Since the recent MemRef refactoring that centralizes the lowering of complex MemRef operations outside of the conversion framework, the MemRefToLLVM pass doesn't directly convert these complex operations. Instead, to fully convert the whole MemRef dialect space, MemRefToLLVM needs to run after `expand-strided-metadata`. Make this more obvious by changing the name of the pass and the option associated with it from `convert-memref-to-llvm` to `finalize-memref-to-llvm`. The word "finalize" conveys that this pass needs to run after something else and that something else is documented in its tablegen description. This is a follow-up patch related to the conversation at: https://discourse.llvm.org/t/psa-you-need-to-run-expand-strided-metadata-before-memref-to-llvm-now/66956/14 Differential Revision: https://reviews.llvm.org/D142463
593 lines
19 KiB
Python
593 lines
19 KiB
Python
# RUN: %PYTHON %s 2>&1 | FileCheck %s
|
|
# REQUIRES: host-supports-jit
|
|
import gc, sys, os, tempfile
|
|
from mlir.ir import *
|
|
from mlir.passmanager import *
|
|
from mlir.execution_engine import *
|
|
from mlir.runtime import *
|
|
|
|
|
|
# Log everything to stderr and flush so that we have a unified stream to match
|
|
# errors/info emitted by MLIR to stderr.
|
|
def log(*args):
|
|
print(*args, file=sys.stderr)
|
|
sys.stderr.flush()
|
|
|
|
|
|
def run(f):
|
|
log("\nTEST:", f.__name__)
|
|
f()
|
|
gc.collect()
|
|
assert Context._get_live_count() == 0
|
|
|
|
|
|
# Verify capsule interop.
|
|
# CHECK-LABEL: TEST: testCapsule
|
|
def testCapsule():
|
|
with Context():
|
|
module = Module.parse(r"""
|
|
llvm.func @none() {
|
|
llvm.return
|
|
}
|
|
""")
|
|
execution_engine = ExecutionEngine(module)
|
|
execution_engine_capsule = execution_engine._CAPIPtr
|
|
# CHECK: mlir.execution_engine.ExecutionEngine._CAPIPtr
|
|
log(repr(execution_engine_capsule))
|
|
execution_engine._testing_release()
|
|
execution_engine1 = ExecutionEngine._CAPICreate(execution_engine_capsule)
|
|
# CHECK: _mlirExecutionEngine.ExecutionEngine
|
|
log(repr(execution_engine1))
|
|
|
|
|
|
run(testCapsule)
|
|
|
|
|
|
# Test invalid ExecutionEngine creation
|
|
# CHECK-LABEL: TEST: testInvalidModule
|
|
def testInvalidModule():
|
|
with Context():
|
|
# Builtin function
|
|
module = Module.parse(r"""
|
|
func.func @foo() { return }
|
|
""")
|
|
# CHECK: Got RuntimeError: Failure while creating the ExecutionEngine.
|
|
try:
|
|
execution_engine = ExecutionEngine(module)
|
|
except RuntimeError as e:
|
|
log("Got RuntimeError: ", e)
|
|
|
|
|
|
run(testInvalidModule)
|
|
|
|
|
|
def lowerToLLVM(module):
|
|
pm = PassManager.parse(
|
|
"builtin.module(convert-complex-to-llvm,finalize-memref-to-llvm,convert-func-to-llvm,reconcile-unrealized-casts)")
|
|
pm.run(module)
|
|
return module
|
|
|
|
|
|
# Test simple ExecutionEngine execution
|
|
# CHECK-LABEL: TEST: testInvokeVoid
|
|
def testInvokeVoid():
|
|
with Context():
|
|
module = Module.parse(r"""
|
|
func.func @void() attributes { llvm.emit_c_interface } {
|
|
return
|
|
}
|
|
""")
|
|
execution_engine = ExecutionEngine(lowerToLLVM(module))
|
|
# Nothing to check other than no exception thrown here.
|
|
execution_engine.invoke("void")
|
|
|
|
|
|
run(testInvokeVoid)
|
|
|
|
|
|
# Test argument passing and result with a simple float addition.
|
|
# CHECK-LABEL: TEST: testInvokeFloatAdd
|
|
def testInvokeFloatAdd():
|
|
with Context():
|
|
module = Module.parse(r"""
|
|
func.func @add(%arg0: f32, %arg1: f32) -> f32 attributes { llvm.emit_c_interface } {
|
|
%add = arith.addf %arg0, %arg1 : f32
|
|
return %add : f32
|
|
}
|
|
""")
|
|
execution_engine = ExecutionEngine(lowerToLLVM(module))
|
|
# Prepare arguments: two input floats and one result.
|
|
# Arguments must be passed as pointers.
|
|
c_float_p = ctypes.c_float * 1
|
|
arg0 = c_float_p(42.)
|
|
arg1 = c_float_p(2.)
|
|
res = c_float_p(-1.)
|
|
execution_engine.invoke("add", arg0, arg1, res)
|
|
# CHECK: 42.0 + 2.0 = 44.0
|
|
log("{0} + {1} = {2}".format(arg0[0], arg1[0], res[0]))
|
|
|
|
|
|
run(testInvokeFloatAdd)
|
|
|
|
|
|
# Test callback
|
|
# CHECK-LABEL: TEST: testBasicCallback
|
|
def testBasicCallback():
|
|
# Define a callback function that takes a float and an integer and returns a float.
|
|
@ctypes.CFUNCTYPE(ctypes.c_float, ctypes.c_float, ctypes.c_int)
|
|
def callback(a, b):
|
|
return a / 2 + b / 2
|
|
|
|
with Context():
|
|
# The module just forwards to a runtime function known as "some_callback_into_python".
|
|
module = Module.parse(r"""
|
|
func.func @add(%arg0: f32, %arg1: i32) -> f32 attributes { llvm.emit_c_interface } {
|
|
%resf = call @some_callback_into_python(%arg0, %arg1) : (f32, i32) -> (f32)
|
|
return %resf : f32
|
|
}
|
|
func.func private @some_callback_into_python(f32, i32) -> f32 attributes { llvm.emit_c_interface }
|
|
""")
|
|
execution_engine = ExecutionEngine(lowerToLLVM(module))
|
|
execution_engine.register_runtime("some_callback_into_python", callback)
|
|
|
|
# Prepare arguments: two input floats and one result.
|
|
# Arguments must be passed as pointers.
|
|
c_float_p = ctypes.c_float * 1
|
|
c_int_p = ctypes.c_int * 1
|
|
arg0 = c_float_p(42.)
|
|
arg1 = c_int_p(2)
|
|
res = c_float_p(-1.)
|
|
execution_engine.invoke("add", arg0, arg1, res)
|
|
# CHECK: 42.0 + 2 = 44.0
|
|
log("{0} + {1} = {2}".format(arg0[0], arg1[0], res[0] * 2))
|
|
|
|
|
|
run(testBasicCallback)
|
|
|
|
|
|
# Test callback with an unranked memref
|
|
# CHECK-LABEL: TEST: testUnrankedMemRefCallback
|
|
def testUnrankedMemRefCallback():
|
|
# Define a callback function that takes an unranked memref, converts it to a numpy array and prints it.
|
|
@ctypes.CFUNCTYPE(None, ctypes.POINTER(UnrankedMemRefDescriptor))
|
|
def callback(a):
|
|
arr = unranked_memref_to_numpy(a, np.float32)
|
|
log("Inside callback: ")
|
|
log(arr)
|
|
|
|
with Context():
|
|
# The module just forwards to a runtime function known as "some_callback_into_python".
|
|
module = Module.parse(r"""
|
|
func.func @callback_memref(%arg0: memref<*xf32>) attributes { llvm.emit_c_interface } {
|
|
call @some_callback_into_python(%arg0) : (memref<*xf32>) -> ()
|
|
return
|
|
}
|
|
func.func private @some_callback_into_python(memref<*xf32>) -> () attributes { llvm.emit_c_interface }
|
|
""")
|
|
execution_engine = ExecutionEngine(lowerToLLVM(module))
|
|
execution_engine.register_runtime("some_callback_into_python", callback)
|
|
inp_arr = np.array([[1.0, 2.0], [3.0, 4.0]], np.float32)
|
|
# CHECK: Inside callback:
|
|
# CHECK{LITERAL}: [[1. 2.]
|
|
# CHECK{LITERAL}: [3. 4.]]
|
|
execution_engine.invoke(
|
|
"callback_memref",
|
|
ctypes.pointer(ctypes.pointer(get_unranked_memref_descriptor(inp_arr))),
|
|
)
|
|
inp_arr_1 = np.array([5, 6, 7], dtype=np.float32)
|
|
strided_arr = np.lib.stride_tricks.as_strided(
|
|
inp_arr_1, strides=(4, 0), shape=(3, 4))
|
|
# CHECK: Inside callback:
|
|
# CHECK{LITERAL}: [[5. 5. 5. 5.]
|
|
# CHECK{LITERAL}: [6. 6. 6. 6.]
|
|
# CHECK{LITERAL}: [7. 7. 7. 7.]]
|
|
execution_engine.invoke(
|
|
"callback_memref",
|
|
ctypes.pointer(
|
|
ctypes.pointer(get_unranked_memref_descriptor(strided_arr))),
|
|
)
|
|
|
|
|
|
run(testUnrankedMemRefCallback)
|
|
|
|
|
|
# Test callback with a ranked memref.
|
|
# CHECK-LABEL: TEST: testRankedMemRefCallback
|
|
def testRankedMemRefCallback():
|
|
# Define a callback function that takes a ranked memref, converts it to a numpy array and prints it.
|
|
@ctypes.CFUNCTYPE(
|
|
None,
|
|
ctypes.POINTER(
|
|
make_nd_memref_descriptor(2,
|
|
np.ctypeslib.as_ctypes_type(np.float32))),
|
|
)
|
|
def callback(a):
|
|
arr = ranked_memref_to_numpy(a)
|
|
log("Inside Callback: ")
|
|
log(arr)
|
|
|
|
with Context():
|
|
# The module just forwards to a runtime function known as "some_callback_into_python".
|
|
module = Module.parse(r"""
|
|
func.func @callback_memref(%arg0: memref<2x2xf32>) attributes { llvm.emit_c_interface } {
|
|
call @some_callback_into_python(%arg0) : (memref<2x2xf32>) -> ()
|
|
return
|
|
}
|
|
func.func private @some_callback_into_python(memref<2x2xf32>) -> () attributes { llvm.emit_c_interface }
|
|
""")
|
|
execution_engine = ExecutionEngine(lowerToLLVM(module))
|
|
execution_engine.register_runtime("some_callback_into_python", callback)
|
|
inp_arr = np.array([[1.0, 5.0], [6.0, 7.0]], np.float32)
|
|
# CHECK: Inside Callback:
|
|
# CHECK{LITERAL}: [[1. 5.]
|
|
# CHECK{LITERAL}: [6. 7.]]
|
|
execution_engine.invoke(
|
|
"callback_memref",
|
|
ctypes.pointer(ctypes.pointer(get_ranked_memref_descriptor(inp_arr))))
|
|
|
|
|
|
run(testRankedMemRefCallback)
|
|
|
|
|
|
# Test addition of two memrefs.
|
|
# CHECK-LABEL: TEST: testMemrefAdd
|
|
def testMemrefAdd():
|
|
with Context():
|
|
module = Module.parse("""
|
|
module {
|
|
func.func @main(%arg0: memref<1xf32>, %arg1: memref<f32>, %arg2: memref<1xf32>) attributes { llvm.emit_c_interface } {
|
|
%0 = arith.constant 0 : index
|
|
%1 = memref.load %arg0[%0] : memref<1xf32>
|
|
%2 = memref.load %arg1[] : memref<f32>
|
|
%3 = arith.addf %1, %2 : f32
|
|
memref.store %3, %arg2[%0] : memref<1xf32>
|
|
return
|
|
}
|
|
} """)
|
|
arg1 = np.array([32.5]).astype(np.float32)
|
|
arg2 = np.array(6).astype(np.float32)
|
|
res = np.array([0]).astype(np.float32)
|
|
|
|
arg1_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg1)))
|
|
arg2_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg2)))
|
|
res_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(res)))
|
|
|
|
execution_engine = ExecutionEngine(lowerToLLVM(module))
|
|
execution_engine.invoke("main", arg1_memref_ptr, arg2_memref_ptr,
|
|
res_memref_ptr)
|
|
# CHECK: [32.5] + 6.0 = [38.5]
|
|
log("{0} + {1} = {2}".format(arg1, arg2, res))
|
|
|
|
|
|
run(testMemrefAdd)
|
|
|
|
|
|
# Test addition of two f16 memrefs
|
|
# CHECK-LABEL: TEST: testF16MemrefAdd
|
|
def testF16MemrefAdd():
|
|
with Context():
|
|
module = Module.parse("""
|
|
module {
|
|
func.func @main(%arg0: memref<1xf16>,
|
|
%arg1: memref<1xf16>,
|
|
%arg2: memref<1xf16>) attributes { llvm.emit_c_interface } {
|
|
%0 = arith.constant 0 : index
|
|
%1 = memref.load %arg0[%0] : memref<1xf16>
|
|
%2 = memref.load %arg1[%0] : memref<1xf16>
|
|
%3 = arith.addf %1, %2 : f16
|
|
memref.store %3, %arg2[%0] : memref<1xf16>
|
|
return
|
|
}
|
|
} """)
|
|
|
|
arg1 = np.array([11.]).astype(np.float16)
|
|
arg2 = np.array([22.]).astype(np.float16)
|
|
arg3 = np.array([0.]).astype(np.float16)
|
|
|
|
arg1_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg1)))
|
|
arg2_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg2)))
|
|
arg3_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg3)))
|
|
|
|
execution_engine = ExecutionEngine(lowerToLLVM(module))
|
|
execution_engine.invoke("main", arg1_memref_ptr, arg2_memref_ptr,
|
|
arg3_memref_ptr)
|
|
# CHECK: [11.] + [22.] = [33.]
|
|
log("{0} + {1} = {2}".format(arg1, arg2, arg3))
|
|
|
|
# test to-numpy utility
|
|
# CHECK: [33.]
|
|
npout = ranked_memref_to_numpy(arg3_memref_ptr[0])
|
|
log(npout)
|
|
|
|
|
|
run(testF16MemrefAdd)
|
|
|
|
|
|
# Test addition of two complex memrefs
|
|
# CHECK-LABEL: TEST: testComplexMemrefAdd
|
|
def testComplexMemrefAdd():
|
|
with Context():
|
|
module = Module.parse("""
|
|
module {
|
|
func.func @main(%arg0: memref<1xcomplex<f64>>,
|
|
%arg1: memref<1xcomplex<f64>>,
|
|
%arg2: memref<1xcomplex<f64>>) attributes { llvm.emit_c_interface } {
|
|
%0 = arith.constant 0 : index
|
|
%1 = memref.load %arg0[%0] : memref<1xcomplex<f64>>
|
|
%2 = memref.load %arg1[%0] : memref<1xcomplex<f64>>
|
|
%3 = complex.add %1, %2 : complex<f64>
|
|
memref.store %3, %arg2[%0] : memref<1xcomplex<f64>>
|
|
return
|
|
}
|
|
} """)
|
|
|
|
arg1 = np.array([1.+2.j]).astype(np.complex128)
|
|
arg2 = np.array([3.+4.j]).astype(np.complex128)
|
|
arg3 = np.array([0.+0.j]).astype(np.complex128)
|
|
|
|
arg1_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg1)))
|
|
arg2_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg2)))
|
|
arg3_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg3)))
|
|
|
|
execution_engine = ExecutionEngine(lowerToLLVM(module))
|
|
execution_engine.invoke("main",
|
|
arg1_memref_ptr,
|
|
arg2_memref_ptr,
|
|
arg3_memref_ptr)
|
|
# CHECK: [1.+2.j] + [3.+4.j] = [4.+6.j]
|
|
log("{0} + {1} = {2}".format(arg1, arg2, arg3))
|
|
|
|
# test to-numpy utility
|
|
# CHECK: [4.+6.j]
|
|
npout = ranked_memref_to_numpy(arg3_memref_ptr[0])
|
|
log(npout)
|
|
|
|
|
|
run(testComplexMemrefAdd)
|
|
|
|
|
|
# Test addition of two complex unranked memrefs
|
|
# CHECK-LABEL: TEST: testComplexUnrankedMemrefAdd
|
|
def testComplexUnrankedMemrefAdd():
|
|
with Context():
|
|
module = Module.parse("""
|
|
module {
|
|
func.func @main(%arg0: memref<*xcomplex<f32>>,
|
|
%arg1: memref<*xcomplex<f32>>,
|
|
%arg2: memref<*xcomplex<f32>>) attributes { llvm.emit_c_interface } {
|
|
%A = memref.cast %arg0 : memref<*xcomplex<f32>> to memref<1xcomplex<f32>>
|
|
%B = memref.cast %arg1 : memref<*xcomplex<f32>> to memref<1xcomplex<f32>>
|
|
%C = memref.cast %arg2 : memref<*xcomplex<f32>> to memref<1xcomplex<f32>>
|
|
%0 = arith.constant 0 : index
|
|
%1 = memref.load %A[%0] : memref<1xcomplex<f32>>
|
|
%2 = memref.load %B[%0] : memref<1xcomplex<f32>>
|
|
%3 = complex.add %1, %2 : complex<f32>
|
|
memref.store %3, %C[%0] : memref<1xcomplex<f32>>
|
|
return
|
|
}
|
|
} """)
|
|
|
|
arg1 = np.array([5.+6.j]).astype(np.complex64)
|
|
arg2 = np.array([7.+8.j]).astype(np.complex64)
|
|
arg3 = np.array([0.+0.j]).astype(np.complex64)
|
|
|
|
arg1_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_unranked_memref_descriptor(arg1)))
|
|
arg2_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_unranked_memref_descriptor(arg2)))
|
|
arg3_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_unranked_memref_descriptor(arg3)))
|
|
|
|
execution_engine = ExecutionEngine(lowerToLLVM(module))
|
|
execution_engine.invoke("main",
|
|
arg1_memref_ptr,
|
|
arg2_memref_ptr,
|
|
arg3_memref_ptr)
|
|
# CHECK: [5.+6.j] + [7.+8.j] = [12.+14.j]
|
|
log("{0} + {1} = {2}".format(arg1, arg2, arg3))
|
|
|
|
# test to-numpy utility
|
|
# CHECK: [12.+14.j]
|
|
npout = unranked_memref_to_numpy(arg3_memref_ptr[0],
|
|
np.dtype(np.complex64))
|
|
log(npout)
|
|
|
|
|
|
run(testComplexUnrankedMemrefAdd)
|
|
|
|
|
|
# Test addition of two 2d_memref
|
|
# CHECK-LABEL: TEST: testDynamicMemrefAdd2D
|
|
def testDynamicMemrefAdd2D():
|
|
with Context():
|
|
module = Module.parse("""
|
|
module {
|
|
func.func @memref_add_2d(%arg0: memref<2x2xf32>, %arg1: memref<?x?xf32>, %arg2: memref<2x2xf32>) attributes {llvm.emit_c_interface} {
|
|
%c0 = arith.constant 0 : index
|
|
%c2 = arith.constant 2 : index
|
|
%c1 = arith.constant 1 : index
|
|
cf.br ^bb1(%c0 : index)
|
|
^bb1(%0: index): // 2 preds: ^bb0, ^bb5
|
|
%1 = arith.cmpi slt, %0, %c2 : index
|
|
cf.cond_br %1, ^bb2, ^bb6
|
|
^bb2: // pred: ^bb1
|
|
%c0_0 = arith.constant 0 : index
|
|
%c2_1 = arith.constant 2 : index
|
|
%c1_2 = arith.constant 1 : index
|
|
cf.br ^bb3(%c0_0 : index)
|
|
^bb3(%2: index): // 2 preds: ^bb2, ^bb4
|
|
%3 = arith.cmpi slt, %2, %c2_1 : index
|
|
cf.cond_br %3, ^bb4, ^bb5
|
|
^bb4: // pred: ^bb3
|
|
%4 = memref.load %arg0[%0, %2] : memref<2x2xf32>
|
|
%5 = memref.load %arg1[%0, %2] : memref<?x?xf32>
|
|
%6 = arith.addf %4, %5 : f32
|
|
memref.store %6, %arg2[%0, %2] : memref<2x2xf32>
|
|
%7 = arith.addi %2, %c1_2 : index
|
|
cf.br ^bb3(%7 : index)
|
|
^bb5: // pred: ^bb3
|
|
%8 = arith.addi %0, %c1 : index
|
|
cf.br ^bb1(%8 : index)
|
|
^bb6: // pred: ^bb1
|
|
return
|
|
}
|
|
}
|
|
""")
|
|
arg1 = np.random.randn(2, 2).astype(np.float32)
|
|
arg2 = np.random.randn(2, 2).astype(np.float32)
|
|
res = np.random.randn(2, 2).astype(np.float32)
|
|
|
|
arg1_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg1)))
|
|
arg2_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg2)))
|
|
res_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(res)))
|
|
|
|
execution_engine = ExecutionEngine(lowerToLLVM(module))
|
|
execution_engine.invoke("memref_add_2d", arg1_memref_ptr, arg2_memref_ptr,
|
|
res_memref_ptr)
|
|
# CHECK: True
|
|
log(np.allclose(arg1 + arg2, res))
|
|
|
|
|
|
run(testDynamicMemrefAdd2D)
|
|
|
|
|
|
# Test loading of shared libraries.
|
|
# CHECK-LABEL: TEST: testSharedLibLoad
|
|
def testSharedLibLoad():
|
|
with Context():
|
|
module = Module.parse("""
|
|
module {
|
|
func.func @main(%arg0: memref<1xf32>) attributes { llvm.emit_c_interface } {
|
|
%c0 = arith.constant 0 : index
|
|
%cst42 = arith.constant 42.0 : f32
|
|
memref.store %cst42, %arg0[%c0] : memref<1xf32>
|
|
%u_memref = memref.cast %arg0 : memref<1xf32> to memref<*xf32>
|
|
call @printMemrefF32(%u_memref) : (memref<*xf32>) -> ()
|
|
return
|
|
}
|
|
func.func private @printMemrefF32(memref<*xf32>) attributes { llvm.emit_c_interface }
|
|
} """)
|
|
arg0 = np.array([0.0]).astype(np.float32)
|
|
|
|
arg0_memref_ptr = ctypes.pointer(
|
|
ctypes.pointer(get_ranked_memref_descriptor(arg0)))
|
|
|
|
if sys.platform == 'win32':
|
|
shared_libs = [
|
|
"../../../../bin/mlir_runner_utils.dll",
|
|
"../../../../bin/mlir_c_runner_utils.dll"
|
|
]
|
|
elif sys.platform == 'darwin':
|
|
shared_libs = [
|
|
"../../../../lib/libmlir_runner_utils.dylib",
|
|
"../../../../lib/libmlir_c_runner_utils.dylib"
|
|
]
|
|
else:
|
|
shared_libs = [
|
|
"../../../../lib/libmlir_runner_utils.so",
|
|
"../../../../lib/libmlir_c_runner_utils.so"
|
|
]
|
|
|
|
execution_engine = ExecutionEngine(
|
|
lowerToLLVM(module),
|
|
opt_level=3,
|
|
shared_libs=shared_libs)
|
|
execution_engine.invoke("main", arg0_memref_ptr)
|
|
# CHECK: Unranked Memref
|
|
# CHECK-NEXT: [42]
|
|
|
|
|
|
run(testSharedLibLoad)
|
|
|
|
|
|
# Test that nano time clock is available.
|
|
# CHECK-LABEL: TEST: testNanoTime
|
|
def testNanoTime():
|
|
with Context():
|
|
module = Module.parse("""
|
|
module {
|
|
func.func @main() attributes { llvm.emit_c_interface } {
|
|
%now = call @nanoTime() : () -> i64
|
|
%memref = memref.alloca() : memref<1xi64>
|
|
%c0 = arith.constant 0 : index
|
|
memref.store %now, %memref[%c0] : memref<1xi64>
|
|
%u_memref = memref.cast %memref : memref<1xi64> to memref<*xi64>
|
|
call @printMemrefI64(%u_memref) : (memref<*xi64>) -> ()
|
|
return
|
|
}
|
|
func.func private @nanoTime() -> i64 attributes { llvm.emit_c_interface }
|
|
func.func private @printMemrefI64(memref<*xi64>) attributes { llvm.emit_c_interface }
|
|
}""")
|
|
|
|
if sys.platform == 'win32':
|
|
shared_libs = [
|
|
"../../../../bin/mlir_runner_utils.dll",
|
|
"../../../../bin/mlir_c_runner_utils.dll"
|
|
]
|
|
else:
|
|
shared_libs = [
|
|
"../../../../lib/libmlir_runner_utils.so",
|
|
"../../../../lib/libmlir_c_runner_utils.so"
|
|
]
|
|
|
|
execution_engine = ExecutionEngine(
|
|
lowerToLLVM(module),
|
|
opt_level=3,
|
|
shared_libs=shared_libs)
|
|
execution_engine.invoke("main")
|
|
# CHECK: Unranked Memref
|
|
# CHECK: [{{.*}}]
|
|
|
|
|
|
run(testNanoTime)
|
|
|
|
|
|
# Test that nano time clock is available.
|
|
# CHECK-LABEL: TEST: testDumpToObjectFile
|
|
def testDumpToObjectFile():
|
|
fd, object_path = tempfile.mkstemp(suffix=".o")
|
|
|
|
try:
|
|
with Context():
|
|
module = Module.parse("""
|
|
module {
|
|
func.func @main() attributes { llvm.emit_c_interface } {
|
|
return
|
|
}
|
|
}""")
|
|
|
|
execution_engine = ExecutionEngine(
|
|
lowerToLLVM(module),
|
|
opt_level=3)
|
|
|
|
# CHECK: Object file exists: True
|
|
print(f"Object file exists: {os.path.exists(object_path)}")
|
|
# CHECK: Object file is empty: True
|
|
print(f"Object file is empty: {os.path.getsize(object_path) == 0}")
|
|
|
|
execution_engine.dump_to_object_file(object_path)
|
|
|
|
# CHECK: Object file exists: True
|
|
print(f"Object file exists: {os.path.exists(object_path)}")
|
|
# CHECK: Object file is empty: False
|
|
print(f"Object file is empty: {os.path.getsize(object_path) == 0}")
|
|
|
|
finally:
|
|
os.close(fd)
|
|
os.remove(object_path)
|
|
|
|
|
|
run(testDumpToObjectFile)
|