Files
clang-p2996/lldb/tools/debugserver/source/MacOSX/MachThread.cpp
Kate Stone b9c1b51e45 *** This commit represents a complete reformatting of the LLDB source code
*** to conform to clang-format’s LLVM style.  This kind of mass change has
*** two obvious implications:

Firstly, merging this particular commit into a downstream fork may be a huge
effort.  Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit.  The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):

    find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
    find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;

The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.

Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit.  There are alternatives available that will attempt
to look through this change and find the appropriate prior commit.  YMMV.

llvm-svn: 280751
2016-09-06 20:57:50 +00:00

784 lines
26 KiB
C++

//===-- MachThread.cpp ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/19/07.
//
//===----------------------------------------------------------------------===//
#include "MachThread.h"
#include "DNB.h"
#include "DNBLog.h"
#include "MachProcess.h"
#include "ThreadInfo.h"
#include <dlfcn.h>
#include <inttypes.h>
#include <mach/thread_policy.h>
static uint32_t GetSequenceID() {
static uint32_t g_nextID = 0;
return ++g_nextID;
}
MachThread::MachThread(MachProcess *process, bool is_64_bit,
uint64_t unique_thread_id, thread_t mach_port_num)
: m_process(process), m_unique_id(unique_thread_id),
m_mach_port_number(mach_port_num), m_seq_id(GetSequenceID()),
m_state(eStateUnloaded), m_state_mutex(PTHREAD_MUTEX_RECURSIVE),
m_suspend_count(0), m_stop_exception(),
m_arch_ap(DNBArchProtocol::Create(this)), m_reg_sets(NULL),
m_num_reg_sets(0), m_ident_info(), m_proc_threadinfo(),
m_dispatch_queue_name(), m_is_64_bit(is_64_bit),
m_pthread_qos_class_decode(nullptr) {
nub_size_t num_reg_sets = 0;
m_reg_sets = m_arch_ap->GetRegisterSetInfo(&num_reg_sets);
m_num_reg_sets = num_reg_sets;
m_pthread_qos_class_decode =
(unsigned int (*)(unsigned long, int *, unsigned long *))dlsym(
RTLD_DEFAULT, "_pthread_qos_class_decode");
// Get the thread state so we know if a thread is in a state where we can't
// muck with it and also so we get the suspend count correct in case it was
// already suspended
GetBasicInfo();
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE,
"MachThread::MachThread ( process = %p, tid = 0x%8.8" PRIx64
", seq_id = %u )",
&m_process, m_unique_id, m_seq_id);
}
MachThread::~MachThread() {
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE,
"MachThread::~MachThread() for tid = 0x%8.8" PRIx64 " (%u)",
m_unique_id, m_seq_id);
}
void MachThread::Suspend() {
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )",
__FUNCTION__);
if (MachPortNumberIsValid(m_mach_port_number)) {
DNBError err(::thread_suspend(m_mach_port_number), DNBError::MachKernel);
if (err.Success())
m_suspend_count++;
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_suspend (%4.4" PRIx32 ")", m_mach_port_number);
}
}
void MachThread::Resume(bool others_stopped) {
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )",
__FUNCTION__);
if (MachPortNumberIsValid(m_mach_port_number)) {
SetSuspendCountBeforeResume(others_stopped);
}
}
bool MachThread::SetSuspendCountBeforeResume(bool others_stopped) {
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )",
__FUNCTION__);
DNBError err;
if (MachPortNumberIsValid(m_mach_port_number) == false)
return false;
integer_t times_to_resume;
if (others_stopped) {
if (GetBasicInfo()) {
times_to_resume = m_basic_info.suspend_count;
m_suspend_count = -(times_to_resume - m_suspend_count);
} else
times_to_resume = 0;
} else {
times_to_resume = m_suspend_count;
m_suspend_count = 0;
}
if (times_to_resume > 0) {
while (times_to_resume > 0) {
err = ::thread_resume(m_mach_port_number);
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_resume (%4.4" PRIx32 ")", m_mach_port_number);
if (err.Success())
--times_to_resume;
else {
if (GetBasicInfo())
times_to_resume = m_basic_info.suspend_count;
else
times_to_resume = 0;
}
}
}
return true;
}
bool MachThread::RestoreSuspendCountAfterStop() {
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )",
__FUNCTION__);
DNBError err;
if (MachPortNumberIsValid(m_mach_port_number) == false)
return false;
if (m_suspend_count > 0) {
while (m_suspend_count > 0) {
err = ::thread_resume(m_mach_port_number);
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_resume (%4.4" PRIx32 ")", m_mach_port_number);
if (err.Success())
--m_suspend_count;
else {
if (GetBasicInfo())
m_suspend_count = m_basic_info.suspend_count;
else
m_suspend_count = 0;
return false; // ???
}
}
} else if (m_suspend_count < 0) {
while (m_suspend_count < 0) {
err = ::thread_suspend(m_mach_port_number);
if (err.Success())
++m_suspend_count;
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail()) {
err.LogThreaded("::thread_suspend (%4.4" PRIx32 ")",
m_mach_port_number);
return false;
}
}
}
return true;
}
const char *MachThread::GetBasicInfoAsString() const {
static char g_basic_info_string[1024];
struct thread_basic_info basicInfo;
if (GetBasicInfo(m_mach_port_number, &basicInfo)) {
// char run_state_str[32];
// size_t run_state_str_size = sizeof(run_state_str);
// switch (basicInfo.run_state)
// {
// case TH_STATE_RUNNING: strncpy(run_state_str, "running",
// run_state_str_size); break;
// case TH_STATE_STOPPED: strncpy(run_state_str, "stopped",
// run_state_str_size); break;
// case TH_STATE_WAITING: strncpy(run_state_str, "waiting",
// run_state_str_size); break;
// case TH_STATE_UNINTERRUPTIBLE: strncpy(run_state_str,
// "uninterruptible", run_state_str_size); break;
// case TH_STATE_HALTED: strncpy(run_state_str, "halted",
// run_state_str_size); break;
// default: snprintf(run_state_str,
// run_state_str_size, "%d", basicInfo.run_state); break; // ???
// }
float user = (float)basicInfo.user_time.seconds +
(float)basicInfo.user_time.microseconds / 1000000.0f;
float system = (float)basicInfo.user_time.seconds +
(float)basicInfo.user_time.microseconds / 1000000.0f;
snprintf(g_basic_info_string, sizeof(g_basic_info_string),
"Thread 0x%8.8" PRIx64 ": user=%f system=%f cpu=%d sleep_time=%d",
m_unique_id, user, system, basicInfo.cpu_usage,
basicInfo.sleep_time);
return g_basic_info_string;
}
return NULL;
}
// Finds the Mach port number for a given thread in the inferior process' port
// namespace.
thread_t MachThread::InferiorThreadID() const {
mach_msg_type_number_t i;
mach_port_name_array_t names;
mach_port_type_array_t types;
mach_msg_type_number_t ncount, tcount;
thread_t inferior_tid = INVALID_NUB_THREAD;
task_t my_task = ::mach_task_self();
task_t task = m_process->Task().TaskPort();
kern_return_t kret =
::mach_port_names(task, &names, &ncount, &types, &tcount);
if (kret == KERN_SUCCESS) {
for (i = 0; i < ncount; i++) {
mach_port_t my_name;
mach_msg_type_name_t my_type;
kret = ::mach_port_extract_right(task, names[i], MACH_MSG_TYPE_COPY_SEND,
&my_name, &my_type);
if (kret == KERN_SUCCESS) {
::mach_port_deallocate(my_task, my_name);
if (my_name == m_mach_port_number) {
inferior_tid = names[i];
break;
}
}
}
// Free up the names and types
::vm_deallocate(my_task, (vm_address_t)names,
ncount * sizeof(mach_port_name_t));
::vm_deallocate(my_task, (vm_address_t)types,
tcount * sizeof(mach_port_type_t));
}
return inferior_tid;
}
bool MachThread::IsUserReady() {
if (m_basic_info.run_state == 0)
GetBasicInfo();
switch (m_basic_info.run_state) {
default:
case TH_STATE_UNINTERRUPTIBLE:
break;
case TH_STATE_RUNNING:
case TH_STATE_STOPPED:
case TH_STATE_WAITING:
case TH_STATE_HALTED:
return true;
}
return false;
}
struct thread_basic_info *MachThread::GetBasicInfo() {
if (MachThread::GetBasicInfo(m_mach_port_number, &m_basic_info))
return &m_basic_info;
return NULL;
}
bool MachThread::GetBasicInfo(thread_t thread,
struct thread_basic_info *basicInfoPtr) {
if (MachPortNumberIsValid(thread)) {
unsigned int info_count = THREAD_BASIC_INFO_COUNT;
kern_return_t err = ::thread_info(thread, THREAD_BASIC_INFO,
(thread_info_t)basicInfoPtr, &info_count);
if (err == KERN_SUCCESS)
return true;
}
::memset(basicInfoPtr, 0, sizeof(struct thread_basic_info));
return false;
}
bool MachThread::ThreadIDIsValid(uint64_t thread) { return thread != 0; }
bool MachThread::MachPortNumberIsValid(thread_t thread) {
return thread != THREAD_NULL;
}
bool MachThread::GetRegisterState(int flavor, bool force) {
return m_arch_ap->GetRegisterState(flavor, force) == KERN_SUCCESS;
}
bool MachThread::SetRegisterState(int flavor) {
return m_arch_ap->SetRegisterState(flavor) == KERN_SUCCESS;
}
uint64_t MachThread::GetPC(uint64_t failValue) {
// Get program counter
return m_arch_ap->GetPC(failValue);
}
bool MachThread::SetPC(uint64_t value) {
// Set program counter
return m_arch_ap->SetPC(value);
}
uint64_t MachThread::GetSP(uint64_t failValue) {
// Get stack pointer
return m_arch_ap->GetSP(failValue);
}
nub_process_t MachThread::ProcessID() const {
if (m_process)
return m_process->ProcessID();
return INVALID_NUB_PROCESS;
}
void MachThread::Dump(uint32_t index) {
const char *thread_run_state = NULL;
switch (m_basic_info.run_state) {
case TH_STATE_RUNNING:
thread_run_state = "running";
break; // 1 thread is running normally
case TH_STATE_STOPPED:
thread_run_state = "stopped";
break; // 2 thread is stopped
case TH_STATE_WAITING:
thread_run_state = "waiting";
break; // 3 thread is waiting normally
case TH_STATE_UNINTERRUPTIBLE:
thread_run_state = "uninter";
break; // 4 thread is in an uninterruptible wait
case TH_STATE_HALTED:
thread_run_state = "halted ";
break; // 5 thread is halted at a
default:
thread_run_state = "???";
break;
}
DNBLogThreaded(
"[%3u] #%3u tid: 0x%8.8" PRIx64 ", pc: 0x%16.16" PRIx64
", sp: 0x%16.16" PRIx64
", user: %d.%6.6d, system: %d.%6.6d, cpu: %2d, policy: %2d, run_state: "
"%2d (%s), flags: %2d, suspend_count: %2d (current %2d), sleep_time: %d",
index, m_seq_id, m_unique_id, GetPC(INVALID_NUB_ADDRESS),
GetSP(INVALID_NUB_ADDRESS), m_basic_info.user_time.seconds,
m_basic_info.user_time.microseconds, m_basic_info.system_time.seconds,
m_basic_info.system_time.microseconds, m_basic_info.cpu_usage,
m_basic_info.policy, m_basic_info.run_state, thread_run_state,
m_basic_info.flags, m_basic_info.suspend_count, m_suspend_count,
m_basic_info.sleep_time);
// DumpRegisterState(0);
}
void MachThread::ThreadWillResume(const DNBThreadResumeAction *thread_action,
bool others_stopped) {
if (thread_action->addr != INVALID_NUB_ADDRESS)
SetPC(thread_action->addr);
SetState(thread_action->state);
switch (thread_action->state) {
case eStateStopped:
case eStateSuspended:
assert(others_stopped == false);
Suspend();
break;
case eStateRunning:
case eStateStepping:
Resume(others_stopped);
break;
default:
break;
}
m_arch_ap->ThreadWillResume();
m_stop_exception.Clear();
}
DNBBreakpoint *MachThread::CurrentBreakpoint() {
return m_process->Breakpoints().FindByAddress(GetPC());
}
bool MachThread::ShouldStop(bool &step_more) {
// See if this thread is at a breakpoint?
DNBBreakpoint *bp = CurrentBreakpoint();
if (bp) {
// This thread is sitting at a breakpoint, ask the breakpoint
// if we should be stopping here.
return true;
} else {
if (m_arch_ap->StepNotComplete()) {
step_more = true;
return false;
}
// The thread state is used to let us know what the thread was
// trying to do. MachThread::ThreadWillResume() will set the
// thread state to various values depending if the thread was
// the current thread and if it was to be single stepped, or
// resumed.
if (GetState() == eStateRunning) {
// If our state is running, then we should continue as we are in
// the process of stepping over a breakpoint.
return false;
} else {
// Stop if we have any kind of valid exception for this
// thread.
if (GetStopException().IsValid())
return true;
}
}
return false;
}
bool MachThread::IsStepping() { return GetState() == eStateStepping; }
bool MachThread::ThreadDidStop() {
// This thread has existed prior to resuming under debug nub control,
// and has just been stopped. Do any cleanup that needs to be done
// after running.
// The thread state and breakpoint will still have the same values
// as they had prior to resuming the thread, so it makes it easy to check
// if we were trying to step a thread, or we tried to resume while being
// at a breakpoint.
// When this method gets called, the process state is still in the
// state it was in while running so we can act accordingly.
m_arch_ap->ThreadDidStop();
// We may have suspended this thread so the primary thread could step
// without worrying about race conditions, so lets restore our suspend
// count.
RestoreSuspendCountAfterStop();
// Update the basic information for a thread
MachThread::GetBasicInfo(m_mach_port_number, &m_basic_info);
if (m_basic_info.suspend_count > 0)
SetState(eStateSuspended);
else
SetState(eStateStopped);
return true;
}
bool MachThread::NotifyException(MachException::Data &exc) {
// Allow the arch specific protocol to process (MachException::Data &)exc
// first before possible reassignment of m_stop_exception with exc.
// See also MachThread::GetStopException().
bool handled = m_arch_ap->NotifyException(exc);
if (m_stop_exception.IsValid()) {
// We may have more than one exception for a thread, but we need to
// only remember the one that we will say is the reason we stopped.
// We may have been single stepping and also gotten a signal exception,
// so just remember the most pertinent one.
if (m_stop_exception.IsBreakpoint())
m_stop_exception = exc;
} else {
m_stop_exception = exc;
}
return handled;
}
nub_state_t MachThread::GetState() {
// If any other threads access this we will need a mutex for it
PTHREAD_MUTEX_LOCKER(locker, m_state_mutex);
return m_state;
}
void MachThread::SetState(nub_state_t state) {
PTHREAD_MUTEX_LOCKER(locker, m_state_mutex);
m_state = state;
DNBLogThreadedIf(LOG_THREAD,
"MachThread::SetState ( %s ) for tid = 0x%8.8" PRIx64 "",
DNBStateAsString(state), m_unique_id);
}
nub_size_t MachThread::GetNumRegistersInSet(nub_size_t regSet) const {
if (regSet < m_num_reg_sets)
return m_reg_sets[regSet].num_registers;
return 0;
}
const char *MachThread::GetRegisterSetName(nub_size_t regSet) const {
if (regSet < m_num_reg_sets)
return m_reg_sets[regSet].name;
return NULL;
}
const DNBRegisterInfo *MachThread::GetRegisterInfo(nub_size_t regSet,
nub_size_t regIndex) const {
if (regSet < m_num_reg_sets)
if (regIndex < m_reg_sets[regSet].num_registers)
return &m_reg_sets[regSet].registers[regIndex];
return NULL;
}
void MachThread::DumpRegisterState(nub_size_t regSet) {
if (regSet == REGISTER_SET_ALL) {
for (regSet = 1; regSet < m_num_reg_sets; regSet++)
DumpRegisterState(regSet);
} else {
if (m_arch_ap->RegisterSetStateIsValid((int)regSet)) {
const size_t numRegisters = GetNumRegistersInSet(regSet);
uint32_t regIndex = 0;
DNBRegisterValueClass reg;
for (regIndex = 0; regIndex < numRegisters; ++regIndex) {
if (m_arch_ap->GetRegisterValue((uint32_t)regSet, regIndex, &reg)) {
reg.Dump(NULL, NULL);
}
}
} else {
DNBLog("%s: registers are not currently valid.",
GetRegisterSetName(regSet));
}
}
}
const DNBRegisterSetInfo *
MachThread::GetRegisterSetInfo(nub_size_t *num_reg_sets) const {
*num_reg_sets = m_num_reg_sets;
return &m_reg_sets[0];
}
bool MachThread::GetRegisterValue(uint32_t set, uint32_t reg,
DNBRegisterValue *value) {
return m_arch_ap->GetRegisterValue(set, reg, value);
}
bool MachThread::SetRegisterValue(uint32_t set, uint32_t reg,
const DNBRegisterValue *value) {
return m_arch_ap->SetRegisterValue(set, reg, value);
}
nub_size_t MachThread::GetRegisterContext(void *buf, nub_size_t buf_len) {
return m_arch_ap->GetRegisterContext(buf, buf_len);
}
nub_size_t MachThread::SetRegisterContext(const void *buf, nub_size_t buf_len) {
return m_arch_ap->SetRegisterContext(buf, buf_len);
}
uint32_t MachThread::SaveRegisterState() {
return m_arch_ap->SaveRegisterState();
}
bool MachThread::RestoreRegisterState(uint32_t save_id) {
return m_arch_ap->RestoreRegisterState(save_id);
}
uint32_t MachThread::EnableHardwareBreakpoint(const DNBBreakpoint *bp) {
if (bp != NULL && bp->IsBreakpoint())
return m_arch_ap->EnableHardwareBreakpoint(bp->Address(), bp->ByteSize());
return INVALID_NUB_HW_INDEX;
}
uint32_t MachThread::EnableHardwareWatchpoint(const DNBBreakpoint *wp,
bool also_set_on_task) {
if (wp != NULL && wp->IsWatchpoint())
return m_arch_ap->EnableHardwareWatchpoint(
wp->Address(), wp->ByteSize(), wp->WatchpointRead(),
wp->WatchpointWrite(), also_set_on_task);
return INVALID_NUB_HW_INDEX;
}
bool MachThread::RollbackTransForHWP() {
return m_arch_ap->RollbackTransForHWP();
}
bool MachThread::FinishTransForHWP() { return m_arch_ap->FinishTransForHWP(); }
bool MachThread::DisableHardwareBreakpoint(const DNBBreakpoint *bp) {
if (bp != NULL && bp->IsHardware())
return m_arch_ap->DisableHardwareBreakpoint(bp->GetHardwareIndex());
return false;
}
bool MachThread::DisableHardwareWatchpoint(const DNBBreakpoint *wp,
bool also_set_on_task) {
if (wp != NULL && wp->IsHardware())
return m_arch_ap->DisableHardwareWatchpoint(wp->GetHardwareIndex(),
also_set_on_task);
return false;
}
uint32_t MachThread::NumSupportedHardwareWatchpoints() const {
return m_arch_ap->NumSupportedHardwareWatchpoints();
}
bool MachThread::GetIdentifierInfo() {
// Don't try to get the thread info once and cache it for the life of the
// thread. It changes over time, for instance
// if the thread name changes, then the thread_handle also changes... So you
// have to refetch it every time.
mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT;
kern_return_t kret = ::thread_info(m_mach_port_number, THREAD_IDENTIFIER_INFO,
(thread_info_t)&m_ident_info, &count);
return kret == KERN_SUCCESS;
return false;
}
const char *MachThread::GetName() {
if (GetIdentifierInfo()) {
int len = ::proc_pidinfo(m_process->ProcessID(), PROC_PIDTHREADINFO,
m_ident_info.thread_handle, &m_proc_threadinfo,
sizeof(m_proc_threadinfo));
if (len && m_proc_threadinfo.pth_name[0])
return m_proc_threadinfo.pth_name;
}
return NULL;
}
uint64_t
MachThread::GetGloballyUniqueThreadIDForMachPortID(thread_t mach_port_id) {
kern_return_t kr;
thread_identifier_info_data_t tident;
mach_msg_type_number_t tident_count = THREAD_IDENTIFIER_INFO_COUNT;
kr = thread_info(mach_port_id, THREAD_IDENTIFIER_INFO, (thread_info_t)&tident,
&tident_count);
if (kr != KERN_SUCCESS) {
return mach_port_id;
}
return tident.thread_id;
}
nub_addr_t MachThread::GetPThreadT() {
nub_addr_t pthread_t_value = INVALID_NUB_ADDRESS;
if (MachPortNumberIsValid(m_mach_port_number)) {
kern_return_t kr;
thread_identifier_info_data_t tident;
mach_msg_type_number_t tident_count = THREAD_IDENTIFIER_INFO_COUNT;
kr = thread_info(m_mach_port_number, THREAD_IDENTIFIER_INFO,
(thread_info_t)&tident, &tident_count);
if (kr == KERN_SUCCESS) {
// Dereference thread_handle to get the pthread_t value for this thread.
if (m_is_64_bit) {
uint64_t addr;
if (m_process->ReadMemory(tident.thread_handle, 8, &addr) == 8) {
if (addr != 0) {
pthread_t_value = addr;
}
}
} else {
uint32_t addr;
if (m_process->ReadMemory(tident.thread_handle, 4, &addr) == 4) {
if (addr != 0) {
pthread_t_value = addr;
}
}
}
}
}
return pthread_t_value;
}
// Return this thread's TSD (Thread Specific Data) address.
// This is computed based on this thread's pthread_t value.
//
// We compute the TSD from the pthread_t by one of two methods.
//
// If plo_pthread_tsd_base_offset is non-zero, this is a simple offset that we
// add to
// the pthread_t to get the TSD base address.
//
// Else we read a pointer from memory at pthread_t +
// plo_pthread_tsd_base_address_offset and
// that gives us the TSD address.
//
// These plo_pthread_tsd_base values must be read out of libpthread by lldb &
// provided to debugserver.
nub_addr_t
MachThread::GetTSDAddressForThread(uint64_t plo_pthread_tsd_base_address_offset,
uint64_t plo_pthread_tsd_base_offset,
uint64_t plo_pthread_tsd_entry_size) {
nub_addr_t tsd_addr = INVALID_NUB_ADDRESS;
nub_addr_t pthread_t_value = GetPThreadT();
if (plo_pthread_tsd_base_offset != 0 &&
plo_pthread_tsd_base_offset != INVALID_NUB_ADDRESS) {
tsd_addr = pthread_t_value + plo_pthread_tsd_base_offset;
} else {
if (plo_pthread_tsd_entry_size == 4) {
uint32_t addr = 0;
if (m_process->ReadMemory(pthread_t_value +
plo_pthread_tsd_base_address_offset,
4, &addr) == 4) {
if (addr != 0) {
tsd_addr = addr;
}
}
}
if (plo_pthread_tsd_entry_size == 4) {
uint64_t addr = 0;
if (m_process->ReadMemory(pthread_t_value +
plo_pthread_tsd_base_address_offset,
8, &addr) == 8) {
if (addr != 0) {
tsd_addr = addr;
}
}
}
}
return tsd_addr;
}
nub_addr_t MachThread::GetDispatchQueueT() {
nub_addr_t dispatch_queue_t_value = INVALID_NUB_ADDRESS;
if (MachPortNumberIsValid(m_mach_port_number)) {
kern_return_t kr;
thread_identifier_info_data_t tident;
mach_msg_type_number_t tident_count = THREAD_IDENTIFIER_INFO_COUNT;
kr = thread_info(m_mach_port_number, THREAD_IDENTIFIER_INFO,
(thread_info_t)&tident, &tident_count);
if (kr == KERN_SUCCESS && tident.dispatch_qaddr != 0 &&
tident.dispatch_qaddr != INVALID_NUB_ADDRESS) {
// Dereference dispatch_qaddr to get the dispatch_queue_t value for this
// thread's queue, if any.
if (m_is_64_bit) {
uint64_t addr;
if (m_process->ReadMemory(tident.dispatch_qaddr, 8, &addr) == 8) {
if (addr != 0)
dispatch_queue_t_value = addr;
}
} else {
uint32_t addr;
if (m_process->ReadMemory(tident.dispatch_qaddr, 4, &addr) == 4) {
if (addr != 0)
dispatch_queue_t_value = addr;
}
}
}
}
return dispatch_queue_t_value;
}
ThreadInfo::QoS MachThread::GetRequestedQoS(nub_addr_t tsd,
uint64_t dti_qos_class_index) {
ThreadInfo::QoS qos_value;
if (MachPortNumberIsValid(m_mach_port_number) &&
m_pthread_qos_class_decode != nullptr) {
uint64_t pthread_priority_value = 0;
if (m_is_64_bit) {
uint64_t pri;
if (m_process->ReadMemory(tsd + (dti_qos_class_index * 8), 8, &pri) ==
8) {
pthread_priority_value = pri;
}
} else {
uint32_t pri;
if (m_process->ReadMemory(tsd + (dti_qos_class_index * 4), 4, &pri) ==
4) {
pthread_priority_value = pri;
}
}
uint32_t requested_qos =
m_pthread_qos_class_decode(pthread_priority_value, NULL, NULL);
switch (requested_qos) {
// These constants from <pthread/qos.h>
case 0x21:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_USER_INTERACTIVE";
qos_value.printable_name = "User Interactive";
break;
case 0x19:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_USER_INITIATED";
qos_value.printable_name = "User Initiated";
break;
case 0x15:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_DEFAULT";
qos_value.printable_name = "Default";
break;
case 0x11:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_UTILITY";
qos_value.printable_name = "Utility";
break;
case 0x09:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_BACKGROUND";
qos_value.printable_name = "Background";
break;
case 0x00:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_UNSPECIFIED";
qos_value.printable_name = "Unspecified";
break;
}
}
return qos_value;
}