In preparation for implementing support for detection of non-protected call instructions, refine the definition of state which is computed for each register by data-flow analysis. Explicitly marking the registers which are known to be trusted at function entry is crucial for finding non-protected calls. In addition, it fixes less-common false negatives for pac-ret, such as `ret x1` in `f_nonx30_ret_non_auted` test case.
649 lines
23 KiB
C++
649 lines
23 KiB
C++
//===- bolt/Passes/PAuthGadgetScanner.cpp ---------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass that looks for any AArch64 return instructions
|
|
// that may not be protected by PAuth authentication instructions when needed.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Passes/PAuthGadgetScanner.h"
|
|
#include "bolt/Core/ParallelUtilities.h"
|
|
#include "bolt/Passes/DataflowAnalysis.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include <memory>
|
|
|
|
#define DEBUG_TYPE "bolt-pauth-scanner"
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const MCInstInBBReference &Ref) {
|
|
OS << "MCInstBBRef<";
|
|
if (Ref.BB == nullptr)
|
|
OS << "BB:(null)";
|
|
else
|
|
OS << "BB:" << Ref.BB->getName() << ":" << Ref.BBIndex;
|
|
OS << ">";
|
|
return OS;
|
|
}
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const MCInstInBFReference &Ref) {
|
|
OS << "MCInstBFRef<";
|
|
if (Ref.BF == nullptr)
|
|
OS << "BF:(null)";
|
|
else
|
|
OS << "BF:" << Ref.BF->getPrintName() << ":" << Ref.getOffset();
|
|
OS << ">";
|
|
return OS;
|
|
}
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const MCInstReference &Ref) {
|
|
switch (Ref.ParentKind) {
|
|
case MCInstReference::BasicBlockParent:
|
|
OS << Ref.U.BBRef;
|
|
return OS;
|
|
case MCInstReference::FunctionParent:
|
|
OS << Ref.U.BFRef;
|
|
return OS;
|
|
}
|
|
llvm_unreachable("");
|
|
}
|
|
|
|
namespace PAuthGadgetScanner {
|
|
|
|
[[maybe_unused]] static void traceInst(const BinaryContext &BC, StringRef Label,
|
|
const MCInst &MI) {
|
|
dbgs() << " " << Label << ": ";
|
|
BC.printInstruction(dbgs(), MI);
|
|
}
|
|
|
|
[[maybe_unused]] static void traceReg(const BinaryContext &BC, StringRef Label,
|
|
ErrorOr<MCPhysReg> Reg) {
|
|
dbgs() << " " << Label << ": ";
|
|
if (Reg.getError())
|
|
dbgs() << "(error)";
|
|
else if (*Reg == BC.MIB->getNoRegister())
|
|
dbgs() << "(none)";
|
|
else
|
|
dbgs() << BC.MRI->getName(*Reg);
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
[[maybe_unused]] static void traceRegMask(const BinaryContext &BC,
|
|
StringRef Label, BitVector Mask) {
|
|
dbgs() << " " << Label << ": ";
|
|
RegStatePrinter(BC).print(dbgs(), Mask);
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
// This class represents mapping from a set of arbitrary physical registers to
|
|
// consecutive array indexes.
|
|
class TrackedRegisters {
|
|
static constexpr uint16_t NoIndex = -1;
|
|
const std::vector<MCPhysReg> Registers;
|
|
std::vector<uint16_t> RegToIndexMapping;
|
|
|
|
static size_t getMappingSize(const std::vector<MCPhysReg> &RegsToTrack) {
|
|
if (RegsToTrack.empty())
|
|
return 0;
|
|
return 1 + *llvm::max_element(RegsToTrack);
|
|
}
|
|
|
|
public:
|
|
TrackedRegisters(const std::vector<MCPhysReg> &RegsToTrack)
|
|
: Registers(RegsToTrack),
|
|
RegToIndexMapping(getMappingSize(RegsToTrack), NoIndex) {
|
|
for (unsigned I = 0; I < RegsToTrack.size(); ++I)
|
|
RegToIndexMapping[RegsToTrack[I]] = I;
|
|
}
|
|
|
|
const ArrayRef<MCPhysReg> getRegisters() const { return Registers; }
|
|
|
|
size_t getNumTrackedRegisters() const { return Registers.size(); }
|
|
|
|
bool empty() const { return Registers.empty(); }
|
|
|
|
bool isTracked(MCPhysReg Reg) const {
|
|
bool IsTracked = (unsigned)Reg < RegToIndexMapping.size() &&
|
|
RegToIndexMapping[Reg] != NoIndex;
|
|
assert(IsTracked == llvm::is_contained(Registers, Reg));
|
|
return IsTracked;
|
|
}
|
|
|
|
unsigned getIndex(MCPhysReg Reg) const {
|
|
assert(isTracked(Reg) && "Register is not tracked");
|
|
return RegToIndexMapping[Reg];
|
|
}
|
|
};
|
|
|
|
// The security property that is checked is:
|
|
// When a register is used as the address to jump to in a return instruction,
|
|
// that register must be safe-to-dereference. It must either
|
|
// (a) be safe-to-dereference at function entry and never be changed within this
|
|
// function, i.e. have the same value as when the function started, or
|
|
// (b) the last write to the register must be by an authentication instruction.
|
|
|
|
// This property is checked by using dataflow analysis to keep track of which
|
|
// registers have been written (def-ed), since last authenticated. For pac-ret,
|
|
// any return instruction using a register which is not safe-to-dereference is
|
|
// a gadget to be reported. For PAuthABI, probably at least any indirect control
|
|
// flow using such a register should be reported.
|
|
|
|
// Furthermore, when producing a diagnostic for a found non-pac-ret protected
|
|
// return, the analysis also lists the last instructions that wrote to the
|
|
// register used in the return instruction.
|
|
// The total set of registers used in return instructions in a given function is
|
|
// small. It almost always is just `X30`.
|
|
// In order to reduce the memory consumption of storing this additional state
|
|
// during the dataflow analysis, this is computed by running the dataflow
|
|
// analysis twice:
|
|
// 1. In the first run, the dataflow analysis only keeps track of the security
|
|
// property: i.e. which registers have been overwritten since the last
|
|
// time they've been authenticated.
|
|
// 2. If the first run finds any return instructions using a register last
|
|
// written by a non-authenticating instruction, the dataflow analysis will
|
|
// be run a second time. The first run will return which registers are used
|
|
// in the gadgets to be reported. This information is used in the second run
|
|
// to also track which instructions last wrote to those registers.
|
|
|
|
/// A state representing which registers are safe to use by an instruction
|
|
/// at a given program point.
|
|
///
|
|
/// To simplify reasoning, let's stick with the following approach:
|
|
/// * when state is updated by the data-flow analysis, the sub-, super- and
|
|
/// overlapping registers are marked as needed
|
|
/// * when the particular instruction is checked if it represents a gadget,
|
|
/// the specific bit of BitVector should be usable to answer this.
|
|
///
|
|
/// For example, on AArch64:
|
|
/// * An AUTIZA X0 instruction marks both X0 and W0 (as well as W0_HI) as
|
|
/// safe-to-dereference. It does not change the state of X0_X1, for example,
|
|
/// as super-registers partially retain their old, unsafe values.
|
|
/// * LDR X1, [X0] marks as unsafe both X1 itself and anything it overlaps
|
|
/// with: W1, W1_HI, X0_X1 and so on.
|
|
/// * RET (which is implicitly RET X30) is a protected return if and only if
|
|
/// X30 is safe-to-dereference - the state computed for sub- and
|
|
/// super-registers is not inspected.
|
|
struct State {
|
|
/// A BitVector containing the registers that are either safe at function
|
|
/// entry and were not clobbered yet, or those not clobbered since being
|
|
/// authenticated.
|
|
BitVector SafeToDerefRegs;
|
|
/// A vector of sets, only used in the second data flow run.
|
|
/// Each element in the vector represents one of the registers for which we
|
|
/// track the set of last instructions that wrote to this register. For
|
|
/// pac-ret analysis, the expectation is that almost all return instructions
|
|
/// only use register `X30`, and therefore, this vector will probably have
|
|
/// length 1 in the second run.
|
|
std::vector<SmallPtrSet<const MCInst *, 4>> LastInstWritingReg;
|
|
|
|
/// Construct an empty state.
|
|
State() {}
|
|
|
|
State(unsigned NumRegs, unsigned NumRegsToTrack)
|
|
: SafeToDerefRegs(NumRegs), LastInstWritingReg(NumRegsToTrack) {}
|
|
|
|
State &merge(const State &StateIn) {
|
|
if (StateIn.empty())
|
|
return *this;
|
|
if (empty())
|
|
return (*this = StateIn);
|
|
|
|
SafeToDerefRegs &= StateIn.SafeToDerefRegs;
|
|
for (unsigned I = 0; I < LastInstWritingReg.size(); ++I)
|
|
for (const MCInst *J : StateIn.LastInstWritingReg[I])
|
|
LastInstWritingReg[I].insert(J);
|
|
return *this;
|
|
}
|
|
|
|
/// Returns true if this object does not store state of any registers -
|
|
/// neither safe, nor unsafe ones.
|
|
bool empty() const { return SafeToDerefRegs.empty(); }
|
|
|
|
bool operator==(const State &RHS) const {
|
|
return SafeToDerefRegs == RHS.SafeToDerefRegs &&
|
|
LastInstWritingReg == RHS.LastInstWritingReg;
|
|
}
|
|
bool operator!=(const State &RHS) const { return !((*this) == RHS); }
|
|
};
|
|
|
|
static void printLastInsts(
|
|
raw_ostream &OS,
|
|
const std::vector<SmallPtrSet<const MCInst *, 4>> &LastInstWritingReg) {
|
|
OS << "Insts: ";
|
|
for (unsigned I = 0; I < LastInstWritingReg.size(); ++I) {
|
|
auto &Set = LastInstWritingReg[I];
|
|
OS << "[" << I << "](";
|
|
for (const MCInst *MCInstP : Set)
|
|
OS << MCInstP << " ";
|
|
OS << ")";
|
|
}
|
|
}
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const State &S) {
|
|
OS << "pacret-state<";
|
|
if (S.empty()) {
|
|
OS << "empty";
|
|
} else {
|
|
OS << "SafeToDerefRegs: " << S.SafeToDerefRegs << ", ";
|
|
printLastInsts(OS, S.LastInstWritingReg);
|
|
}
|
|
OS << ">";
|
|
return OS;
|
|
}
|
|
|
|
class PacStatePrinter {
|
|
public:
|
|
void print(raw_ostream &OS, const State &State) const;
|
|
explicit PacStatePrinter(const BinaryContext &BC) : BC(BC) {}
|
|
|
|
private:
|
|
const BinaryContext &BC;
|
|
};
|
|
|
|
void PacStatePrinter::print(raw_ostream &OS, const State &S) const {
|
|
RegStatePrinter RegStatePrinter(BC);
|
|
OS << "pacret-state<";
|
|
if (S.empty()) {
|
|
assert(S.SafeToDerefRegs.empty());
|
|
assert(S.LastInstWritingReg.empty());
|
|
OS << "empty";
|
|
} else {
|
|
OS << "SafeToDerefRegs: ";
|
|
RegStatePrinter.print(OS, S.SafeToDerefRegs);
|
|
OS << ", ";
|
|
printLastInsts(OS, S.LastInstWritingReg);
|
|
}
|
|
OS << ">";
|
|
}
|
|
|
|
class PacRetAnalysis
|
|
: public DataflowAnalysis<PacRetAnalysis, State, /*Backward=*/false,
|
|
PacStatePrinter> {
|
|
using Parent =
|
|
DataflowAnalysis<PacRetAnalysis, State, false, PacStatePrinter>;
|
|
friend Parent;
|
|
|
|
public:
|
|
PacRetAnalysis(BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId,
|
|
const std::vector<MCPhysReg> &RegsToTrackInstsFor)
|
|
: Parent(BF, AllocId), NumRegs(BF.getBinaryContext().MRI->getNumRegs()),
|
|
RegsToTrackInstsFor(RegsToTrackInstsFor) {}
|
|
virtual ~PacRetAnalysis() {}
|
|
|
|
protected:
|
|
const unsigned NumRegs;
|
|
/// RegToTrackInstsFor is the set of registers for which the dataflow analysis
|
|
/// must compute which the last set of instructions writing to it are.
|
|
const TrackedRegisters RegsToTrackInstsFor;
|
|
|
|
SmallPtrSet<const MCInst *, 4> &lastWritingInsts(State &S,
|
|
MCPhysReg Reg) const {
|
|
unsigned Index = RegsToTrackInstsFor.getIndex(Reg);
|
|
return S.LastInstWritingReg[Index];
|
|
}
|
|
const SmallPtrSet<const MCInst *, 4> &lastWritingInsts(const State &S,
|
|
MCPhysReg Reg) const {
|
|
unsigned Index = RegsToTrackInstsFor.getIndex(Reg);
|
|
return S.LastInstWritingReg[Index];
|
|
}
|
|
|
|
void preflight() {}
|
|
|
|
State createEntryState() {
|
|
State S(NumRegs, RegsToTrackInstsFor.getNumTrackedRegisters());
|
|
for (MCPhysReg Reg : BC.MIB->getTrustedLiveInRegs())
|
|
S.SafeToDerefRegs |= BC.MIB->getAliases(Reg, /*OnlySmaller=*/true);
|
|
return S;
|
|
}
|
|
|
|
State getStartingStateAtBB(const BinaryBasicBlock &BB) {
|
|
if (BB.isEntryPoint())
|
|
return createEntryState();
|
|
|
|
return State();
|
|
}
|
|
|
|
State getStartingStateAtPoint(const MCInst &Point) { return State(); }
|
|
|
|
void doConfluence(State &StateOut, const State &StateIn) {
|
|
PacStatePrinter P(BC);
|
|
LLVM_DEBUG({
|
|
dbgs() << " PacRetAnalysis::Confluence(\n";
|
|
dbgs() << " State 1: ";
|
|
P.print(dbgs(), StateOut);
|
|
dbgs() << "\n";
|
|
dbgs() << " State 2: ";
|
|
P.print(dbgs(), StateIn);
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
StateOut.merge(StateIn);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << " merged state: ";
|
|
P.print(dbgs(), StateOut);
|
|
dbgs() << "\n";
|
|
});
|
|
}
|
|
|
|
State computeNext(const MCInst &Point, const State &Cur) {
|
|
PacStatePrinter P(BC);
|
|
LLVM_DEBUG({
|
|
dbgs() << " PacRetAnalysis::ComputeNext(";
|
|
BC.InstPrinter->printInst(&const_cast<MCInst &>(Point), 0, "", *BC.STI,
|
|
dbgs());
|
|
dbgs() << ", ";
|
|
P.print(dbgs(), Cur);
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
// If this instruction is reachable, a non-empty state will be propagated
|
|
// to it from the entry basic block sooner or later. Until then, it is both
|
|
// more efficient and easier to reason about to skip computeNext().
|
|
if (Cur.empty()) {
|
|
LLVM_DEBUG(
|
|
{ dbgs() << "Skipping computeNext(Point, Cur) as Cur is empty.\n"; });
|
|
return State();
|
|
}
|
|
|
|
State Next = Cur;
|
|
BitVector Clobbered(NumRegs, false);
|
|
// Assume a call can clobber all registers, including callee-saved
|
|
// registers. There's a good chance that callee-saved registers will be
|
|
// saved on the stack at some point during execution of the callee.
|
|
// Therefore they should also be considered as potentially modified by an
|
|
// attacker/written to.
|
|
// Also, not all functions may respect the AAPCS ABI rules about
|
|
// caller/callee-saved registers.
|
|
if (BC.MIB->isCall(Point))
|
|
Clobbered.set();
|
|
else
|
|
BC.MIB->getClobberedRegs(Point, Clobbered);
|
|
Next.SafeToDerefRegs.reset(Clobbered);
|
|
// Keep track of this instruction if it writes to any of the registers we
|
|
// need to track that for:
|
|
for (MCPhysReg Reg : RegsToTrackInstsFor.getRegisters())
|
|
if (Clobbered[Reg])
|
|
lastWritingInsts(Next, Reg) = {&Point};
|
|
|
|
ErrorOr<MCPhysReg> AutReg = BC.MIB->getAuthenticatedReg(Point);
|
|
if (AutReg && *AutReg != BC.MIB->getNoRegister()) {
|
|
// The sub-registers of *AutReg are also trusted now, but not its
|
|
// super-registers (as they retain untrusted register units).
|
|
BitVector AuthenticatedSubregs =
|
|
BC.MIB->getAliases(*AutReg, /*OnlySmaller=*/true);
|
|
for (MCPhysReg Reg : AuthenticatedSubregs.set_bits()) {
|
|
Next.SafeToDerefRegs.set(Reg);
|
|
if (RegsToTrackInstsFor.isTracked(Reg))
|
|
lastWritingInsts(Next, Reg).clear();
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << " .. result: (";
|
|
P.print(dbgs(), Next);
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
return Next;
|
|
}
|
|
|
|
StringRef getAnnotationName() const { return StringRef("PacRetAnalysis"); }
|
|
|
|
public:
|
|
std::vector<MCInstReference>
|
|
getLastClobberingInsts(const MCInst Ret, BinaryFunction &BF,
|
|
const ArrayRef<MCPhysReg> UsedDirtyRegs) const {
|
|
if (RegsToTrackInstsFor.empty())
|
|
return {};
|
|
auto MaybeState = getStateAt(Ret);
|
|
if (!MaybeState)
|
|
llvm_unreachable("Expected State to be present");
|
|
const State &S = *MaybeState;
|
|
// Due to aliasing registers, multiple registers may have been tracked.
|
|
std::set<const MCInst *> LastWritingInsts;
|
|
for (MCPhysReg TrackedReg : UsedDirtyRegs) {
|
|
for (const MCInst *Inst : lastWritingInsts(S, TrackedReg))
|
|
LastWritingInsts.insert(Inst);
|
|
}
|
|
std::vector<MCInstReference> Result;
|
|
for (const MCInst *Inst : LastWritingInsts) {
|
|
MCInstInBBReference Ref = MCInstInBBReference::get(Inst, BF);
|
|
assert(Ref.BB != nullptr && "Expected Inst to be found");
|
|
Result.push_back(MCInstReference(Ref));
|
|
}
|
|
return Result;
|
|
}
|
|
};
|
|
|
|
static std::shared_ptr<Report>
|
|
shouldReportReturnGadget(const BinaryContext &BC, const MCInstReference &Inst,
|
|
const State &S) {
|
|
static const GadgetKind RetKind("non-protected ret found");
|
|
if (!BC.MIB->isReturn(Inst))
|
|
return nullptr;
|
|
|
|
ErrorOr<MCPhysReg> MaybeRetReg = BC.MIB->getRegUsedAsRetDest(Inst);
|
|
if (MaybeRetReg.getError()) {
|
|
return std::make_shared<GenericReport>(
|
|
Inst, "Warning: pac-ret analysis could not analyze this return "
|
|
"instruction");
|
|
}
|
|
MCPhysReg RetReg = *MaybeRetReg;
|
|
LLVM_DEBUG({
|
|
traceInst(BC, "Found RET inst", Inst);
|
|
traceReg(BC, "RetReg", RetReg);
|
|
traceReg(BC, "Authenticated reg", BC.MIB->getAuthenticatedReg(Inst));
|
|
});
|
|
if (BC.MIB->isAuthenticationOfReg(Inst, RetReg))
|
|
return nullptr;
|
|
LLVM_DEBUG({ traceRegMask(BC, "SafeToDerefRegs", S.SafeToDerefRegs); });
|
|
if (S.SafeToDerefRegs[RetReg])
|
|
return nullptr;
|
|
|
|
return std::make_shared<GadgetReport>(RetKind, Inst, RetReg);
|
|
}
|
|
|
|
FunctionAnalysisResult
|
|
Analysis::findGadgets(BinaryFunction &BF,
|
|
MCPlusBuilder::AllocatorIdTy AllocatorId) {
|
|
FunctionAnalysisResult Result;
|
|
|
|
PacRetAnalysis PRA(BF, AllocatorId, {});
|
|
PRA.run();
|
|
LLVM_DEBUG({
|
|
dbgs() << " After PacRetAnalysis:\n";
|
|
BF.dump();
|
|
});
|
|
|
|
BinaryContext &BC = BF.getBinaryContext();
|
|
for (BinaryBasicBlock &BB : BF) {
|
|
for (int64_t I = 0, E = BB.size(); I < E; ++I) {
|
|
MCInstReference Inst(&BB, I);
|
|
const State &S = *PRA.getStateAt(Inst);
|
|
|
|
// If non-empty state was never propagated from the entry basic block
|
|
// to Inst, assume it to be unreachable and report a warning.
|
|
if (S.empty()) {
|
|
Result.Diagnostics.push_back(std::make_shared<GenericReport>(
|
|
Inst, "Warning: unreachable instruction found"));
|
|
continue;
|
|
}
|
|
|
|
if (auto Report = shouldReportReturnGadget(BC, Inst, S))
|
|
Result.Diagnostics.push_back(Report);
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
void Analysis::computeDetailedInfo(BinaryFunction &BF,
|
|
MCPlusBuilder::AllocatorIdTy AllocatorId,
|
|
FunctionAnalysisResult &Result) {
|
|
BinaryContext &BC = BF.getBinaryContext();
|
|
|
|
// Collect the affected registers across all gadgets found in this function.
|
|
SmallSet<MCPhysReg, 4> RegsToTrack;
|
|
for (auto Report : Result.Diagnostics)
|
|
RegsToTrack.insert_range(Report->getAffectedRegisters());
|
|
std::vector<MCPhysReg> RegsToTrackVec(RegsToTrack.begin(), RegsToTrack.end());
|
|
|
|
// Re-compute the analysis with register tracking.
|
|
PacRetAnalysis PRWIA(BF, AllocatorId, RegsToTrackVec);
|
|
PRWIA.run();
|
|
LLVM_DEBUG({
|
|
dbgs() << " After detailed PacRetAnalysis:\n";
|
|
BF.dump();
|
|
});
|
|
|
|
// Augment gadget reports.
|
|
for (auto Report : Result.Diagnostics) {
|
|
LLVM_DEBUG(
|
|
{ traceInst(BC, "Attaching clobbering info to", Report->Location); });
|
|
(void)BC;
|
|
Report->setOverwritingInstrs(PRWIA.getLastClobberingInsts(
|
|
Report->Location, BF, Report->getAffectedRegisters()));
|
|
}
|
|
}
|
|
|
|
void Analysis::runOnFunction(BinaryFunction &BF,
|
|
MCPlusBuilder::AllocatorIdTy AllocatorId) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "Analyzing in function " << BF.getPrintName() << ", AllocatorId "
|
|
<< AllocatorId << "\n";
|
|
BF.dump();
|
|
});
|
|
|
|
if (!BF.hasCFG())
|
|
return;
|
|
|
|
FunctionAnalysisResult FAR = findGadgets(BF, AllocatorId);
|
|
if (FAR.Diagnostics.empty())
|
|
return;
|
|
|
|
// Redo the analysis, but now also track which instructions last wrote
|
|
// to any of the registers in RetRegsWithGadgets, so that better
|
|
// diagnostics can be produced.
|
|
|
|
computeDetailedInfo(BF, AllocatorId, FAR);
|
|
|
|
// `runOnFunction` is typically getting called from multiple threads in
|
|
// parallel. Therefore, use a lock to avoid data races when storing the
|
|
// result of the analysis in the `AnalysisResults` map.
|
|
{
|
|
std::lock_guard<std::mutex> Lock(AnalysisResultsMutex);
|
|
AnalysisResults[&BF] = FAR;
|
|
}
|
|
}
|
|
|
|
static void printBB(const BinaryContext &BC, const BinaryBasicBlock *BB,
|
|
size_t StartIndex = 0, size_t EndIndex = -1) {
|
|
if (EndIndex == (size_t)-1)
|
|
EndIndex = BB->size() - 1;
|
|
const BinaryFunction *BF = BB->getFunction();
|
|
for (unsigned I = StartIndex; I <= EndIndex; ++I) {
|
|
// FIXME: this assumes all instructions are 4 bytes in size. This is true
|
|
// for AArch64, but it might be good to extract this function so it can be
|
|
// used elsewhere and for other targets too.
|
|
uint64_t Address = BB->getOffset() + BF->getAddress() + 4 * I;
|
|
const MCInst &Inst = BB->getInstructionAtIndex(I);
|
|
if (BC.MIB->isCFI(Inst))
|
|
continue;
|
|
BC.printInstruction(outs(), Inst, Address, BF);
|
|
}
|
|
}
|
|
|
|
static void reportFoundGadgetInSingleBBSingleOverwInst(
|
|
raw_ostream &OS, const BinaryContext &BC, const MCInstReference OverwInst,
|
|
const MCInstReference Location) {
|
|
BinaryBasicBlock *BB = Location.getBasicBlock();
|
|
assert(OverwInst.ParentKind == MCInstReference::BasicBlockParent);
|
|
assert(Location.ParentKind == MCInstReference::BasicBlockParent);
|
|
MCInstInBBReference OverwInstBB = OverwInst.U.BBRef;
|
|
if (BB == OverwInstBB.BB) {
|
|
// overwriting inst and ret instruction are in the same basic block.
|
|
assert(OverwInstBB.BBIndex < Location.U.BBRef.BBIndex);
|
|
OS << " This happens in the following basic block:\n";
|
|
printBB(BC, BB);
|
|
}
|
|
}
|
|
|
|
void Report::printBasicInfo(raw_ostream &OS, const BinaryContext &BC,
|
|
StringRef IssueKind) const {
|
|
BinaryFunction *BF = Location.getFunction();
|
|
BinaryBasicBlock *BB = Location.getBasicBlock();
|
|
|
|
OS << "\nGS-PAUTH: " << IssueKind;
|
|
OS << " in function " << BF->getPrintName();
|
|
if (BB)
|
|
OS << ", basic block " << BB->getName();
|
|
OS << ", at address " << llvm::format("%x", Location.getAddress()) << "\n";
|
|
OS << " The instruction is ";
|
|
BC.printInstruction(OS, Location, Location.getAddress(), BF);
|
|
}
|
|
|
|
void GadgetReport::generateReport(raw_ostream &OS,
|
|
const BinaryContext &BC) const {
|
|
printBasicInfo(OS, BC, Kind.getDescription());
|
|
|
|
BinaryFunction *BF = Location.getFunction();
|
|
OS << " The " << OverwritingInstrs.size()
|
|
<< " instructions that write to the affected registers after any "
|
|
"authentication are:\n";
|
|
// Sort by address to ensure output is deterministic.
|
|
SmallVector<MCInstReference> OI = OverwritingInstrs;
|
|
llvm::sort(OI, [](const MCInstReference &A, const MCInstReference &B) {
|
|
return A.getAddress() < B.getAddress();
|
|
});
|
|
for (unsigned I = 0; I < OI.size(); ++I) {
|
|
MCInstReference InstRef = OI[I];
|
|
OS << " " << (I + 1) << ". ";
|
|
BC.printInstruction(OS, InstRef, InstRef.getAddress(), BF);
|
|
};
|
|
if (OverwritingInstrs.size() == 1) {
|
|
const MCInstReference OverwInst = OverwritingInstrs[0];
|
|
assert(OverwInst.ParentKind == MCInstReference::BasicBlockParent);
|
|
reportFoundGadgetInSingleBBSingleOverwInst(OS, BC, OverwInst, Location);
|
|
}
|
|
}
|
|
|
|
void GenericReport::generateReport(raw_ostream &OS,
|
|
const BinaryContext &BC) const {
|
|
printBasicInfo(OS, BC, Text);
|
|
}
|
|
|
|
Error Analysis::runOnFunctions(BinaryContext &BC) {
|
|
ParallelUtilities::WorkFuncWithAllocTy WorkFun =
|
|
[&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocatorId) {
|
|
runOnFunction(BF, AllocatorId);
|
|
};
|
|
|
|
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
|
|
return false;
|
|
};
|
|
|
|
ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
|
|
BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
|
|
SkipFunc, "PAuthGadgetScanner");
|
|
|
|
for (BinaryFunction *BF : BC.getAllBinaryFunctions())
|
|
if (AnalysisResults.count(BF) > 0) {
|
|
for (const std::shared_ptr<Report> &R : AnalysisResults[BF].Diagnostics)
|
|
R->generateReport(outs(), BC);
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
} // namespace PAuthGadgetScanner
|
|
} // namespace bolt
|
|
} // namespace llvm
|