We had some DEBUG prints these passes, but add more so that its clear where we are dumping things, and what state we are in when we do so. I'll be adding more and more DEBUG printing to try make it easier to observe whats going on without having to attach a debugger. llvm-svn: 255805
487 lines
18 KiB
C++
487 lines
18 KiB
C++
//===-- ReaderWriter/MachO/LayoutPass.cpp - Layout atoms ------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "LayoutPass.h"
|
|
#include "lld/Core/Instrumentation.h"
|
|
#include "lld/Core/Parallel.h"
|
|
#include "lld/Core/PassManager.h"
|
|
#include "lld/ReaderWriter/MachOLinkingContext.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
|
|
using namespace lld;
|
|
|
|
#define DEBUG_TYPE "LayoutPass"
|
|
|
|
namespace lld {
|
|
namespace mach_o {
|
|
|
|
static bool compareAtoms(const LayoutPass::SortKey &,
|
|
const LayoutPass::SortKey &,
|
|
LayoutPass::SortOverride customSorter);
|
|
|
|
#ifndef NDEBUG
|
|
// Return "reason (leftval, rightval)"
|
|
static std::string formatReason(StringRef reason, int leftVal, int rightVal) {
|
|
return (Twine(reason) + " (" + Twine(leftVal) + ", " + Twine(rightVal) + ")")
|
|
.str();
|
|
}
|
|
|
|
// Less-than relationship of two atoms must be transitive, which is, if a < b
|
|
// and b < c, a < c must be true. This function checks the transitivity by
|
|
// checking the sort results.
|
|
static void checkTransitivity(std::vector<LayoutPass::SortKey> &vec,
|
|
LayoutPass::SortOverride customSorter) {
|
|
for (auto i = vec.begin(), e = vec.end(); (i + 1) != e; ++i) {
|
|
for (auto j = i + 1; j != e; ++j) {
|
|
assert(compareAtoms(*i, *j, customSorter));
|
|
assert(!compareAtoms(*j, *i, customSorter));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper functions to check follow-on graph.
|
|
typedef llvm::DenseMap<const DefinedAtom *, const DefinedAtom *> AtomToAtomT;
|
|
|
|
static std::string atomToDebugString(const Atom *atom) {
|
|
const DefinedAtom *definedAtom = dyn_cast<DefinedAtom>(atom);
|
|
std::string str;
|
|
llvm::raw_string_ostream s(str);
|
|
if (definedAtom->name().empty())
|
|
s << "<anonymous " << definedAtom << ">";
|
|
else
|
|
s << definedAtom->name();
|
|
s << " in ";
|
|
if (definedAtom->customSectionName().empty())
|
|
s << "<anonymous>";
|
|
else
|
|
s << definedAtom->customSectionName();
|
|
s.flush();
|
|
return str;
|
|
}
|
|
|
|
static void showCycleDetectedError(const Registry ®istry,
|
|
AtomToAtomT &followOnNexts,
|
|
const DefinedAtom *atom) {
|
|
const DefinedAtom *start = atom;
|
|
llvm::dbgs() << "There's a cycle in a follow-on chain!\n";
|
|
do {
|
|
llvm::dbgs() << " " << atomToDebugString(atom) << "\n";
|
|
for (const Reference *ref : *atom) {
|
|
StringRef kindValStr;
|
|
if (!registry.referenceKindToString(ref->kindNamespace(), ref->kindArch(),
|
|
ref->kindValue(), kindValStr)) {
|
|
kindValStr = "<unknown>";
|
|
}
|
|
llvm::dbgs() << " " << kindValStr
|
|
<< ": " << atomToDebugString(ref->target()) << "\n";
|
|
}
|
|
atom = followOnNexts[atom];
|
|
} while (atom != start);
|
|
llvm::report_fatal_error("Cycle detected");
|
|
}
|
|
|
|
/// Exit if there's a cycle in a followon chain reachable from the
|
|
/// given root atom. Uses the tortoise and hare algorithm to detect a
|
|
/// cycle.
|
|
static void checkNoCycleInFollowonChain(const Registry ®istry,
|
|
AtomToAtomT &followOnNexts,
|
|
const DefinedAtom *root) {
|
|
const DefinedAtom *tortoise = root;
|
|
const DefinedAtom *hare = followOnNexts[root];
|
|
while (true) {
|
|
if (!tortoise || !hare)
|
|
return;
|
|
if (tortoise == hare)
|
|
showCycleDetectedError(registry, followOnNexts, tortoise);
|
|
tortoise = followOnNexts[tortoise];
|
|
hare = followOnNexts[followOnNexts[hare]];
|
|
}
|
|
}
|
|
|
|
static void checkReachabilityFromRoot(AtomToAtomT &followOnRoots,
|
|
const DefinedAtom *atom) {
|
|
if (!atom) return;
|
|
auto i = followOnRoots.find(atom);
|
|
if (i == followOnRoots.end()) {
|
|
llvm_unreachable(((Twine("Atom <") + atomToDebugString(atom) +
|
|
"> has no follow-on root!"))
|
|
.str()
|
|
.c_str());
|
|
}
|
|
const DefinedAtom *ap = i->second;
|
|
while (true) {
|
|
const DefinedAtom *next = followOnRoots[ap];
|
|
if (!next) {
|
|
llvm_unreachable((Twine("Atom <" + atomToDebugString(atom) +
|
|
"> is not reachable from its root!"))
|
|
.str()
|
|
.c_str());
|
|
}
|
|
if (next == ap)
|
|
return;
|
|
ap = next;
|
|
}
|
|
}
|
|
|
|
static void printDefinedAtoms(const SimpleFile::DefinedAtomRange &atomRange) {
|
|
for (const DefinedAtom *atom : atomRange) {
|
|
llvm::dbgs() << " file=" << atom->file().path()
|
|
<< ", name=" << atom->name()
|
|
<< ", size=" << atom->size()
|
|
<< ", type=" << atom->contentType()
|
|
<< ", ordinal=" << atom->ordinal()
|
|
<< "\n";
|
|
}
|
|
}
|
|
|
|
/// Verify that the followon chain is sane. Should not be called in
|
|
/// release binary.
|
|
void LayoutPass::checkFollowonChain(SimpleFile::DefinedAtomRange &range) {
|
|
ScopedTask task(getDefaultDomain(), "LayoutPass::checkFollowonChain");
|
|
|
|
// Verify that there's no cycle in follow-on chain.
|
|
std::set<const DefinedAtom *> roots;
|
|
for (const auto &ai : _followOnRoots)
|
|
roots.insert(ai.second);
|
|
for (const DefinedAtom *root : roots)
|
|
checkNoCycleInFollowonChain(_registry, _followOnNexts, root);
|
|
|
|
// Verify that all the atoms in followOnNexts have references to
|
|
// their roots.
|
|
for (const auto &ai : _followOnNexts) {
|
|
checkReachabilityFromRoot(_followOnRoots, ai.first);
|
|
checkReachabilityFromRoot(_followOnRoots, ai.second);
|
|
}
|
|
}
|
|
#endif // #ifndef NDEBUG
|
|
|
|
/// The function compares atoms by sorting atoms in the following order
|
|
/// a) Sorts atoms by their ordinal overrides (layout-after/ingroup)
|
|
/// b) Sorts atoms by their permissions
|
|
/// c) Sorts atoms by their content
|
|
/// d) Sorts atoms by custom sorter
|
|
/// e) Sorts atoms on how they appear using File Ordinality
|
|
/// f) Sorts atoms on how they appear within the File
|
|
static bool compareAtomsSub(const LayoutPass::SortKey &lc,
|
|
const LayoutPass::SortKey &rc,
|
|
LayoutPass::SortOverride customSorter,
|
|
std::string &reason) {
|
|
const DefinedAtom *left = lc._atom;
|
|
const DefinedAtom *right = rc._atom;
|
|
if (left == right) {
|
|
reason = "same";
|
|
return false;
|
|
}
|
|
|
|
// Find the root of the chain if it is a part of a follow-on chain.
|
|
const DefinedAtom *leftRoot = lc._root;
|
|
const DefinedAtom *rightRoot = rc._root;
|
|
|
|
// Sort atoms by their ordinal overrides only if they fall in the same
|
|
// chain.
|
|
if (leftRoot == rightRoot) {
|
|
DEBUG(reason = formatReason("override", lc._override, rc._override));
|
|
return lc._override < rc._override;
|
|
}
|
|
|
|
// Sort same permissions together.
|
|
DefinedAtom::ContentPermissions leftPerms = leftRoot->permissions();
|
|
DefinedAtom::ContentPermissions rightPerms = rightRoot->permissions();
|
|
|
|
if (leftPerms != rightPerms) {
|
|
DEBUG(reason =
|
|
formatReason("contentPerms", (int)leftPerms, (int)rightPerms));
|
|
return leftPerms < rightPerms;
|
|
}
|
|
|
|
// Sort same content types together.
|
|
DefinedAtom::ContentType leftType = leftRoot->contentType();
|
|
DefinedAtom::ContentType rightType = rightRoot->contentType();
|
|
|
|
if (leftType != rightType) {
|
|
DEBUG(reason = formatReason("contentType", (int)leftType, (int)rightType));
|
|
return leftType < rightType;
|
|
}
|
|
|
|
// Use custom sorter if supplied.
|
|
if (customSorter) {
|
|
bool leftBeforeRight;
|
|
if (customSorter(leftRoot, rightRoot, leftBeforeRight))
|
|
return leftBeforeRight;
|
|
}
|
|
|
|
// Sort by .o order.
|
|
const File *leftFile = &leftRoot->file();
|
|
const File *rightFile = &rightRoot->file();
|
|
|
|
if (leftFile != rightFile) {
|
|
DEBUG(reason = formatReason(".o order", (int)leftFile->ordinal(),
|
|
(int)rightFile->ordinal()));
|
|
return leftFile->ordinal() < rightFile->ordinal();
|
|
}
|
|
|
|
// Sort by atom order with .o file.
|
|
uint64_t leftOrdinal = leftRoot->ordinal();
|
|
uint64_t rightOrdinal = rightRoot->ordinal();
|
|
|
|
if (leftOrdinal != rightOrdinal) {
|
|
DEBUG(reason = formatReason("ordinal", (int)leftRoot->ordinal(),
|
|
(int)rightRoot->ordinal()));
|
|
return leftOrdinal < rightOrdinal;
|
|
}
|
|
|
|
llvm::errs() << "Unordered: <" << left->name() << "> <"
|
|
<< right->name() << ">\n";
|
|
llvm_unreachable("Atoms with Same Ordinal!");
|
|
}
|
|
|
|
static bool compareAtoms(const LayoutPass::SortKey &lc,
|
|
const LayoutPass::SortKey &rc,
|
|
LayoutPass::SortOverride customSorter) {
|
|
std::string reason;
|
|
bool result = compareAtomsSub(lc, rc, customSorter, reason);
|
|
DEBUG({
|
|
StringRef comp = result ? "<" : ">=";
|
|
llvm::dbgs() << "Layout: '" << lc._atom->name() << "' " << comp << " '"
|
|
<< rc._atom->name() << "' (" << reason << ")\n";
|
|
});
|
|
return result;
|
|
}
|
|
|
|
LayoutPass::LayoutPass(const Registry ®istry, SortOverride sorter)
|
|
: _registry(registry), _customSorter(sorter) {}
|
|
|
|
// Returns the atom immediately followed by the given atom in the followon
|
|
// chain.
|
|
const DefinedAtom *LayoutPass::findAtomFollowedBy(
|
|
const DefinedAtom *targetAtom) {
|
|
// Start from the beginning of the chain and follow the chain until
|
|
// we find the targetChain.
|
|
const DefinedAtom *atom = _followOnRoots[targetAtom];
|
|
while (true) {
|
|
const DefinedAtom *prevAtom = atom;
|
|
AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
|
|
// The target atom must be in the chain of its root.
|
|
assert(targetFollowOnAtomsIter != _followOnNexts.end());
|
|
atom = targetFollowOnAtomsIter->second;
|
|
if (atom == targetAtom)
|
|
return prevAtom;
|
|
}
|
|
}
|
|
|
|
// Check if all the atoms followed by the given target atom are of size zero.
|
|
// When this method is called, an atom being added is not of size zero and
|
|
// will be added to the head of the followon chain. All the atoms between the
|
|
// atom and the targetAtom (specified by layout-after) need to be of size zero
|
|
// in this case. Otherwise the desired layout is impossible.
|
|
bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) {
|
|
const DefinedAtom *atom = _followOnRoots[targetAtom];
|
|
while (true) {
|
|
if (atom == targetAtom)
|
|
return true;
|
|
if (atom->size() != 0)
|
|
// TODO: print warning that an impossible layout is being desired by the
|
|
// user.
|
|
return false;
|
|
AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
|
|
// The target atom must be in the chain of its root.
|
|
assert(targetFollowOnAtomsIter != _followOnNexts.end());
|
|
atom = targetFollowOnAtomsIter->second;
|
|
}
|
|
}
|
|
|
|
// Set the root of all atoms in targetAtom's chain to the given root.
|
|
void LayoutPass::setChainRoot(const DefinedAtom *targetAtom,
|
|
const DefinedAtom *root) {
|
|
// Walk through the followon chain and override each node's root.
|
|
while (true) {
|
|
_followOnRoots[targetAtom] = root;
|
|
AtomToAtomT::iterator targetFollowOnAtomsIter =
|
|
_followOnNexts.find(targetAtom);
|
|
if (targetFollowOnAtomsIter == _followOnNexts.end())
|
|
return;
|
|
targetAtom = targetFollowOnAtomsIter->second;
|
|
}
|
|
}
|
|
|
|
/// This pass builds the followon tables described by two DenseMaps
|
|
/// followOnRoots and followonNexts.
|
|
/// The followOnRoots map contains a mapping of a DefinedAtom to its root
|
|
/// The followOnNexts map contains a mapping of what DefinedAtom follows the
|
|
/// current Atom
|
|
/// The algorithm follows a very simple approach
|
|
/// a) If the atom is first seen, then make that as the root atom
|
|
/// b) The targetAtom which this Atom contains, has the root thats set to the
|
|
/// root of the current atom
|
|
/// c) If the targetAtom is part of a different tree and the root of the
|
|
/// targetAtom is itself, Chain all the atoms that are contained in the tree
|
|
/// to the current Tree
|
|
/// d) If the targetAtom is part of a different chain and the root of the
|
|
/// targetAtom until the targetAtom has all atoms of size 0, then chain the
|
|
/// targetAtoms and its tree to the current chain
|
|
void LayoutPass::buildFollowOnTable(SimpleFile::DefinedAtomRange &range) {
|
|
ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable");
|
|
// Set the initial size of the followon and the followonNext hash to the
|
|
// number of atoms that we have.
|
|
_followOnRoots.resize(range.size());
|
|
_followOnNexts.resize(range.size());
|
|
for (const DefinedAtom *ai : range) {
|
|
for (const Reference *r : *ai) {
|
|
if (r->kindNamespace() != lld::Reference::KindNamespace::all ||
|
|
r->kindValue() != lld::Reference::kindLayoutAfter)
|
|
continue;
|
|
const DefinedAtom *targetAtom = dyn_cast<DefinedAtom>(r->target());
|
|
_followOnNexts[ai] = targetAtom;
|
|
|
|
// If we find a followon for the first time, let's make that atom as the
|
|
// root atom.
|
|
if (_followOnRoots.count(ai) == 0)
|
|
_followOnRoots[ai] = ai;
|
|
|
|
auto iter = _followOnRoots.find(targetAtom);
|
|
if (iter == _followOnRoots.end()) {
|
|
// If the targetAtom is not a root of any chain, let's make the root of
|
|
// the targetAtom to the root of the current chain.
|
|
|
|
// The expression m[i] = m[j] where m is a DenseMap and i != j is not
|
|
// safe. m[j] returns a reference, which would be invalidated when a
|
|
// rehashing occurs. If rehashing occurs to make room for m[i], m[j]
|
|
// becomes invalid, and that invalid reference would be used as the RHS
|
|
// value of the expression.
|
|
// Copy the value to workaround.
|
|
const DefinedAtom *tmp = _followOnRoots[ai];
|
|
_followOnRoots[targetAtom] = tmp;
|
|
continue;
|
|
}
|
|
if (iter->second == targetAtom) {
|
|
// If the targetAtom is the root of a chain, the chain becomes part of
|
|
// the current chain. Rewrite the subchain's root to the current
|
|
// chain's root.
|
|
setChainRoot(targetAtom, _followOnRoots[ai]);
|
|
continue;
|
|
}
|
|
// The targetAtom is already a part of a chain. If the current atom is
|
|
// of size zero, we can insert it in the middle of the chain just
|
|
// before the target atom, while not breaking other atom's followon
|
|
// relationships. If it's not, we can only insert the current atom at
|
|
// the beginning of the chain. All the atoms followed by the target
|
|
// atom must be of size zero in that case to satisfy the followon
|
|
// relationships.
|
|
size_t currentAtomSize = ai->size();
|
|
if (currentAtomSize == 0) {
|
|
const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom);
|
|
_followOnNexts[targetPrevAtom] = ai;
|
|
const DefinedAtom *tmp = _followOnRoots[targetPrevAtom];
|
|
_followOnRoots[ai] = tmp;
|
|
continue;
|
|
}
|
|
if (!checkAllPrevAtomsZeroSize(targetAtom))
|
|
break;
|
|
_followOnNexts[ai] = _followOnRoots[targetAtom];
|
|
setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Build an ordinal override map by traversing the followon chain, and
|
|
/// assigning ordinals to each atom, if the atoms have their ordinals
|
|
/// already assigned skip the atom and move to the next. This is the
|
|
/// main map thats used to sort the atoms while comparing two atoms together
|
|
void LayoutPass::buildOrdinalOverrideMap(SimpleFile::DefinedAtomRange &range) {
|
|
ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap");
|
|
uint64_t index = 0;
|
|
for (const DefinedAtom *ai : range) {
|
|
const DefinedAtom *atom = ai;
|
|
if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end())
|
|
continue;
|
|
AtomToAtomT::iterator start = _followOnRoots.find(atom);
|
|
if (start == _followOnRoots.end())
|
|
continue;
|
|
for (const DefinedAtom *nextAtom = start->second; nextAtom;
|
|
nextAtom = _followOnNexts[nextAtom]) {
|
|
AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom);
|
|
if (pos == _ordinalOverrideMap.end())
|
|
_ordinalOverrideMap[nextAtom] = index++;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<LayoutPass::SortKey>
|
|
LayoutPass::decorate(SimpleFile::DefinedAtomRange &atomRange) const {
|
|
std::vector<SortKey> ret;
|
|
for (const DefinedAtom *atom : atomRange) {
|
|
auto ri = _followOnRoots.find(atom);
|
|
auto oi = _ordinalOverrideMap.find(atom);
|
|
const DefinedAtom *root = (ri == _followOnRoots.end()) ? atom : ri->second;
|
|
uint64_t override = (oi == _ordinalOverrideMap.end()) ? 0 : oi->second;
|
|
ret.push_back(SortKey(atom, root, override));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void LayoutPass::undecorate(SimpleFile::DefinedAtomRange &atomRange,
|
|
std::vector<SortKey> &keys) const {
|
|
size_t i = 0;
|
|
for (SortKey &k : keys)
|
|
atomRange[i++] = k._atom;
|
|
}
|
|
|
|
/// Perform the actual pass
|
|
std::error_code LayoutPass::perform(SimpleFile &mergedFile) {
|
|
DEBUG(llvm::dbgs() << "******** Laying out atoms:\n");
|
|
// sort the atoms
|
|
ScopedTask task(getDefaultDomain(), "LayoutPass");
|
|
SimpleFile::DefinedAtomRange atomRange = mergedFile.definedAtoms();
|
|
|
|
// Build follow on tables
|
|
buildFollowOnTable(atomRange);
|
|
|
|
// Check the structure of followon graph if running in debug mode.
|
|
DEBUG(checkFollowonChain(atomRange));
|
|
|
|
// Build override maps
|
|
buildOrdinalOverrideMap(atomRange);
|
|
|
|
DEBUG({
|
|
llvm::dbgs() << "unsorted atoms:\n";
|
|
printDefinedAtoms(atomRange);
|
|
});
|
|
|
|
std::vector<LayoutPass::SortKey> vec = decorate(atomRange);
|
|
parallel_sort(vec.begin(), vec.end(),
|
|
[&](const LayoutPass::SortKey &l, const LayoutPass::SortKey &r) -> bool {
|
|
return compareAtoms(l, r, _customSorter);
|
|
});
|
|
DEBUG(checkTransitivity(vec, _customSorter));
|
|
undecorate(atomRange, vec);
|
|
|
|
DEBUG({
|
|
llvm::dbgs() << "sorted atoms:\n";
|
|
printDefinedAtoms(atomRange);
|
|
});
|
|
|
|
DEBUG(llvm::dbgs() << "******** Finished laying out atoms\n");
|
|
return std::error_code();
|
|
}
|
|
|
|
void addLayoutPass(PassManager &pm, const MachOLinkingContext &ctx) {
|
|
pm.add(llvm::make_unique<LayoutPass>(
|
|
ctx.registry(), [&](const DefinedAtom * left, const DefinedAtom * right,
|
|
bool & leftBeforeRight) ->bool {
|
|
return ctx.customAtomOrderer(left, right, leftBeforeRight);
|
|
}));
|
|
}
|
|
|
|
} // namespace mach_o
|
|
} // namespace lld
|