Files
clang-p2996/llvm/include/llvm/Transforms/IPO/FunctionImport.h
Andrew Rogers b2584e0b17 [llvm] annotate interfaces in llvm/Transforms for DLL export (#143413)
## Purpose

This patch is one in a series of code-mods that annotate LLVM’s public
interface for export. This patch annotates the `llvm/Transforms`
library. These annotations currently have no meaningful impact on the
LLVM build; however, they are a prerequisite to support an LLVM Windows
DLL (shared library) build.

## Background

This effort is tracked in #109483. Additional context is provided in
[this
discourse](https://discourse.llvm.org/t/psa-annotating-llvm-public-interface/85307),
and documentation for `LLVM_ABI` and related annotations is found in the
LLVM repo
[here](https://github.com/llvm/llvm-project/blob/main/llvm/docs/InterfaceExportAnnotations.rst).

The bulk of these changes were generated automatically using the
[Interface Definition Scanner (IDS)](https://github.com/compnerd/ids)
tool, followed formatting with `git clang-format`.

The following manual adjustments were also applied after running IDS on
Linux:
- Removed a redundant `operator<<` from Attributor.h. IDS only
auto-annotates the 1st declaration, and the 2nd declaration being
un-annotated resulted in an "inconsistent linkage" error on Windows when
building LLVM as a DLL.
- `#include` the `VirtualFileSystem.h` in PGOInstrumentation.h and
remove the local declaration of the `vfs::FileSystem` class. This is
required because exporting the `PGOInstrumentationUse` constructor
requires the class be fully defined because it is used by an argument.
- Add #include "llvm/Support/Compiler.h" to files where it was not
auto-added by IDS due to no pre-existing block of include statements.
- Add `LLVM_TEMPLATE_ABI` and `LLVM_EXPORT_TEMPLATE` to exported
instantiated templates.

## Validation

Local builds and tests to validate cross-platform compatibility. This
included llvm, clang, and lldb on the following configurations:

- Windows with MSVC
- Windows with Clang
- Linux with GCC
- Linux with Clang
- Darwin with Clang
2025-06-10 08:10:17 -07:00

451 lines
19 KiB
C++

//===- llvm/Transforms/IPO/FunctionImport.h - ThinLTO importing -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_IPO_FUNCTIONIMPORT_H
#define LLVM_TRANSFORMS_IPO_FUNCTIONIMPORT_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Error.h"
#include <functional>
#include <memory>
#include <system_error>
#include <utility>
namespace llvm {
class Module;
/// The function importer is automatically importing function from other modules
/// based on the provided summary informations.
class FunctionImporter {
public:
/// The different reasons selectCallee will chose not to import a
/// candidate.
enum class ImportFailureReason {
None,
// We can encounter a global variable instead of a function in rare
// situations with SamplePGO. See comments where this failure type is
// set for more details.
GlobalVar,
// Found to be globally dead, so we don't bother importing.
NotLive,
// Instruction count over the current threshold.
TooLarge,
// Don't import something with interposable linkage as we can't inline it
// anyway.
InterposableLinkage,
// Generally we won't end up failing due to this reason, as we expect
// to find at least one summary for the GUID that is global or a local
// in the referenced module for direct calls.
LocalLinkageNotInModule,
// This corresponds to the NotEligibleToImport being set on the summary,
// which can happen in a few different cases (e.g. local that can't be
// renamed or promoted because it is referenced on a llvm*.used variable).
NotEligible,
// This corresponds to NoInline being set on the function summary,
// which will happen if it is known that the inliner will not be able
// to inline the function (e.g. it is marked with a NoInline attribute).
NoInline
};
/// Information optionally tracked for candidates the importer decided
/// not to import. Used for optional stat printing.
struct ImportFailureInfo {
// The ValueInfo corresponding to the candidate. We save an index hash
// table lookup for each GUID by stashing this here.
ValueInfo VI;
// The maximum call edge hotness for all failed imports of this candidate.
CalleeInfo::HotnessType MaxHotness;
// most recent reason for failing to import (doesn't necessarily correspond
// to the attempt with the maximum hotness).
ImportFailureReason Reason;
// The number of times we tried to import candidate but failed.
unsigned Attempts;
ImportFailureInfo(ValueInfo VI, CalleeInfo::HotnessType MaxHotness,
ImportFailureReason Reason, unsigned Attempts)
: VI(VI), MaxHotness(MaxHotness), Reason(Reason), Attempts(Attempts) {}
};
/// Map of callee GUID considered for import into a given module to a pair
/// consisting of the largest threshold applied when deciding whether to
/// import it and, if we decided to import, a pointer to the summary instance
/// imported. If we decided not to import, the summary will be nullptr.
using ImportThresholdsTy =
DenseMap<GlobalValue::GUID,
std::tuple<unsigned, const GlobalValueSummary *,
std::unique_ptr<ImportFailureInfo>>>;
// Issues import IDs. Each ID uniquely corresponds to a tuple of
// (FromModule, GUID, Definition/Declaration).
//
// The import IDs make the import list space efficient by referring to each
// import with a 32-bit integer ID while maintaining a central table that maps
// those integer IDs to tuples of (FromModule, GUID, Def/Decl).
//
// In one large application, a pair of (FromModule, GUID) is mentioned in
// import lists more than 50 times on average across all destination modules.
// Mentioning the 32-byte tuple:
//
// std::tuple<StringRef, GlobalValue::GUID, GlobalValueSummary::ImportKind>
//
// 50 times by value in various import lists would be costly. We can reduce
// the memory footprint of import lists by placing one copy in a central table
// and referring to it with 32-bit integer IDs.
//
// To save space within the central table, we only store pairs of
// (FromModule, GUID) in the central table. In the actual 32-bit integer ID,
// the top 31 bits index into the central table while the bottom 1 bit
// indicates whether an ID is for GlobalValueSummary::Declaration or
// GlobalValueSummary::Definition.
class ImportIDTable {
public:
using ImportIDTy = uint32_t;
ImportIDTable() = default;
// Something is wrong with the application logic if we need to make a copy
// of this and potentially make a fork.
ImportIDTable(const ImportIDTable &) = delete;
ImportIDTable &operator=(const ImportIDTable &) = delete;
// Create a pair of import IDs [Def, Decl] for a given pair of FromModule
// and GUID.
std::pair<ImportIDTy, ImportIDTy> createImportIDs(StringRef FromModule,
GlobalValue::GUID GUID) {
auto Key = std::make_pair(FromModule, GUID);
auto InsertResult = TheTable.try_emplace(Key, TheTable.size());
return makeIDPair(InsertResult.first->second);
}
// Get a pair of previously created import IDs [Def, Decl] for a given pair
// of FromModule and GUID. Returns std::nullopt if not available.
std::optional<std::pair<ImportIDTy, ImportIDTy>>
getImportIDs(StringRef FromModule, GlobalValue::GUID GUID) {
auto Key = std::make_pair(FromModule, GUID);
auto It = TheTable.find(Key);
if (It != TheTable.end())
return makeIDPair(It->second);
return std::nullopt;
}
// Return a tuple of [FromModule, GUID, Def/Decl] that a given ImportID
// corresponds to.
std::tuple<StringRef, GlobalValue::GUID, GlobalValueSummary::ImportKind>
lookup(ImportIDTy ImportID) const {
GlobalValueSummary::ImportKind Kind =
(ImportID & 1) ? GlobalValueSummary::Declaration
: GlobalValueSummary::Definition;
auto It = TheTable.begin() + (ImportID >> 1);
StringRef FromModule = It->first.first;
GlobalValue::GUID GUID = It->first.second;
return std::make_tuple(FromModule, GUID, Kind);
}
// The same as lookup above. Useful for map_iterator.
std::tuple<StringRef, GlobalValue::GUID, GlobalValueSummary::ImportKind>
operator()(ImportIDTable::ImportIDTy ImportID) const {
return lookup(ImportID);
}
private:
// Make a pair of import IDs [Def, Decl] from an index into TheTable.
static std::pair<ImportIDTy, ImportIDTy> makeIDPair(ImportIDTy Index) {
ImportIDTy Def = Index << 1;
ImportIDTy Decl = Def | 1;
return std::make_pair(Def, Decl);
}
MapVector<std::pair<StringRef, GlobalValue::GUID>, ImportIDTy> TheTable;
};
// Forward-declare SortedImportList for ImportMapTy.
class SortedImportList;
/// The map maintains the list of imports. Conceptually, it is a collection
/// of tuples of the form:
///
/// (The name of the source module, GUID, Definition/Declaration)
///
/// The name of the source module is the module identifier to pass to the
/// ModuleLoader. The module identifier strings must be owned elsewhere,
/// typically by the in-memory ModuleSummaryIndex the importing decisions are
/// made from (the module path for each summary is owned by the index's module
/// path string table).
class ImportMapTy {
public:
enum class AddDefinitionStatus {
// No change was made to the list of imports or whether each import should
// be imported as a declaration or definition.
NoChange,
// Successfully added the given GUID to be imported as a definition. There
// was no existing entry with the same GUID as a declaration.
Inserted,
// An existing with the given GUID was changed to a definition.
ChangedToDefinition,
};
ImportMapTy() = delete;
ImportMapTy(ImportIDTable &IDs) : IDs(IDs) {}
// Add the given GUID to ImportList as a definition. If the same GUID has
// been added as a declaration previously, that entry is overridden.
LLVM_ABI AddDefinitionStatus addDefinition(StringRef FromModule,
GlobalValue::GUID GUID);
// Add the given GUID to ImportList as a declaration. If the same GUID has
// been added as a definition previously, that entry takes precedence, and
// no change is made.
LLVM_ABI void maybeAddDeclaration(StringRef FromModule,
GlobalValue::GUID GUID);
void addGUID(StringRef FromModule, GlobalValue::GUID GUID,
GlobalValueSummary::ImportKind ImportKind) {
if (ImportKind == GlobalValueSummary::Definition)
addDefinition(FromModule, GUID);
else
maybeAddDeclaration(FromModule, GUID);
}
// Return the list of source modules sorted in the ascending alphabetical
// order.
LLVM_ABI SmallVector<StringRef, 0> getSourceModules() const;
LLVM_ABI std::optional<GlobalValueSummary::ImportKind>
getImportType(StringRef FromModule, GlobalValue::GUID GUID) const;
// Iterate over the import list. The caller gets tuples of FromModule,
// GUID, and ImportKind instead of import IDs. std::cref below prevents
// map_iterator from deep-copying IDs.
auto begin() const { return map_iterator(Imports.begin(), std::cref(IDs)); }
auto end() const { return map_iterator(Imports.end(), std::cref(IDs)); }
friend class SortedImportList;
private:
ImportIDTable &IDs;
DenseSet<ImportIDTable::ImportIDTy> Imports;
};
// A read-only copy of ImportMapTy with its contents sorted according to the
// given comparison function.
class SortedImportList {
public:
SortedImportList(const ImportMapTy &ImportMap,
llvm::function_ref<
bool(const std::pair<StringRef, GlobalValue::GUID> &,
const std::pair<StringRef, GlobalValue::GUID> &)>
Comp)
: IDs(ImportMap.IDs), Imports(iterator_range(ImportMap.Imports)) {
llvm::sort(Imports, [&](ImportIDTable::ImportIDTy L,
ImportIDTable::ImportIDTy R) {
auto Lookup = [&](ImportIDTable::ImportIDTy Id)
-> std::pair<StringRef, GlobalValue::GUID> {
auto Tuple = IDs.lookup(Id);
return std::make_pair(std::get<0>(Tuple), std::get<1>(Tuple));
};
return Comp(Lookup(L), Lookup(R));
});
}
// Iterate over the import list. The caller gets tuples of FromModule,
// GUID, and ImportKind instead of import IDs. std::cref below prevents
// map_iterator from deep-copying IDs.
auto begin() const { return map_iterator(Imports.begin(), std::cref(IDs)); }
auto end() const { return map_iterator(Imports.end(), std::cref(IDs)); }
private:
const ImportIDTable &IDs;
SmallVector<ImportIDTable::ImportIDTy, 0> Imports;
};
// A map from destination modules to lists of imports.
class ImportListsTy {
public:
ImportListsTy() : EmptyList(ImportIDs) {}
ImportListsTy(size_t Size) : EmptyList(ImportIDs), ListsImpl(Size) {}
ImportMapTy &operator[](StringRef DestMod) {
return ListsImpl.try_emplace(DestMod, ImportIDs).first->second;
}
const ImportMapTy &lookup(StringRef DestMod) const {
auto It = ListsImpl.find(DestMod);
if (It != ListsImpl.end())
return It->second;
return EmptyList;
}
size_t size() const { return ListsImpl.size(); }
using const_iterator = DenseMap<StringRef, ImportMapTy>::const_iterator;
const_iterator begin() const { return ListsImpl.begin(); }
const_iterator end() const { return ListsImpl.end(); }
private:
ImportMapTy EmptyList;
DenseMap<StringRef, ImportMapTy> ListsImpl;
ImportIDTable ImportIDs;
};
/// The set contains an entry for every global value that the module exports.
/// Depending on the user context, this container is allowed to contain
/// definitions, declarations or a mix of both.
using ExportSetTy = DenseSet<ValueInfo>;
/// A function of this type is used to load modules referenced by the index.
using ModuleLoaderTy =
std::function<Expected<std::unique_ptr<Module>>(StringRef Identifier)>;
/// Create a Function Importer.
FunctionImporter(const ModuleSummaryIndex &Index, ModuleLoaderTy ModuleLoader,
bool ClearDSOLocalOnDeclarations)
: Index(Index), ModuleLoader(std::move(ModuleLoader)),
ClearDSOLocalOnDeclarations(ClearDSOLocalOnDeclarations) {}
/// Import functions in Module \p M based on the supplied import list.
LLVM_ABI Expected<bool> importFunctions(Module &M,
const ImportMapTy &ImportList);
private:
/// The summaries index used to trigger importing.
const ModuleSummaryIndex &Index;
/// Factory function to load a Module for a given identifier
ModuleLoaderTy ModuleLoader;
/// See the comment of ClearDSOLocalOnDeclarations in
/// Utils/FunctionImportUtils.h.
bool ClearDSOLocalOnDeclarations;
};
/// The function importing pass
class FunctionImportPass : public PassInfoMixin<FunctionImportPass> {
public:
LLVM_ABI PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
};
/// Compute all the imports and exports for every module in the Index.
///
/// \p ModuleToDefinedGVSummaries contains for each Module a map
/// (GUID -> Summary) for every global defined in the module.
///
/// \p isPrevailing is a callback that will be called with a global value's GUID
/// and summary and should return whether the module corresponding to the
/// summary contains the linker-prevailing copy of that value.
///
/// \p ImportLists will be populated with an entry for every Module we are
/// importing into. This entry is itself a map that can be passed to
/// FunctionImporter::importFunctions() above (see description there).
///
/// \p ExportLists contains for each Module the set of globals (GUID) that will
/// be imported by another module, or referenced by such a function. I.e. this
/// is the set of globals that need to be promoted/renamed appropriately.
///
/// The module identifier strings that are the keys of the above two maps
/// are owned by the in-memory ModuleSummaryIndex the importing decisions
/// are made from (the module path for each summary is owned by the index's
/// module path string table).
LLVM_ABI void ComputeCrossModuleImport(
const ModuleSummaryIndex &Index,
const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing,
FunctionImporter::ImportListsTy &ImportLists,
DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists);
/// PrevailingType enum used as a return type of callback passed
/// to computeDeadSymbolsAndUpdateIndirectCalls. Yes and No values used when
/// status explicitly set by symbols resolution, otherwise status is Unknown.
enum class PrevailingType { Yes, No, Unknown };
/// Update call edges for indirect calls to local functions added from
/// SamplePGO when needed. Normally this is done during
/// computeDeadSymbolsAndUpdateIndirectCalls, but can be called standalone
/// when that is not called (e.g. during testing).
LLVM_ABI void updateIndirectCalls(ModuleSummaryIndex &Index);
/// Compute all the symbols that are "dead": i.e these that can't be reached
/// in the graph from any of the given symbols listed in
/// \p GUIDPreservedSymbols. Non-prevailing symbols are symbols without a
/// prevailing copy anywhere in IR and are normally dead, \p isPrevailing
/// predicate returns status of symbol.
/// Also update call edges for indirect calls to local functions added from
/// SamplePGO when needed.
LLVM_ABI void computeDeadSymbolsAndUpdateIndirectCalls(
ModuleSummaryIndex &Index,
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing);
/// Compute dead symbols and run constant propagation in combined index
/// after that.
LLVM_ABI void computeDeadSymbolsWithConstProp(
ModuleSummaryIndex &Index,
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing,
bool ImportEnabled);
/// Converts value \p GV to declaration, or replaces with a declaration if
/// it is an alias. Returns true if converted, false if replaced.
LLVM_ABI bool convertToDeclaration(GlobalValue &GV);
/// Compute the set of summaries needed for a ThinLTO backend compilation of
/// \p ModulePath.
//
/// This includes summaries from that module (in case any global summary based
/// optimizations were recorded) and from any definitions in other modules that
/// should be imported.
//
/// \p ModuleToSummariesForIndex will be populated with the needed summaries
/// from each required module path. Use a std::map instead of StringMap to get
/// stable order for bitcode emission.
///
/// \p DecSummaries will be popluated with the subset of of summary pointers
/// that have 'declaration' import type among all summaries the module need.
LLVM_ABI void gatherImportedSummariesForModule(
StringRef ModulePath,
const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
const FunctionImporter::ImportMapTy &ImportList,
ModuleToSummariesForIndexTy &ModuleToSummariesForIndex,
GVSummaryPtrSet &DecSummaries);
/// Emit into \p OutputFilename the files module \p ModulePath will import from.
LLVM_ABI Error
EmitImportsFiles(StringRef ModulePath, StringRef OutputFilename,
const ModuleToSummariesForIndexTy &ModuleToSummariesForIndex);
/// Call \p F passing each of the files module \p ModulePath will import from.
LLVM_ABI void processImportsFiles(
StringRef ModulePath,
const ModuleToSummariesForIndexTy &ModuleToSummariesForIndex,
function_ref<void(const std::string &)> F);
/// Based on the information recorded in the summaries during global
/// summary-based analysis:
/// 1. Resolve prevailing symbol linkages and constrain visibility (CanAutoHide
/// and consider visibility from other definitions for ELF) in \p TheModule
/// 2. (optional) Apply propagated function attributes to \p TheModule if
/// PropagateAttrs is true
LLVM_ABI void thinLTOFinalizeInModule(Module &TheModule,
const GVSummaryMapTy &DefinedGlobals,
bool PropagateAttrs);
/// Internalize \p TheModule based on the information recorded in the summaries
/// during global summary-based analysis.
LLVM_ABI void thinLTOInternalizeModule(Module &TheModule,
const GVSummaryMapTy &DefinedGlobals);
} // end namespace llvm
#endif // LLVM_TRANSFORMS_IPO_FUNCTIONIMPORT_H