Files
clang-p2996/lldb/tools/debugserver/source/PThreadEvent.cpp
Zachary Turner f343968f5d Delete Host/windows/win32.h
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.

This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.

There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.

This patch depends on LLVM revision r278170.

llvm-svn: 278177
2016-08-09 23:06:08 +00:00

228 lines
7.8 KiB
C++

//===-- PThreadEvent.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/16/07.
//
//===----------------------------------------------------------------------===//
#include "PThreadEvent.h"
#include "errno.h"
#include "DNBLog.h"
PThreadEvent::PThreadEvent(uint32_t bits, uint32_t validBits) :
m_mutex(),
m_set_condition(),
m_reset_condition(),
m_bits(bits),
m_validBits(validBits),
m_reset_ack_mask(0)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, 0x%8.8x)", this, __FUNCTION__, bits, validBits);
}
PThreadEvent::~PThreadEvent()
{
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
}
uint32_t
PThreadEvent::NewEventBit()
{
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
uint32_t mask = 1;
while (mask & m_validBits)
mask <<= 1;
m_validBits |= mask;
return mask;
}
void
PThreadEvent::FreeEventBits(const uint32_t mask)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this, __FUNCTION__, mask);
if (mask)
{
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
m_bits &= ~mask;
m_validBits &= ~mask;
}
}
uint32_t
PThreadEvent::GetEventBits() const
{
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
uint32_t bits = m_bits;
return bits;
}
// Replace the event bits with a new bitmask value
void
PThreadEvent::ReplaceEventBits(const uint32_t bits)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this, __FUNCTION__, bits);
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
// Make sure we have some bits and that they aren't already set...
if (m_bits != bits)
{
// Figure out which bits are changing
uint32_t changed_bits = m_bits ^ bits;
// Set the new bit values
m_bits = bits;
// If any new bits are set, then broadcast
if (changed_bits & m_bits)
m_set_condition.Broadcast();
}
}
// Set one or more event bits and broadcast if any new event bits get set
// that weren't already set.
void
PThreadEvent::SetEvents(const uint32_t mask)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this, __FUNCTION__, mask);
// Make sure we have some bits to set
if (mask)
{
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
// Save the old event bit state so we can tell if things change
uint32_t old = m_bits;
// Set the all event bits that are set in 'mask'
m_bits |= mask;
// Broadcast only if any extra bits got set.
if (old != m_bits)
m_set_condition.Broadcast();
}
}
// Reset one or more event bits
void
PThreadEvent::ResetEvents(const uint32_t mask)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this, __FUNCTION__, mask);
if (mask)
{
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
// Save the old event bit state so we can tell if things change
uint32_t old = m_bits;
// Clear the all event bits that are set in 'mask'
m_bits &= ~mask;
// Broadcast only if any extra bits got reset.
if (old != m_bits)
m_reset_condition.Broadcast();
}
}
//----------------------------------------------------------------------
// Wait until 'timeout_abstime' for any events that are set in
// 'mask'. If 'timeout_abstime' is NULL, then wait forever.
//----------------------------------------------------------------------
uint32_t
PThreadEvent::WaitForSetEvents(const uint32_t mask, const struct timespec *timeout_abstime) const
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this, __FUNCTION__, mask, timeout_abstime);
int err = 0;
// pthread_cond_timedwait() or pthread_cond_wait() will atomically
// unlock the mutex and wait for the condition to be set. When either
// function returns, they will re-lock the mutex. We use an auto lock/unlock
// class (PThreadMutex::Locker) to allow us to return at any point in this
// function and not have to worry about unlocking the mutex.
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
do
{
// Check our predicate (event bits) in case any are already set
if (mask & m_bits)
{
uint32_t bits_set = mask & m_bits;
// Our PThreadMutex::Locker will automatically unlock our mutex
return bits_set;
}
if (timeout_abstime)
{
// Wait for condition to get broadcast, or for a timeout. If we get
// a timeout we will drop out of the do loop and return false which
// is what we want.
err = ::pthread_cond_timedwait (m_set_condition.Condition(), m_mutex.Mutex(), timeout_abstime);
// Retest our predicate in case of a race condition right at the end
// of the timeout.
if (err == ETIMEDOUT)
{
uint32_t bits_set = mask & m_bits;
return bits_set;
}
}
else
{
// Wait for condition to get broadcast. The only error this function
// should return is if
err = ::pthread_cond_wait (m_set_condition.Condition(), m_mutex.Mutex());
}
} while (err == 0);
return 0;
}
//----------------------------------------------------------------------
// Wait until 'timeout_abstime' for any events in 'mask' to reset.
// If 'timeout_abstime' is NULL, then wait forever.
//----------------------------------------------------------------------
uint32_t
PThreadEvent::WaitForEventsToReset(const uint32_t mask, const struct timespec *timeout_abstime) const
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this, __FUNCTION__, mask, timeout_abstime);
int err = 0;
// pthread_cond_timedwait() or pthread_cond_wait() will atomically
// unlock the mutex and wait for the condition to be set. When either
// function returns, they will re-lock the mutex. We use an auto lock/unlock
// class (PThreadMutex::Locker) to allow us to return at any point in this
// function and not have to worry about unlocking the mutex.
PTHREAD_MUTEX_LOCKER (locker, m_mutex);
do
{
// Check our predicate (event bits) each time through this do loop
if ((mask & m_bits) == 0)
{
// All the bits requested have been reset, return zero indicating
// which bits from the mask were still set (none of them)
return 0;
}
if (timeout_abstime)
{
// Wait for condition to get broadcast, or for a timeout. If we get
// a timeout we will drop out of the do loop and return false which
// is what we want.
err = ::pthread_cond_timedwait (m_reset_condition.Condition(), m_mutex.Mutex(), timeout_abstime);
}
else
{
// Wait for condition to get broadcast. The only error this function
// should return is if
err = ::pthread_cond_wait (m_reset_condition.Condition(), m_mutex.Mutex());
}
} while (err == 0);
// Return a mask indicating which bits (if any) were still set
return mask & m_bits;
}
uint32_t
PThreadEvent::WaitForResetAck (const uint32_t mask, const struct timespec *timeout_abstime) const
{
if (mask & m_reset_ack_mask)
{
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this, __FUNCTION__, mask, timeout_abstime);
return WaitForEventsToReset (mask & m_reset_ack_mask, timeout_abstime);
}
return 0;
}