set<unsigned> Visited;
std::queue<unsigned> Queue;
for (const BinaryBasicBlock &BB : *Function) {
// Make sure BB.getIndex() is not already in IndexToBB.
assert(IndexToBB.find(BB.getIndex()) == IndexToBB.end());
IndexToBB[BB.getIndex()] = &BB;
if (BB.isEntryPoint() && BB.getKnownExecutionCount() > 0) {
Queue.push(BB.getIndex());
Visited.insert(BB.getIndex());
}
}
while (!Queue.empty()) {
const unsigned BBIndex = Queue.front();
const BinaryBasicBlock *BB = IndexToBB[BBIndex];
Queue.pop();
auto SuccBIIter = BB->branch_info_begin();
for (const BinaryBasicBlock *Succ : BB->successors()) {
const uint64_t Count = SuccBIIter->Count;
if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0) {
++SuccBIIter;
continue;
}
if (!Visited.insert(Succ->getIndex()).second) {
++SuccBIIter;
continue;
}
Queue.push(Succ->getIndex());
++SuccBIIter;
}
}
const size_t NumReachableBBs = Visited.size();
// Loop through Visited, and sum the corresponding BBs' execution counts
// (ECs).
size_t SumReachableBBEC = 0;
for (const unsigned BBIndex : Visited) {
const BinaryBasicBlock *BB = IndexToBB[BBIndex];
SumReachableBBEC += BB->getKnownExecutionCount();
}
const size_t NumPosECBBsUnreachableFromEntry =
NumPosECBBs - NumReachableBBs;
const size_t SumUnreachableBBEC = SumAllBBEC - SumReachableBBEC;
const double FractionECUnreachable =
(double)SumUnreachableBBEC / SumAllBBEC;
if (opts::Verbosity >= 2 && FractionECUnreachable >= 0.05) {
OS << "Non-trivial CFG discontinuity observed in function "
<< Function->getPrintName() << "\n";
LLVM_DEBUG(Function->dump());
}
NumUnreachables.push_back(NumPosECBBsUnreachableFromEntry);
SumECUnreachables.push_back(SumUnreachableBBEC);
FractionECUnreachables.push_back(FractionECUnreachable);
}
if (FractionECUnreachables.empty())
return;
std::sort(FractionECUnreachables.begin(), FractionECUnreachables.end());
const int Rank = int(FractionECUnreachables.size() * 0.95);
OS << format("top 5%% function CFG discontinuity is %.2lf%%\n",
FractionECUnreachables[Rank] * 100);
if (opts::Verbosity >= 1) {
OS << "abbreviations: EC = execution count, POS BBs = positive EC BBs\n"
<< "distribution of NUM(unreachable POS BBs) among all focal "
"functions\n";
printDistribution(OS, NumUnreachables);
OS << "distribution of SUM_EC(unreachable POS BBs) among all focal "
"functions\n";
printDistribution(OS, SumECUnreachables);
OS << "distribution of [(SUM_EC(unreachable POS BBs) / SUM_EC(all "
"POS BBs))] among all focal functions\n";
printDistribution(OS, FractionECUnreachables, /*Fraction=*/true);
}
}
void printAll(BinaryContext &BC, FunctionListType &ValidFunctions,
size_t NumTopFunctions) {
// Sort the list of functions by execution counts (reverse).
llvm::sort(ValidFunctions,
[&](const BinaryFunction *A, const BinaryFunction *B) {
return A->getKnownExecutionCount() > B->getKnownExecutionCount();
});
const size_t RealNumTopFunctions =
std::min(NumTopFunctions, ValidFunctions.size());
iterator_range<function_iterator> Functions(
ValidFunctions.begin(), ValidFunctions.begin() + RealNumTopFunctions);
BC.outs() << format("BOLT-INFO: among the hottest %zu functions ",
RealNumTopFunctions);
printCFGContinuityStats(BC.outs(), Functions);
// Print more detailed bucketed stats if requested.
if (opts::Verbosity >= 1 && RealNumTopFunctions >= 5) {
const size_t PerBucketSize = RealNumTopFunctions / 5;
BC.outs() << format(
"Detailed stats for 5 buckets, each with %zu functions:\n",
PerBucketSize);
// For each bucket, print the CFG continuity stats of the functions in the
// bucket.
for (size_t BucketIndex = 0; BucketIndex < 5; ++BucketIndex) {
const size_t StartIndex = BucketIndex * PerBucketSize;
const size_t EndIndex = StartIndex + PerBucketSize;
iterator_range<function_iterator> Functions(
ValidFunctions.begin() + StartIndex,
ValidFunctions.begin() + EndIndex);
const size_t MaxFunctionExecutionCount =
ValidFunctions[StartIndex]->getKnownExecutionCount();
const size_t MinFunctionExecutionCount =
ValidFunctions[EndIndex - 1]->getKnownExecutionCount();
BC.outs() << format("----------------\n| Bucket %zu: "
"|\n----------------\n",
BucketIndex + 1)
<< format(
"execution counts of the %zu functions in the bucket: "
"%zu-%zu\n",
EndIndex - StartIndex, MinFunctionExecutionCount,
MaxFunctionExecutionCount);
printCFGContinuityStats(BC.outs(), Functions);
}
}
}
} // namespace
bool PrintContinuityStats::shouldOptimize(const BinaryFunction &BF) const {
if (BF.empty() || !BF.hasValidProfile())
return false;
return BinaryFunctionPass::shouldOptimize(BF);
}
Error PrintContinuityStats::runOnFunctions(BinaryContext &BC) {
// Create a list of functions with valid profiles.
FunctionListType ValidFunctions;
for (const auto &BFI : BC.getBinaryFunctions()) {
const BinaryFunction *Function = &BFI.second;
if (PrintContinuityStats::shouldOptimize(*Function))
ValidFunctions.push_back(Function);
}
if (ValidFunctions.empty() || opts::NumFunctionsForContinuityCheck == 0)
return Error::success();
printAll(BC, ValidFunctions, opts::NumFunctionsForContinuityCheck);
return Error::success();
}