Files
clang-p2996/bolt/lib/Target/AArch64/AArch64MCPlusBuilder.cpp
Maksim Panchenko bac21719a8 [BOLT] Pass unfiltered relocations to disassembler. NFCI (#131202)
Instead of filtering and modifying relocations in readRelocations(),
preserve the relocation info and use it in the symbolizing disassembler.
This change mostly affects AArch64, where we need to look at original
linker relocations in order to properly symbolize instruction operands.
2025-03-14 18:44:33 -07:00

2302 lines
74 KiB
C++

//===- bolt/Target/AArch64/AArch64MCPlusBuilder.cpp -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides AArch64-specific MCPlus builder.
//
//===----------------------------------------------------------------------===//
#include "AArch64MCSymbolizer.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "MCTargetDesc/AArch64FixupKinds.h"
#include "MCTargetDesc/AArch64MCExpr.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "Utils/AArch64BaseInfo.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/MCPlusBuilder.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegister.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#define DEBUG_TYPE "mcplus"
using namespace llvm;
using namespace bolt;
namespace {
static void getSystemFlag(MCInst &Inst, MCPhysReg RegName) {
Inst.setOpcode(AArch64::MRS);
Inst.clear();
Inst.addOperand(MCOperand::createReg(RegName));
Inst.addOperand(MCOperand::createImm(AArch64SysReg::NZCV));
}
static void setSystemFlag(MCInst &Inst, MCPhysReg RegName) {
Inst.setOpcode(AArch64::MSR);
Inst.clear();
Inst.addOperand(MCOperand::createImm(AArch64SysReg::NZCV));
Inst.addOperand(MCOperand::createReg(RegName));
}
static void createPushRegisters(MCInst &Inst, MCPhysReg Reg1, MCPhysReg Reg2) {
Inst.clear();
unsigned NewOpcode = AArch64::STPXpre;
Inst.setOpcode(NewOpcode);
Inst.addOperand(MCOperand::createReg(AArch64::SP));
Inst.addOperand(MCOperand::createReg(Reg1));
Inst.addOperand(MCOperand::createReg(Reg2));
Inst.addOperand(MCOperand::createReg(AArch64::SP));
Inst.addOperand(MCOperand::createImm(-2));
}
static void createPopRegisters(MCInst &Inst, MCPhysReg Reg1, MCPhysReg Reg2) {
Inst.clear();
unsigned NewOpcode = AArch64::LDPXpost;
Inst.setOpcode(NewOpcode);
Inst.addOperand(MCOperand::createReg(AArch64::SP));
Inst.addOperand(MCOperand::createReg(Reg1));
Inst.addOperand(MCOperand::createReg(Reg2));
Inst.addOperand(MCOperand::createReg(AArch64::SP));
Inst.addOperand(MCOperand::createImm(2));
}
static void loadReg(MCInst &Inst, MCPhysReg To, MCPhysReg From) {
Inst.setOpcode(AArch64::LDRXui);
Inst.clear();
if (From == AArch64::SP) {
Inst.setOpcode(AArch64::LDRXpost);
Inst.addOperand(MCOperand::createReg(From));
Inst.addOperand(MCOperand::createReg(To));
Inst.addOperand(MCOperand::createReg(From));
Inst.addOperand(MCOperand::createImm(16));
} else {
Inst.addOperand(MCOperand::createReg(To));
Inst.addOperand(MCOperand::createReg(From));
Inst.addOperand(MCOperand::createImm(0));
}
}
static void storeReg(MCInst &Inst, MCPhysReg From, MCPhysReg To) {
Inst.setOpcode(AArch64::STRXui);
Inst.clear();
if (To == AArch64::SP) {
Inst.setOpcode(AArch64::STRXpre);
Inst.addOperand(MCOperand::createReg(To));
Inst.addOperand(MCOperand::createReg(From));
Inst.addOperand(MCOperand::createReg(To));
Inst.addOperand(MCOperand::createImm(-16));
} else {
Inst.addOperand(MCOperand::createReg(From));
Inst.addOperand(MCOperand::createReg(To));
Inst.addOperand(MCOperand::createImm(0));
}
}
static void atomicAdd(MCInst &Inst, MCPhysReg RegTo, MCPhysReg RegCnt) {
// NOTE: Supports only ARM with LSE extension
Inst.setOpcode(AArch64::LDADDX);
Inst.clear();
Inst.addOperand(MCOperand::createReg(AArch64::XZR));
Inst.addOperand(MCOperand::createReg(RegCnt));
Inst.addOperand(MCOperand::createReg(RegTo));
}
static void createMovz(MCInst &Inst, MCPhysReg Reg, uint64_t Imm) {
assert(Imm <= UINT16_MAX && "Invalid Imm size");
Inst.clear();
Inst.setOpcode(AArch64::MOVZXi);
Inst.addOperand(MCOperand::createReg(Reg));
Inst.addOperand(MCOperand::createImm(Imm & 0xFFFF));
Inst.addOperand(MCOperand::createImm(0));
}
static InstructionListType createIncMemory(MCPhysReg RegTo, MCPhysReg RegTmp) {
InstructionListType Insts;
Insts.emplace_back();
createMovz(Insts.back(), RegTmp, 1);
Insts.emplace_back();
atomicAdd(Insts.back(), RegTo, RegTmp);
return Insts;
}
class AArch64MCPlusBuilder : public MCPlusBuilder {
public:
using MCPlusBuilder::MCPlusBuilder;
std::unique_ptr<MCSymbolizer>
createTargetSymbolizer(BinaryFunction &Function,
bool CreateNewSymbols) const override {
return std::make_unique<AArch64MCSymbolizer>(Function, CreateNewSymbols);
}
MCPhysReg getStackPointer() const override { return AArch64::SP; }
MCPhysReg getFramePointer() const override { return AArch64::FP; }
bool isPush(const MCInst &Inst) const override {
return isStoreToStack(Inst);
};
bool isPop(const MCInst &Inst) const override {
return isLoadFromStack(Inst);
};
void createCall(MCInst &Inst, const MCSymbol *Target,
MCContext *Ctx) override {
createDirectCall(Inst, Target, Ctx, false);
}
bool convertTailCallToCall(MCInst &Inst) override {
int NewOpcode;
switch (Inst.getOpcode()) {
default:
return false;
case AArch64::B:
NewOpcode = AArch64::BL;
break;
case AArch64::BR:
NewOpcode = AArch64::BLR;
break;
}
Inst.setOpcode(NewOpcode);
removeAnnotation(Inst, MCPlus::MCAnnotation::kTailCall);
clearOffset(Inst);
return true;
}
bool equals(const MCTargetExpr &A, const MCTargetExpr &B,
CompFuncTy Comp) const override {
const auto &AArch64ExprA = cast<AArch64MCExpr>(A);
const auto &AArch64ExprB = cast<AArch64MCExpr>(B);
if (AArch64ExprA.getKind() != AArch64ExprB.getKind())
return false;
return MCPlusBuilder::equals(*AArch64ExprA.getSubExpr(),
*AArch64ExprB.getSubExpr(), Comp);
}
bool shortenInstruction(MCInst &, const MCSubtargetInfo &) const override {
return false;
}
ErrorOr<MCPhysReg> getAuthenticatedReg(const MCInst &Inst) const override {
switch (Inst.getOpcode()) {
case AArch64::AUTIAZ:
case AArch64::AUTIBZ:
case AArch64::AUTIASP:
case AArch64::AUTIBSP:
case AArch64::AUTIASPPCi:
case AArch64::AUTIBSPPCi:
case AArch64::AUTIASPPCr:
case AArch64::AUTIBSPPCr:
case AArch64::RETAA:
case AArch64::RETAB:
case AArch64::RETAASPPCi:
case AArch64::RETABSPPCi:
case AArch64::RETAASPPCr:
case AArch64::RETABSPPCr:
return AArch64::LR;
case AArch64::AUTIA1716:
case AArch64::AUTIB1716:
case AArch64::AUTIA171615:
case AArch64::AUTIB171615:
return AArch64::X17;
case AArch64::ERETAA:
case AArch64::ERETAB:
// The ERETA{A,B} instructions use either register ELR_EL1, ELR_EL2 or
// ELR_EL3, depending on the current Exception Level at run-time.
//
// Furthermore, these registers are not modelled by LLVM as a regular
// MCPhysReg.... So there is no way to indicate that through the current
// API.
//
// Therefore, return an error to indicate that LLVM/BOLT cannot model
// this.
return make_error_code(std::errc::result_out_of_range);
case AArch64::AUTIA:
case AArch64::AUTIB:
case AArch64::AUTDA:
case AArch64::AUTDB:
case AArch64::AUTIZA:
case AArch64::AUTIZB:
case AArch64::AUTDZA:
case AArch64::AUTDZB:
return Inst.getOperand(0).getReg();
// FIXME: BL?RA(A|B)Z? and LDRA(A|B) should probably be handled here too.
default:
return getNoRegister();
}
}
bool isAuthenticationOfReg(const MCInst &Inst, MCPhysReg Reg) const override {
if (Reg == getNoRegister())
return false;
ErrorOr<MCPhysReg> AuthenticatedReg = getAuthenticatedReg(Inst);
return AuthenticatedReg.getError() ? false : *AuthenticatedReg == Reg;
}
ErrorOr<MCPhysReg> getRegUsedAsRetDest(const MCInst &Inst) const override {
assert(isReturn(Inst));
switch (Inst.getOpcode()) {
case AArch64::RET:
return Inst.getOperand(0).getReg();
case AArch64::RETAA:
case AArch64::RETAB:
case AArch64::RETAASPPCi:
case AArch64::RETABSPPCi:
case AArch64::RETAASPPCr:
case AArch64::RETABSPPCr:
return AArch64::LR;
case AArch64::ERET:
case AArch64::ERETAA:
case AArch64::ERETAB:
return make_error_code(std::errc::result_out_of_range);
default:
llvm_unreachable("Unhandled return instruction");
}
}
bool isADRP(const MCInst &Inst) const override {
return Inst.getOpcode() == AArch64::ADRP;
}
bool isADR(const MCInst &Inst) const override {
return Inst.getOpcode() == AArch64::ADR;
}
bool isAddXri(const MCInst &Inst) const override {
return Inst.getOpcode() == AArch64::ADDXri;
}
MCPhysReg getADRReg(const MCInst &Inst) const {
assert((isADR(Inst) || isADRP(Inst)) && "Not an ADR instruction");
assert(MCPlus::getNumPrimeOperands(Inst) != 0 &&
"No operands for ADR instruction");
assert(Inst.getOperand(0).isReg() &&
"Unexpected operand in ADR instruction");
return Inst.getOperand(0).getReg();
}
InstructionListType undoAdrpAddRelaxation(const MCInst &ADRInst,
MCContext *Ctx) const override {
assert(isADR(ADRInst) && "ADR instruction expected");
const MCPhysReg Reg = getADRReg(ADRInst);
const MCSymbol *Target = getTargetSymbol(ADRInst);
const uint64_t Addend = getTargetAddend(ADRInst);
return materializeAddress(Target, Ctx, Reg, Addend);
}
bool isTB(const MCInst &Inst) const {
return (Inst.getOpcode() == AArch64::TBNZW ||
Inst.getOpcode() == AArch64::TBNZX ||
Inst.getOpcode() == AArch64::TBZW ||
Inst.getOpcode() == AArch64::TBZX);
}
bool isCB(const MCInst &Inst) const {
return (Inst.getOpcode() == AArch64::CBNZW ||
Inst.getOpcode() == AArch64::CBNZX ||
Inst.getOpcode() == AArch64::CBZW ||
Inst.getOpcode() == AArch64::CBZX);
}
bool isMOVW(const MCInst &Inst) const override {
return (Inst.getOpcode() == AArch64::MOVKWi ||
Inst.getOpcode() == AArch64::MOVKXi ||
Inst.getOpcode() == AArch64::MOVNWi ||
Inst.getOpcode() == AArch64::MOVNXi ||
Inst.getOpcode() == AArch64::MOVZXi ||
Inst.getOpcode() == AArch64::MOVZWi);
}
bool isADD(const MCInst &Inst) const {
return (Inst.getOpcode() == AArch64::ADDSWri ||
Inst.getOpcode() == AArch64::ADDSWrr ||
Inst.getOpcode() == AArch64::ADDSWrs ||
Inst.getOpcode() == AArch64::ADDSWrx ||
Inst.getOpcode() == AArch64::ADDSXri ||
Inst.getOpcode() == AArch64::ADDSXrr ||
Inst.getOpcode() == AArch64::ADDSXrs ||
Inst.getOpcode() == AArch64::ADDSXrx ||
Inst.getOpcode() == AArch64::ADDSXrx64 ||
Inst.getOpcode() == AArch64::ADDWri ||
Inst.getOpcode() == AArch64::ADDWrr ||
Inst.getOpcode() == AArch64::ADDWrs ||
Inst.getOpcode() == AArch64::ADDWrx ||
Inst.getOpcode() == AArch64::ADDXri ||
Inst.getOpcode() == AArch64::ADDXrr ||
Inst.getOpcode() == AArch64::ADDXrs ||
Inst.getOpcode() == AArch64::ADDXrx ||
Inst.getOpcode() == AArch64::ADDXrx64);
}
bool isLDRB(const MCInst &Inst) const {
const unsigned opcode = Inst.getOpcode();
switch (opcode) {
case AArch64::LDRBpost:
case AArch64::LDRBBpost:
case AArch64::LDRBBpre:
case AArch64::LDRBBroW:
case AArch64::LDRBroW:
case AArch64::LDRBroX:
case AArch64::LDRBBroX:
case AArch64::LDRBBui:
case AArch64::LDRBui:
case AArch64::LDRBpre:
case AArch64::LDRSBWpost:
case AArch64::LDRSBWpre:
case AArch64::LDRSBWroW:
case AArch64::LDRSBWroX:
case AArch64::LDRSBWui:
case AArch64::LDRSBXpost:
case AArch64::LDRSBXpre:
case AArch64::LDRSBXroW:
case AArch64::LDRSBXroX:
case AArch64::LDRSBXui:
case AArch64::LDURBi:
case AArch64::LDURBBi:
case AArch64::LDURSBWi:
case AArch64::LDURSBXi:
case AArch64::LDTRBi:
case AArch64::LDTRSBWi:
case AArch64::LDTRSBXi:
return true;
default:
break;
}
return false;
}
bool isLDRH(const MCInst &Inst) const {
const unsigned opcode = Inst.getOpcode();
switch (opcode) {
case AArch64::LDRHpost:
case AArch64::LDRHHpost:
case AArch64::LDRHHpre:
case AArch64::LDRHroW:
case AArch64::LDRHHroW:
case AArch64::LDRHroX:
case AArch64::LDRHHroX:
case AArch64::LDRHHui:
case AArch64::LDRHui:
case AArch64::LDRHpre:
case AArch64::LDRSHWpost:
case AArch64::LDRSHWpre:
case AArch64::LDRSHWroW:
case AArch64::LDRSHWroX:
case AArch64::LDRSHWui:
case AArch64::LDRSHXpost:
case AArch64::LDRSHXpre:
case AArch64::LDRSHXroW:
case AArch64::LDRSHXroX:
case AArch64::LDRSHXui:
case AArch64::LDURHi:
case AArch64::LDURHHi:
case AArch64::LDURSHWi:
case AArch64::LDURSHXi:
case AArch64::LDTRHi:
case AArch64::LDTRSHWi:
case AArch64::LDTRSHXi:
return true;
default:
break;
}
return false;
}
bool isLDRW(const MCInst &Inst) const {
const unsigned opcode = Inst.getOpcode();
switch (opcode) {
case AArch64::LDRWpost:
case AArch64::LDRWpre:
case AArch64::LDRWroW:
case AArch64::LDRWroX:
case AArch64::LDRWui:
case AArch64::LDRWl:
case AArch64::LDRSWl:
case AArch64::LDURWi:
case AArch64::LDRSWpost:
case AArch64::LDRSWpre:
case AArch64::LDRSWroW:
case AArch64::LDRSWroX:
case AArch64::LDRSWui:
case AArch64::LDURSWi:
case AArch64::LDTRWi:
case AArch64::LDTRSWi:
case AArch64::LDPWi:
case AArch64::LDPWpost:
case AArch64::LDPWpre:
case AArch64::LDPSWi:
case AArch64::LDPSWpost:
case AArch64::LDPSWpre:
case AArch64::LDNPWi:
return true;
default:
break;
}
return false;
}
bool isLDRX(const MCInst &Inst) const {
const unsigned opcode = Inst.getOpcode();
switch (opcode) {
case AArch64::LDRXpost:
case AArch64::LDRXpre:
case AArch64::LDRXroW:
case AArch64::LDRXroX:
case AArch64::LDRXui:
case AArch64::LDRXl:
case AArch64::LDURXi:
case AArch64::LDTRXi:
case AArch64::LDNPXi:
case AArch64::LDPXi:
case AArch64::LDPXpost:
case AArch64::LDPXpre:
return true;
default:
break;
}
return false;
}
bool isLDRS(const MCInst &Inst) const {
const unsigned opcode = Inst.getOpcode();
switch (opcode) {
case AArch64::LDRSl:
case AArch64::LDRSui:
case AArch64::LDRSroW:
case AArch64::LDRSroX:
case AArch64::LDURSi:
case AArch64::LDPSi:
case AArch64::LDNPSi:
case AArch64::LDRSpre:
case AArch64::LDRSpost:
case AArch64::LDPSpost:
case AArch64::LDPSpre:
return true;
default:
break;
}
return false;
}
bool isLDRD(const MCInst &Inst) const {
const unsigned opcode = Inst.getOpcode();
switch (opcode) {
case AArch64::LDRDl:
case AArch64::LDRDui:
case AArch64::LDRDpre:
case AArch64::LDRDpost:
case AArch64::LDRDroW:
case AArch64::LDRDroX:
case AArch64::LDURDi:
case AArch64::LDPDi:
case AArch64::LDNPDi:
case AArch64::LDPDpost:
case AArch64::LDPDpre:
return true;
default:
break;
}
return false;
}
bool isLDRQ(const MCInst &Inst) const {
const unsigned opcode = Inst.getOpcode();
switch (opcode) {
case AArch64::LDRQui:
case AArch64::LDRQl:
case AArch64::LDRQpre:
case AArch64::LDRQpost:
case AArch64::LDRQroW:
case AArch64::LDRQroX:
case AArch64::LDURQi:
case AArch64::LDPQi:
case AArch64::LDNPQi:
case AArch64::LDPQpost:
case AArch64::LDPQpre:
return true;
default:
break;
}
return false;
}
bool mayLoad(const MCInst &Inst) const override {
return isLDRB(Inst) || isLDRH(Inst) || isLDRW(Inst) || isLDRX(Inst) ||
isLDRQ(Inst) || isLDRD(Inst) || isLDRS(Inst);
}
bool isAArch64ExclusiveLoad(const MCInst &Inst) const override {
return (Inst.getOpcode() == AArch64::LDXPX ||
Inst.getOpcode() == AArch64::LDXPW ||
Inst.getOpcode() == AArch64::LDXRX ||
Inst.getOpcode() == AArch64::LDXRW ||
Inst.getOpcode() == AArch64::LDXRH ||
Inst.getOpcode() == AArch64::LDXRB ||
Inst.getOpcode() == AArch64::LDAXPX ||
Inst.getOpcode() == AArch64::LDAXPW ||
Inst.getOpcode() == AArch64::LDAXRX ||
Inst.getOpcode() == AArch64::LDAXRW ||
Inst.getOpcode() == AArch64::LDAXRH ||
Inst.getOpcode() == AArch64::LDAXRB);
}
bool isAArch64ExclusiveStore(const MCInst &Inst) const override {
return (Inst.getOpcode() == AArch64::STXPX ||
Inst.getOpcode() == AArch64::STXPW ||
Inst.getOpcode() == AArch64::STXRX ||
Inst.getOpcode() == AArch64::STXRW ||
Inst.getOpcode() == AArch64::STXRH ||
Inst.getOpcode() == AArch64::STXRB ||
Inst.getOpcode() == AArch64::STLXPX ||
Inst.getOpcode() == AArch64::STLXPW ||
Inst.getOpcode() == AArch64::STLXRX ||
Inst.getOpcode() == AArch64::STLXRW ||
Inst.getOpcode() == AArch64::STLXRH ||
Inst.getOpcode() == AArch64::STLXRB);
}
bool isAArch64ExclusiveClear(const MCInst &Inst) const override {
return (Inst.getOpcode() == AArch64::CLREX);
}
bool isLoadFromStack(const MCInst &Inst) const {
if (!mayLoad(Inst))
return false;
for (const MCOperand &Operand : useOperands(Inst)) {
if (!Operand.isReg())
continue;
unsigned Reg = Operand.getReg();
if (Reg == AArch64::SP || Reg == AArch64::WSP)
return true;
}
return false;
}
bool isRegToRegMove(const MCInst &Inst, MCPhysReg &From,
MCPhysReg &To) const override {
if (Inst.getOpcode() == AArch64::FMOVDXr) {
From = Inst.getOperand(1).getReg();
To = Inst.getOperand(0).getReg();
return true;
}
if (Inst.getOpcode() != AArch64::ORRXrs)
return false;
if (Inst.getOperand(1).getReg() != AArch64::XZR)
return false;
if (Inst.getOperand(3).getImm() != 0)
return false;
From = Inst.getOperand(2).getReg();
To = Inst.getOperand(0).getReg();
return true;
}
bool isIndirectCall(const MCInst &Inst) const override {
return Inst.getOpcode() == AArch64::BLR;
}
MCPhysReg getSpRegister(int Size) const {
switch (Size) {
case 4:
return AArch64::WSP;
case 8:
return AArch64::SP;
default:
llvm_unreachable("Unexpected size");
}
}
MCPhysReg getIntArgRegister(unsigned ArgNo) const override {
switch (ArgNo) {
case 0:
return AArch64::X0;
case 1:
return AArch64::X1;
case 2:
return AArch64::X2;
case 3:
return AArch64::X3;
case 4:
return AArch64::X4;
case 5:
return AArch64::X5;
case 6:
return AArch64::X6;
case 7:
return AArch64::X7;
default:
return getNoRegister();
}
}
bool hasPCRelOperand(const MCInst &Inst) const override {
// ADRP is blacklisted and is an exception. Even though it has a
// PC-relative operand, this operand is not a complete symbol reference
// and BOLT shouldn't try to process it in isolation.
if (isADRP(Inst))
return false;
if (isADR(Inst))
return true;
// Look for literal addressing mode (see C1-143 ARM DDI 0487B.a)
const MCInstrDesc &MCII = Info->get(Inst.getOpcode());
for (unsigned I = 0, E = MCII.getNumOperands(); I != E; ++I)
if (MCII.operands()[I].OperandType == MCOI::OPERAND_PCREL)
return true;
return false;
}
bool evaluateADR(const MCInst &Inst, int64_t &Imm,
const MCExpr **DispExpr) const {
assert((isADR(Inst) || isADRP(Inst)) && "Not an ADR instruction");
const MCOperand &Label = Inst.getOperand(1);
if (!Label.isImm()) {
assert(Label.isExpr() && "Unexpected ADR operand");
assert(DispExpr && "DispExpr must be set");
*DispExpr = Label.getExpr();
return false;
}
if (Inst.getOpcode() == AArch64::ADR) {
Imm = Label.getImm();
return true;
}
Imm = Label.getImm() << 12;
return true;
}
bool evaluateAArch64MemoryOperand(const MCInst &Inst, int64_t &DispImm,
const MCExpr **DispExpr = nullptr) const {
if (isADR(Inst) || isADRP(Inst))
return evaluateADR(Inst, DispImm, DispExpr);
// Literal addressing mode
const MCInstrDesc &MCII = Info->get(Inst.getOpcode());
for (unsigned I = 0, E = MCII.getNumOperands(); I != E; ++I) {
if (MCII.operands()[I].OperandType != MCOI::OPERAND_PCREL)
continue;
if (!Inst.getOperand(I).isImm()) {
assert(Inst.getOperand(I).isExpr() && "Unexpected PCREL operand");
assert(DispExpr && "DispExpr must be set");
*DispExpr = Inst.getOperand(I).getExpr();
return true;
}
DispImm = Inst.getOperand(I).getImm() * 4;
return true;
}
return false;
}
bool evaluateMemOperandTarget(const MCInst &Inst, uint64_t &Target,
uint64_t Address,
uint64_t Size) const override {
int64_t DispValue;
const MCExpr *DispExpr = nullptr;
if (!evaluateAArch64MemoryOperand(Inst, DispValue, &DispExpr))
return false;
// Make sure it's a well-formed addressing we can statically evaluate.
if (DispExpr)
return false;
Target = DispValue;
if (Inst.getOpcode() == AArch64::ADRP)
Target += Address & ~0xFFFULL;
else
Target += Address;
return true;
}
MCInst::iterator getMemOperandDisp(MCInst &Inst) const override {
MCInst::iterator OI = Inst.begin();
if (isADR(Inst) || isADRP(Inst)) {
assert(MCPlus::getNumPrimeOperands(Inst) >= 2 &&
"Unexpected number of operands");
return ++OI;
}
const MCInstrDesc &MCII = Info->get(Inst.getOpcode());
for (unsigned I = 0, E = MCII.getNumOperands(); I != E; ++I) {
if (MCII.operands()[I].OperandType == MCOI::OPERAND_PCREL)
break;
++OI;
}
assert(OI != Inst.end() && "Literal operand not found");
return OI;
}
bool replaceMemOperandDisp(MCInst &Inst, MCOperand Operand) const override {
MCInst::iterator OI = getMemOperandDisp(Inst);
*OI = Operand;
return true;
}
void getCalleeSavedRegs(BitVector &Regs) const override {
Regs |= getAliases(AArch64::X18);
Regs |= getAliases(AArch64::X19);
Regs |= getAliases(AArch64::X20);
Regs |= getAliases(AArch64::X21);
Regs |= getAliases(AArch64::X22);
Regs |= getAliases(AArch64::X23);
Regs |= getAliases(AArch64::X24);
Regs |= getAliases(AArch64::X25);
Regs |= getAliases(AArch64::X26);
Regs |= getAliases(AArch64::X27);
Regs |= getAliases(AArch64::X28);
Regs |= getAliases(AArch64::LR);
Regs |= getAliases(AArch64::FP);
}
const MCExpr *getTargetExprFor(MCInst &Inst, const MCExpr *Expr,
MCContext &Ctx,
uint32_t RelType) const override {
if (isADR(Inst) || RelType == ELF::R_AARCH64_ADR_PREL_LO21 ||
RelType == ELF::R_AARCH64_TLSDESC_ADR_PREL21) {
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS, Ctx);
} else if (isADRP(Inst) || RelType == ELF::R_AARCH64_ADR_PREL_PG_HI21 ||
RelType == ELF::R_AARCH64_ADR_PREL_PG_HI21_NC ||
RelType == ELF::R_AARCH64_TLSDESC_ADR_PAGE21 ||
RelType == ELF::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
// Never emit a GOT reloc, we handled this in
// RewriteInstance::readRelocations().
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_PAGE, Ctx);
} else {
switch (RelType) {
case ELF::R_AARCH64_ADD_ABS_LO12_NC:
case ELF::R_AARCH64_LD64_GOT_LO12_NC:
case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
case ELF::R_AARCH64_TLSDESC_ADD_LO12:
case ELF::R_AARCH64_TLSDESC_LD64_LO12:
case ELF::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
case ELF::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_LO12, Ctx);
case ELF::R_AARCH64_MOVW_UABS_G3:
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_G3, Ctx);
case ELF::R_AARCH64_MOVW_UABS_G2:
case ELF::R_AARCH64_MOVW_UABS_G2_NC:
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_G2_NC, Ctx);
case ELF::R_AARCH64_MOVW_UABS_G1:
case ELF::R_AARCH64_MOVW_UABS_G1_NC:
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_G1_NC, Ctx);
case ELF::R_AARCH64_MOVW_UABS_G0:
case ELF::R_AARCH64_MOVW_UABS_G0_NC:
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_G0_NC, Ctx);
default:
break;
}
}
return Expr;
}
bool getSymbolRefOperandNum(const MCInst &Inst, unsigned &OpNum) const {
if (OpNum >= MCPlus::getNumPrimeOperands(Inst))
return false;
// Auto-select correct operand number
if (OpNum == 0) {
if (isConditionalBranch(Inst) || isADR(Inst) || isADRP(Inst) ||
isMOVW(Inst))
OpNum = 1;
if (isTB(Inst) || isAddXri(Inst))
OpNum = 2;
}
return true;
}
const MCSymbol *getTargetSymbol(const MCExpr *Expr) const override {
auto *AArchExpr = dyn_cast<AArch64MCExpr>(Expr);
if (AArchExpr && AArchExpr->getSubExpr())
return getTargetSymbol(AArchExpr->getSubExpr());
auto *BinExpr = dyn_cast<MCBinaryExpr>(Expr);
if (BinExpr)
return getTargetSymbol(BinExpr->getLHS());
auto *SymExpr = dyn_cast<MCSymbolRefExpr>(Expr);
if (SymExpr && SymExpr->getKind() == MCSymbolRefExpr::VK_None)
return &SymExpr->getSymbol();
return nullptr;
}
const MCSymbol *getTargetSymbol(const MCInst &Inst,
unsigned OpNum = 0) const override {
if (!getSymbolRefOperandNum(Inst, OpNum))
return nullptr;
const MCOperand &Op = Inst.getOperand(OpNum);
if (!Op.isExpr())
return nullptr;
return getTargetSymbol(Op.getExpr());
}
int64_t getTargetAddend(const MCExpr *Expr) const override {
auto *AArchExpr = dyn_cast<AArch64MCExpr>(Expr);
if (AArchExpr && AArchExpr->getSubExpr())
return getTargetAddend(AArchExpr->getSubExpr());
auto *BinExpr = dyn_cast<MCBinaryExpr>(Expr);
if (BinExpr && BinExpr->getOpcode() == MCBinaryExpr::Add)
return getTargetAddend(BinExpr->getRHS());
auto *ConstExpr = dyn_cast<MCConstantExpr>(Expr);
if (ConstExpr)
return ConstExpr->getValue();
return 0;
}
int64_t getTargetAddend(const MCInst &Inst,
unsigned OpNum = 0) const override {
if (!getSymbolRefOperandNum(Inst, OpNum))
return 0;
const MCOperand &Op = Inst.getOperand(OpNum);
if (!Op.isExpr())
return 0;
return getTargetAddend(Op.getExpr());
}
void replaceBranchTarget(MCInst &Inst, const MCSymbol *TBB,
MCContext *Ctx) const override {
assert((isCall(Inst) || isBranch(Inst)) && !isIndirectBranch(Inst) &&
"Invalid instruction");
assert(MCPlus::getNumPrimeOperands(Inst) >= 1 &&
"Invalid number of operands");
MCInst::iterator OI = Inst.begin();
if (isConditionalBranch(Inst)) {
assert(MCPlus::getNumPrimeOperands(Inst) >= 2 &&
"Invalid number of operands");
++OI;
}
if (isTB(Inst)) {
assert(MCPlus::getNumPrimeOperands(Inst) >= 3 &&
"Invalid number of operands");
OI = Inst.begin() + 2;
}
*OI = MCOperand::createExpr(
MCSymbolRefExpr::create(TBB, MCSymbolRefExpr::VK_None, *Ctx));
}
/// Matches indirect branch patterns in AArch64 related to a jump table (JT),
/// helping us to build the complete CFG. A typical indirect branch to
/// a jump table entry in AArch64 looks like the following:
///
/// adrp x1, #-7585792 # Get JT Page location
/// add x1, x1, #692 # Complement with JT Page offset
/// ldrh w0, [x1, w0, uxtw #1] # Loads JT entry
/// adr x1, #12 # Get PC + 12 (end of this BB) used next
/// add x0, x1, w0, sxth #2 # Finish building branch target
/// # (entries in JT are relative to the end
/// # of this BB)
/// br x0 # Indirect jump instruction
///
/// Return true on successful jump table instruction sequence match, false
/// otherwise.
bool analyzeIndirectBranchFragment(
const MCInst &Inst,
DenseMap<const MCInst *, SmallVector<MCInst *, 4>> &UDChain,
const MCExpr *&JumpTable, int64_t &Offset, int64_t &ScaleValue,
MCInst *&PCRelBase) const {
// Expect AArch64 BR
assert(Inst.getOpcode() == AArch64::BR && "Unexpected opcode");
JumpTable = nullptr;
// Match the indirect branch pattern for aarch64
SmallVector<MCInst *, 4> &UsesRoot = UDChain[&Inst];
if (UsesRoot.size() == 0 || UsesRoot[0] == nullptr)
return false;
const MCInst *DefAdd = UsesRoot[0];
// Now we match an ADD
if (!isADD(*DefAdd)) {
// If the address is not broken up in two parts, this is not branching
// according to a jump table entry. Fail.
return false;
}
if (DefAdd->getOpcode() == AArch64::ADDXri) {
// This can happen when there is no offset, but a direct jump that was
// transformed into an indirect one (indirect tail call) :
// ADRP x2, Perl_re_compiler
// ADD x2, x2, :lo12:Perl_re_compiler
// BR x2
return false;
}
if (DefAdd->getOpcode() == AArch64::ADDXrs) {
// Covers the less common pattern where JT entries are relative to
// the JT itself (like x86). Seems less efficient since we can't
// assume the JT is aligned at 4B boundary and thus drop 2 bits from
// JT values.
// cde264:
// adrp x12, #21544960 ; 216a000
// add x12, x12, #1696 ; 216a6a0 (JT object in .rodata)
// ldrsw x8, [x12, x8, lsl #2] --> loads e.g. 0xfeb73bd8
// * add x8, x8, x12 --> = cde278, next block
// br x8
// cde278:
//
// Parsed as ADDXrs reg:x8 reg:x8 reg:x12 imm:0
return false;
}
if (DefAdd->getOpcode() != AArch64::ADDXrx)
return false;
// Validate ADD operands
int64_t OperandExtension = DefAdd->getOperand(3).getImm();
unsigned ShiftVal = AArch64_AM::getArithShiftValue(OperandExtension);
AArch64_AM::ShiftExtendType ExtendType =
AArch64_AM::getArithExtendType(OperandExtension);
if (ShiftVal != 2) {
// TODO: Handle the patten where ShiftVal != 2.
// The following code sequence below has no shift amount,
// the range could be 0 to 4.
// The pattern comes from libc, it occurs when the binary is static.
// adr x6, 0x219fb0 <sigall_set+0x88>
// add x6, x6, x14, lsl #2
// ldr w7, [x6]
// add x6, x6, w7, sxtw => no shift amount
// br x6
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "
"failed to match indirect branch: ShiftVAL != 2\n");
return false;
}
if (ExtendType == AArch64_AM::SXTB)
ScaleValue = 1LL;
else if (ExtendType == AArch64_AM::SXTH)
ScaleValue = 2LL;
else if (ExtendType == AArch64_AM::SXTW)
ScaleValue = 4LL;
else
return false;
// Match an ADR to load base address to be used when addressing JT targets
SmallVector<MCInst *, 4> &UsesAdd = UDChain[DefAdd];
if (UsesAdd.size() <= 1 || UsesAdd[1] == nullptr || UsesAdd[2] == nullptr) {
// This happens when we don't have enough context about this jump table
// because the jumping code sequence was split in multiple basic blocks.
// This was observed in the wild in HHVM code (dispatchImpl).
return false;
}
MCInst *DefBaseAddr = UsesAdd[1];
if (DefBaseAddr->getOpcode() != AArch64::ADR)
return false;
PCRelBase = DefBaseAddr;
// Match LOAD to load the jump table (relative) target
const MCInst *DefLoad = UsesAdd[2];
if (!mayLoad(*DefLoad) || (ScaleValue == 1LL && !isLDRB(*DefLoad)) ||
(ScaleValue == 2LL && !isLDRH(*DefLoad)))
return false;
// Match ADD that calculates the JumpTable Base Address (not the offset)
SmallVector<MCInst *, 4> &UsesLoad = UDChain[DefLoad];
const MCInst *DefJTBaseAdd = UsesLoad[1];
MCPhysReg From, To;
if (DefJTBaseAdd == nullptr || isLoadFromStack(*DefJTBaseAdd) ||
isRegToRegMove(*DefJTBaseAdd, From, To)) {
// Sometimes base address may have been defined in another basic block
// (hoisted). Return with no jump table info.
return true;
}
if (DefJTBaseAdd->getOpcode() == AArch64::ADR) {
// TODO: Handle the pattern where there is no adrp/add pair.
// It also occurs when the binary is static.
// adr x13, 0x215a18 <_nl_value_type_LC_COLLATE+0x50>
// ldrh w13, [x13, w12, uxtw #1]
// adr x12, 0x247b30 <__gettextparse+0x5b0>
// add x13, x12, w13, sxth #2
// br x13
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: failed to match indirect branch: "
"nop/adr instead of adrp/add\n");
return false;
}
if (DefJTBaseAdd->getOpcode() != AArch64::ADDXri) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: failed to match jump table base "
"address pattern! (1)\n");
return false;
}
if (DefJTBaseAdd->getOperand(2).isImm())
Offset = DefJTBaseAdd->getOperand(2).getImm();
SmallVector<MCInst *, 4> &UsesJTBaseAdd = UDChain[DefJTBaseAdd];
const MCInst *DefJTBasePage = UsesJTBaseAdd[1];
if (DefJTBasePage == nullptr || isLoadFromStack(*DefJTBasePage)) {
return true;
}
if (DefJTBasePage->getOpcode() != AArch64::ADRP)
return false;
if (DefJTBasePage->getOperand(1).isExpr())
JumpTable = DefJTBasePage->getOperand(1).getExpr();
return true;
}
DenseMap<const MCInst *, SmallVector<MCInst *, 4>>
computeLocalUDChain(const MCInst *CurInstr, InstructionIterator Begin,
InstructionIterator End) const {
DenseMap<int, MCInst *> RegAliasTable;
DenseMap<const MCInst *, SmallVector<MCInst *, 4>> Uses;
auto addInstrOperands = [&](const MCInst &Instr) {
// Update Uses table
for (const MCOperand &Operand : MCPlus::primeOperands(Instr)) {
if (!Operand.isReg())
continue;
unsigned Reg = Operand.getReg();
MCInst *AliasInst = RegAliasTable[Reg];
Uses[&Instr].push_back(AliasInst);
LLVM_DEBUG({
dbgs() << "Adding reg operand " << Reg << " refs ";
if (AliasInst != nullptr)
AliasInst->dump();
else
dbgs() << "\n";
});
}
};
LLVM_DEBUG(dbgs() << "computeLocalUDChain\n");
bool TerminatorSeen = false;
for (auto II = Begin; II != End; ++II) {
MCInst &Instr = *II;
// Ignore nops and CFIs
if (isPseudo(Instr) || isNoop(Instr))
continue;
if (TerminatorSeen) {
RegAliasTable.clear();
Uses.clear();
}
LLVM_DEBUG(dbgs() << "Now updating for:\n ");
LLVM_DEBUG(Instr.dump());
addInstrOperands(Instr);
BitVector Regs = BitVector(RegInfo->getNumRegs(), false);
getWrittenRegs(Instr, Regs);
// Update register definitions after this point
for (int Idx : Regs.set_bits()) {
RegAliasTable[Idx] = &Instr;
LLVM_DEBUG(dbgs() << "Setting reg " << Idx
<< " def to current instr.\n");
}
TerminatorSeen = isTerminator(Instr);
}
// Process the last instruction, which is not currently added into the
// instruction stream
if (CurInstr)
addInstrOperands(*CurInstr);
return Uses;
}
IndirectBranchType
analyzeIndirectBranch(MCInst &Instruction, InstructionIterator Begin,
InstructionIterator End, const unsigned PtrSize,
MCInst *&MemLocInstrOut, unsigned &BaseRegNumOut,
unsigned &IndexRegNumOut, int64_t &DispValueOut,
const MCExpr *&DispExprOut, MCInst *&PCRelBaseOut,
MCInst *&FixedEntryLoadInstr) const override {
MemLocInstrOut = nullptr;
BaseRegNumOut = AArch64::NoRegister;
IndexRegNumOut = AArch64::NoRegister;
DispValueOut = 0;
DispExprOut = nullptr;
FixedEntryLoadInstr = nullptr;
// An instruction referencing memory used by jump instruction (directly or
// via register). This location could be an array of function pointers
// in case of indirect tail call, or a jump table.
MCInst *MemLocInstr = nullptr;
// Analyze the memory location.
int64_t ScaleValue, DispValue;
const MCExpr *DispExpr;
DenseMap<const MCInst *, SmallVector<llvm::MCInst *, 4>> UDChain =
computeLocalUDChain(&Instruction, Begin, End);
MCInst *PCRelBase;
if (!analyzeIndirectBranchFragment(Instruction, UDChain, DispExpr,
DispValue, ScaleValue, PCRelBase))
return IndirectBranchType::UNKNOWN;
MemLocInstrOut = MemLocInstr;
DispValueOut = DispValue;
DispExprOut = DispExpr;
PCRelBaseOut = PCRelBase;
return IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE;
}
/// Matches PLT entry pattern and returns the associated GOT entry address.
/// Typical PLT entry looks like the following:
///
/// adrp x16, 230000
/// ldr x17, [x16, #3040]
/// add x16, x16, #0xbe0
/// br x17
///
/// The other type of trampolines are located in .plt.got, that are used for
/// non-lazy bindings so doesn't use x16 arg to transfer .got entry address:
///
/// adrp x16, 230000
/// ldr x17, [x16, #3040]
/// br x17
/// nop
///
uint64_t analyzePLTEntry(MCInst &Instruction, InstructionIterator Begin,
InstructionIterator End,
uint64_t BeginPC) const override {
// Check branch instruction
MCInst *Branch = &Instruction;
assert(Branch->getOpcode() == AArch64::BR && "Unexpected opcode");
DenseMap<const MCInst *, SmallVector<llvm::MCInst *, 4>> UDChain =
computeLocalUDChain(Branch, Begin, End);
// Match ldr instruction
SmallVector<MCInst *, 4> &BranchUses = UDChain[Branch];
if (BranchUses.size() < 1 || BranchUses[0] == nullptr)
return 0;
// Check ldr instruction
const MCInst *Ldr = BranchUses[0];
if (Ldr->getOpcode() != AArch64::LDRXui)
return 0;
// Get ldr value
const unsigned ScaleLdr = 8; // LDRX operates on 8 bytes segments
assert(Ldr->getOperand(2).isImm() && "Unexpected ldr operand");
const uint64_t Offset = Ldr->getOperand(2).getImm() * ScaleLdr;
// Match adrp instruction
SmallVector<MCInst *, 4> &LdrUses = UDChain[Ldr];
if (LdrUses.size() < 2 || LdrUses[1] == nullptr)
return 0;
// Check adrp instruction
MCInst *Adrp = LdrUses[1];
if (Adrp->getOpcode() != AArch64::ADRP)
return 0;
// Get adrp instruction PC
const unsigned InstSize = 4;
uint64_t AdrpPC = BeginPC;
for (InstructionIterator It = Begin; It != End; ++It) {
if (&(*It) == Adrp)
break;
AdrpPC += InstSize;
}
// Get adrp value
uint64_t Base;
assert(Adrp->getOperand(1).isImm() && "Unexpected adrp operand");
bool Ret = evaluateMemOperandTarget(*Adrp, Base, AdrpPC, InstSize);
assert(Ret && "Failed to evaluate adrp");
(void)Ret;
return Base + Offset;
}
unsigned getInvertedBranchOpcode(unsigned Opcode) const {
switch (Opcode) {
default:
llvm_unreachable("Failed to invert branch opcode");
return Opcode;
case AArch64::TBZW: return AArch64::TBNZW;
case AArch64::TBZX: return AArch64::TBNZX;
case AArch64::TBNZW: return AArch64::TBZW;
case AArch64::TBNZX: return AArch64::TBZX;
case AArch64::CBZW: return AArch64::CBNZW;
case AArch64::CBZX: return AArch64::CBNZX;
case AArch64::CBNZW: return AArch64::CBZW;
case AArch64::CBNZX: return AArch64::CBZX;
}
}
unsigned getCondCode(const MCInst &Inst) const override {
// AArch64 does not use conditional codes, so we just return the opcode
// of the conditional branch here.
return Inst.getOpcode();
}
unsigned getCanonicalBranchCondCode(unsigned Opcode) const override {
switch (Opcode) {
default:
return Opcode;
case AArch64::TBNZW: return AArch64::TBZW;
case AArch64::TBNZX: return AArch64::TBZX;
case AArch64::CBNZW: return AArch64::CBZW;
case AArch64::CBNZX: return AArch64::CBZX;
}
}
void reverseBranchCondition(MCInst &Inst, const MCSymbol *TBB,
MCContext *Ctx) const override {
if (isTB(Inst) || isCB(Inst)) {
Inst.setOpcode(getInvertedBranchOpcode(Inst.getOpcode()));
assert(Inst.getOpcode() != 0 && "Invalid branch instruction");
} else if (Inst.getOpcode() == AArch64::Bcc) {
Inst.getOperand(0).setImm(AArch64CC::getInvertedCondCode(
static_cast<AArch64CC::CondCode>(Inst.getOperand(0).getImm())));
assert(Inst.getOperand(0).getImm() != AArch64CC::AL &&
Inst.getOperand(0).getImm() != AArch64CC::NV &&
"Can't reverse ALWAYS cond code");
} else {
LLVM_DEBUG(Inst.dump());
llvm_unreachable("Unrecognized branch instruction");
}
replaceBranchTarget(Inst, TBB, Ctx);
}
int getPCRelEncodingSize(const MCInst &Inst) const override {
switch (Inst.getOpcode()) {
default:
llvm_unreachable("Failed to get pcrel encoding size");
return 0;
case AArch64::TBZW: return 16;
case AArch64::TBZX: return 16;
case AArch64::TBNZW: return 16;
case AArch64::TBNZX: return 16;
case AArch64::CBZW: return 21;
case AArch64::CBZX: return 21;
case AArch64::CBNZW: return 21;
case AArch64::CBNZX: return 21;
case AArch64::B: return 28;
case AArch64::BL: return 28;
case AArch64::Bcc: return 21;
}
}
int getShortJmpEncodingSize() const override { return 33; }
int getUncondBranchEncodingSize() const override { return 28; }
InstructionListType createCmpJE(MCPhysReg RegNo, int64_t Imm,
const MCSymbol *Target,
MCContext *Ctx) const override {
InstructionListType Code;
Code.emplace_back(MCInstBuilder(AArch64::SUBSXri)
.addReg(RegNo)
.addReg(RegNo)
.addImm(Imm)
.addImm(0));
Code.emplace_back(MCInstBuilder(AArch64::Bcc)
.addImm(Imm)
.addExpr(MCSymbolRefExpr::create(
Target, MCSymbolRefExpr::VK_None, *Ctx)));
return Code;
}
void createTailCall(MCInst &Inst, const MCSymbol *Target,
MCContext *Ctx) override {
return createDirectCall(Inst, Target, Ctx, /*IsTailCall*/ true);
}
void createLongTailCall(InstructionListType &Seq, const MCSymbol *Target,
MCContext *Ctx) override {
createShortJmp(Seq, Target, Ctx, /*IsTailCall*/ true);
}
void createTrap(MCInst &Inst) const override {
Inst.clear();
Inst.setOpcode(AArch64::BRK);
Inst.addOperand(MCOperand::createImm(1));
}
bool convertJmpToTailCall(MCInst &Inst) override {
setTailCall(Inst);
return true;
}
bool convertTailCallToJmp(MCInst &Inst) override {
removeAnnotation(Inst, MCPlus::MCAnnotation::kTailCall);
clearOffset(Inst);
if (getConditionalTailCall(Inst))
unsetConditionalTailCall(Inst);
return true;
}
InstructionListType createIndirectPLTCall(MCInst &&DirectCall,
const MCSymbol *TargetLocation,
MCContext *Ctx) override {
const bool IsTailCall = isTailCall(DirectCall);
assert((DirectCall.getOpcode() == AArch64::BL ||
(DirectCall.getOpcode() == AArch64::B && IsTailCall)) &&
"64-bit direct (tail) call instruction expected");
InstructionListType Code;
// Code sequence for indirect plt call:
// adrp x16 <symbol>
// ldr x17, [x16, #<offset>]
// blr x17 ; or 'br' for tail calls
MCInst InstAdrp;
InstAdrp.setOpcode(AArch64::ADRP);
InstAdrp.addOperand(MCOperand::createReg(AArch64::X16));
InstAdrp.addOperand(MCOperand::createImm(0));
setOperandToSymbolRef(InstAdrp, /* OpNum */ 1, TargetLocation,
/* Addend */ 0, Ctx, ELF::R_AARCH64_ADR_GOT_PAGE);
Code.emplace_back(InstAdrp);
MCInst InstLoad;
InstLoad.setOpcode(AArch64::LDRXui);
InstLoad.addOperand(MCOperand::createReg(AArch64::X17));
InstLoad.addOperand(MCOperand::createReg(AArch64::X16));
InstLoad.addOperand(MCOperand::createImm(0));
setOperandToSymbolRef(InstLoad, /* OpNum */ 2, TargetLocation,
/* Addend */ 0, Ctx, ELF::R_AARCH64_LD64_GOT_LO12_NC);
Code.emplace_back(InstLoad);
MCInst InstCall;
InstCall.setOpcode(IsTailCall ? AArch64::BR : AArch64::BLR);
InstCall.addOperand(MCOperand::createReg(AArch64::X17));
moveAnnotations(std::move(DirectCall), InstCall);
Code.emplace_back(InstCall);
return Code;
}
bool lowerTailCall(MCInst &Inst) override {
removeAnnotation(Inst, MCPlus::MCAnnotation::kTailCall);
if (getConditionalTailCall(Inst))
unsetConditionalTailCall(Inst);
return true;
}
bool isNoop(const MCInst &Inst) const override {
return Inst.getOpcode() == AArch64::HINT &&
Inst.getOperand(0).getImm() == 0;
}
void createNoop(MCInst &Inst) const override {
Inst.setOpcode(AArch64::HINT);
Inst.clear();
Inst.addOperand(MCOperand::createImm(0));
}
bool isStorePair(const MCInst &Inst) const {
const unsigned opcode = Inst.getOpcode();
auto isStorePairImmOffset = [&]() {
switch (opcode) {
case AArch64::STPWi:
case AArch64::STPXi:
case AArch64::STPSi:
case AArch64::STPDi:
case AArch64::STPQi:
case AArch64::STNPWi:
case AArch64::STNPXi:
case AArch64::STNPSi:
case AArch64::STNPDi:
case AArch64::STNPQi:
return true;
default:
break;
}
return false;
};
auto isStorePairPostIndex = [&]() {
switch (opcode) {
case AArch64::STPWpost:
case AArch64::STPXpost:
case AArch64::STPSpost:
case AArch64::STPDpost:
case AArch64::STPQpost:
return true;
default:
break;
}
return false;
};
auto isStorePairPreIndex = [&]() {
switch (opcode) {
case AArch64::STPWpre:
case AArch64::STPXpre:
case AArch64::STPSpre:
case AArch64::STPDpre:
case AArch64::STPQpre:
return true;
default:
break;
}
return false;
};
return isStorePairImmOffset() || isStorePairPostIndex() ||
isStorePairPreIndex();
}
bool isStoreReg(const MCInst &Inst) const {
const unsigned opcode = Inst.getOpcode();
auto isStoreRegUnscaleImm = [&]() {
switch (opcode) {
case AArch64::STURBi:
case AArch64::STURBBi:
case AArch64::STURHi:
case AArch64::STURHHi:
case AArch64::STURWi:
case AArch64::STURXi:
case AArch64::STURSi:
case AArch64::STURDi:
case AArch64::STURQi:
return true;
default:
break;
}
return false;
};
auto isStoreRegScaledImm = [&]() {
switch (opcode) {
case AArch64::STRBui:
case AArch64::STRBBui:
case AArch64::STRHui:
case AArch64::STRHHui:
case AArch64::STRWui:
case AArch64::STRXui:
case AArch64::STRSui:
case AArch64::STRDui:
case AArch64::STRQui:
return true;
default:
break;
}
return false;
};
auto isStoreRegImmPostIndexed = [&]() {
switch (opcode) {
case AArch64::STRBpost:
case AArch64::STRBBpost:
case AArch64::STRHpost:
case AArch64::STRHHpost:
case AArch64::STRWpost:
case AArch64::STRXpost:
case AArch64::STRSpost:
case AArch64::STRDpost:
case AArch64::STRQpost:
return true;
default:
break;
}
return false;
};
auto isStoreRegImmPreIndexed = [&]() {
switch (opcode) {
case AArch64::STRBpre:
case AArch64::STRBBpre:
case AArch64::STRHpre:
case AArch64::STRHHpre:
case AArch64::STRWpre:
case AArch64::STRXpre:
case AArch64::STRSpre:
case AArch64::STRDpre:
case AArch64::STRQpre:
return true;
default:
break;
}
return false;
};
auto isStoreRegUnscaleUnpriv = [&]() {
switch (opcode) {
case AArch64::STTRBi:
case AArch64::STTRHi:
case AArch64::STTRWi:
case AArch64::STTRXi:
return true;
default:
break;
}
return false;
};
auto isStoreRegTrunc = [&]() {
switch (opcode) {
case AArch64::STRBBroW:
case AArch64::STRBBroX:
case AArch64::STRBroW:
case AArch64::STRBroX:
case AArch64::STRDroW:
case AArch64::STRDroX:
case AArch64::STRHHroW:
case AArch64::STRHHroX:
case AArch64::STRHroW:
case AArch64::STRHroX:
case AArch64::STRQroW:
case AArch64::STRQroX:
case AArch64::STRSroW:
case AArch64::STRSroX:
case AArch64::STRWroW:
case AArch64::STRWroX:
case AArch64::STRXroW:
case AArch64::STRXroX:
return true;
default:
break;
}
return false;
};
return isStoreRegUnscaleImm() || isStoreRegScaledImm() ||
isStoreRegImmPreIndexed() || isStoreRegImmPostIndexed() ||
isStoreRegUnscaleUnpriv() || isStoreRegTrunc();
}
bool mayStore(const MCInst &Inst) const override {
return isStorePair(Inst) || isStoreReg(Inst) ||
isAArch64ExclusiveStore(Inst);
}
bool isStoreToStack(const MCInst &Inst) const {
if (!mayStore(Inst))
return false;
for (const MCOperand &Operand : useOperands(Inst)) {
if (!Operand.isReg())
continue;
unsigned Reg = Operand.getReg();
if (Reg == AArch64::SP || Reg == AArch64::WSP)
return true;
}
return false;
}
void createDirectCall(MCInst &Inst, const MCSymbol *Target, MCContext *Ctx,
bool IsTailCall) override {
Inst.setOpcode(IsTailCall ? AArch64::B : AArch64::BL);
Inst.clear();
Inst.addOperand(MCOperand::createExpr(getTargetExprFor(
Inst, MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *Ctx),
*Ctx, 0)));
if (IsTailCall)
convertJmpToTailCall(Inst);
}
bool analyzeBranch(InstructionIterator Begin, InstructionIterator End,
const MCSymbol *&TBB, const MCSymbol *&FBB,
MCInst *&CondBranch,
MCInst *&UncondBranch) const override {
auto I = End;
while (I != Begin) {
--I;
// Ignore nops and CFIs
if (isPseudo(*I) || isNoop(*I))
continue;
// Stop when we find the first non-terminator
if (!isTerminator(*I) || isTailCall(*I) || !isBranch(*I))
break;
// Handle unconditional branches.
if (isUnconditionalBranch(*I)) {
// If any code was seen after this unconditional branch, we've seen
// unreachable code. Ignore them.
CondBranch = nullptr;
UncondBranch = &*I;
const MCSymbol *Sym = getTargetSymbol(*I);
assert(Sym != nullptr &&
"Couldn't extract BB symbol from jump operand");
TBB = Sym;
continue;
}
// Handle conditional branches and ignore indirect branches
if (isIndirectBranch(*I))
return false;
if (CondBranch == nullptr) {
const MCSymbol *TargetBB = getTargetSymbol(*I);
if (TargetBB == nullptr) {
// Unrecognized branch target
return false;
}
FBB = TBB;
TBB = TargetBB;
CondBranch = &*I;
continue;
}
llvm_unreachable("multiple conditional branches in one BB");
}
return true;
}
void createLongJmp(InstructionListType &Seq, const MCSymbol *Target,
MCContext *Ctx, bool IsTailCall) override {
// ip0 (r16) is reserved to the linker (refer to 5.3.1.1 of "Procedure Call
// Standard for the ARM 64-bit Architecture (AArch64)".
// The sequence of instructions we create here is the following:
// movz ip0, #:abs_g3:<addr>
// movk ip0, #:abs_g2_nc:<addr>
// movk ip0, #:abs_g1_nc:<addr>
// movk ip0, #:abs_g0_nc:<addr>
// br ip0
MCInst Inst;
Inst.setOpcode(AArch64::MOVZXi);
Inst.addOperand(MCOperand::createReg(AArch64::X16));
Inst.addOperand(MCOperand::createExpr(AArch64MCExpr::create(
MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *Ctx),
AArch64MCExpr::VK_ABS_G3, *Ctx)));
Inst.addOperand(MCOperand::createImm(0x30));
Seq.emplace_back(Inst);
Inst.clear();
Inst.setOpcode(AArch64::MOVKXi);
Inst.addOperand(MCOperand::createReg(AArch64::X16));
Inst.addOperand(MCOperand::createReg(AArch64::X16));
Inst.addOperand(MCOperand::createExpr(AArch64MCExpr::create(
MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *Ctx),
AArch64MCExpr::VK_ABS_G2_NC, *Ctx)));
Inst.addOperand(MCOperand::createImm(0x20));
Seq.emplace_back(Inst);
Inst.clear();
Inst.setOpcode(AArch64::MOVKXi);
Inst.addOperand(MCOperand::createReg(AArch64::X16));
Inst.addOperand(MCOperand::createReg(AArch64::X16));
Inst.addOperand(MCOperand::createExpr(AArch64MCExpr::create(
MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *Ctx),
AArch64MCExpr::VK_ABS_G1_NC, *Ctx)));
Inst.addOperand(MCOperand::createImm(0x10));
Seq.emplace_back(Inst);
Inst.clear();
Inst.setOpcode(AArch64::MOVKXi);
Inst.addOperand(MCOperand::createReg(AArch64::X16));
Inst.addOperand(MCOperand::createReg(AArch64::X16));
Inst.addOperand(MCOperand::createExpr(AArch64MCExpr::create(
MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *Ctx),
AArch64MCExpr::VK_ABS_G0_NC, *Ctx)));
Inst.addOperand(MCOperand::createImm(0));
Seq.emplace_back(Inst);
Inst.clear();
Inst.setOpcode(AArch64::BR);
Inst.addOperand(MCOperand::createReg(AArch64::X16));
if (IsTailCall)
setTailCall(Inst);
Seq.emplace_back(Inst);
}
void createShortJmp(InstructionListType &Seq, const MCSymbol *Target,
MCContext *Ctx, bool IsTailCall) override {
// ip0 (r16) is reserved to the linker (refer to 5.3.1.1 of "Procedure Call
// Standard for the ARM 64-bit Architecture (AArch64)".
// The sequence of instructions we create here is the following:
// adrp ip0, imm
// add ip0, ip0, imm
// br ip0
MCPhysReg Reg = AArch64::X16;
InstructionListType Insts = materializeAddress(Target, Ctx, Reg);
Insts.emplace_back();
MCInst &Inst = Insts.back();
Inst.clear();
Inst.setOpcode(AArch64::BR);
Inst.addOperand(MCOperand::createReg(Reg));
if (IsTailCall)
setTailCall(Inst);
Seq.swap(Insts);
}
/// Matching pattern here is
///
/// ADRP x16, imm
/// ADD x16, x16, imm
/// BR x16
///
uint64_t matchLinkerVeneer(InstructionIterator Begin, InstructionIterator End,
uint64_t Address, const MCInst &CurInst,
MCInst *&TargetHiBits, MCInst *&TargetLowBits,
uint64_t &Target) const override {
if (CurInst.getOpcode() != AArch64::BR || !CurInst.getOperand(0).isReg() ||
CurInst.getOperand(0).getReg() != AArch64::X16)
return 0;
auto I = End;
if (I == Begin)
return 0;
--I;
Address -= 4;
if (I == Begin || I->getOpcode() != AArch64::ADDXri ||
MCPlus::getNumPrimeOperands(*I) < 3 || !I->getOperand(0).isReg() ||
!I->getOperand(1).isReg() ||
I->getOperand(0).getReg() != AArch64::X16 ||
I->getOperand(1).getReg() != AArch64::X16 || !I->getOperand(2).isImm())
return 0;
TargetLowBits = &*I;
uint64_t Addr = I->getOperand(2).getImm() & 0xFFF;
--I;
Address -= 4;
if (I->getOpcode() != AArch64::ADRP ||
MCPlus::getNumPrimeOperands(*I) < 2 || !I->getOperand(0).isReg() ||
!I->getOperand(1).isImm() || I->getOperand(0).getReg() != AArch64::X16)
return 0;
TargetHiBits = &*I;
Addr |= (Address + ((int64_t)I->getOperand(1).getImm() << 12)) &
0xFFFFFFFFFFFFF000ULL;
Target = Addr;
return 3;
}
/// Match the following pattern:
///
/// LDR x16, .L1
/// BR x16
/// L1:
/// .quad Target
///
/// Populate \p TargetAddress with the Target value on successful match.
bool matchAbsLongVeneer(const BinaryFunction &BF,
uint64_t &TargetAddress) const override {
if (BF.size() != 1 || BF.getMaxSize() < 16)
return false;
if (!BF.hasConstantIsland())
return false;
const BinaryBasicBlock &BB = BF.front();
if (BB.size() != 2)
return false;
const MCInst &LDRInst = BB.getInstructionAtIndex(0);
if (LDRInst.getOpcode() != AArch64::LDRXl)
return false;
if (!LDRInst.getOperand(0).isReg() ||
LDRInst.getOperand(0).getReg() != AArch64::X16)
return false;
const MCSymbol *TargetSym = getTargetSymbol(LDRInst, 1);
if (!TargetSym)
return false;
const MCInst &BRInst = BB.getInstructionAtIndex(1);
if (BRInst.getOpcode() != AArch64::BR)
return false;
if (!BRInst.getOperand(0).isReg() ||
BRInst.getOperand(0).getReg() != AArch64::X16)
return false;
const BinaryFunction::IslandInfo &IInfo = BF.getIslandInfo();
if (IInfo.HasDynamicRelocations)
return false;
auto Iter = IInfo.Offsets.find(8);
if (Iter == IInfo.Offsets.end() || Iter->second != TargetSym)
return false;
// Extract the absolute value stored inside the island.
StringRef SectionContents = BF.getOriginSection()->getContents();
StringRef FunctionContents = SectionContents.substr(
BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize());
const BinaryContext &BC = BF.getBinaryContext();
DataExtractor DE(FunctionContents, BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
uint64_t Offset = 8;
TargetAddress = DE.getAddress(&Offset);
return true;
}
bool matchAdrpAddPair(const MCInst &Adrp, const MCInst &Add) const override {
if (!isADRP(Adrp) || !isAddXri(Add))
return false;
assert(Adrp.getOperand(0).isReg() &&
"Unexpected operand in ADRP instruction");
MCPhysReg AdrpReg = Adrp.getOperand(0).getReg();
assert(Add.getOperand(1).isReg() &&
"Unexpected operand in ADDXri instruction");
MCPhysReg AddReg = Add.getOperand(1).getReg();
return AdrpReg == AddReg;
}
bool replaceImmWithSymbolRef(MCInst &Inst, const MCSymbol *Symbol,
int64_t Addend, MCContext *Ctx, int64_t &Value,
uint32_t RelType) const override {
unsigned ImmOpNo = -1U;
for (unsigned Index = 0; Index < MCPlus::getNumPrimeOperands(Inst);
++Index) {
if (Inst.getOperand(Index).isImm()) {
ImmOpNo = Index;
break;
}
}
if (ImmOpNo == -1U)
return false;
Value = Inst.getOperand(ImmOpNo).getImm();
setOperandToSymbolRef(Inst, ImmOpNo, Symbol, Addend, Ctx, RelType);
return true;
}
void createUncondBranch(MCInst &Inst, const MCSymbol *TBB,
MCContext *Ctx) const override {
Inst.setOpcode(AArch64::B);
Inst.clear();
Inst.addOperand(MCOperand::createExpr(getTargetExprFor(
Inst, MCSymbolRefExpr::create(TBB, MCSymbolRefExpr::VK_None, *Ctx),
*Ctx, 0)));
}
bool shouldRecordCodeRelocation(uint32_t RelType) const override {
switch (RelType) {
case ELF::R_AARCH64_ABS64:
case ELF::R_AARCH64_ABS32:
case ELF::R_AARCH64_ABS16:
case ELF::R_AARCH64_ADD_ABS_LO12_NC:
case ELF::R_AARCH64_ADR_GOT_PAGE:
case ELF::R_AARCH64_ADR_PREL_LO21:
case ELF::R_AARCH64_ADR_PREL_PG_HI21:
case ELF::R_AARCH64_ADR_PREL_PG_HI21_NC:
case ELF::R_AARCH64_LD64_GOT_LO12_NC:
case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
case ELF::R_AARCH64_TLSDESC_ADD_LO12:
case ELF::R_AARCH64_TLSDESC_ADR_PAGE21:
case ELF::R_AARCH64_TLSDESC_ADR_PREL21:
case ELF::R_AARCH64_TLSDESC_LD64_LO12:
case ELF::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
case ELF::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
case ELF::R_AARCH64_TLSLE_MOVW_TPREL_G0:
case ELF::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
case ELF::R_AARCH64_MOVW_UABS_G0:
case ELF::R_AARCH64_MOVW_UABS_G0_NC:
case ELF::R_AARCH64_MOVW_UABS_G1:
case ELF::R_AARCH64_MOVW_UABS_G1_NC:
case ELF::R_AARCH64_MOVW_UABS_G2:
case ELF::R_AARCH64_MOVW_UABS_G2_NC:
case ELF::R_AARCH64_MOVW_UABS_G3:
case ELF::R_AARCH64_PREL16:
case ELF::R_AARCH64_PREL32:
case ELF::R_AARCH64_PREL64:
return true;
case ELF::R_AARCH64_CALL26:
case ELF::R_AARCH64_JUMP26:
case ELF::R_AARCH64_TSTBR14:
case ELF::R_AARCH64_CONDBR19:
case ELF::R_AARCH64_TLSDESC_CALL:
case ELF::R_AARCH64_TLSLE_ADD_TPREL_HI12:
case ELF::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
return false;
default:
llvm_unreachable("Unexpected AArch64 relocation type in code");
}
}
StringRef getTrapFillValue() const override {
return StringRef("\0\0\0\0", 4);
}
void createReturn(MCInst &Inst) const override {
Inst.setOpcode(AArch64::RET);
Inst.clear();
Inst.addOperand(MCOperand::createReg(AArch64::LR));
}
void createStackPointerIncrement(
MCInst &Inst, int Size,
bool NoFlagsClobber = false /*unused for AArch64*/) const override {
Inst.setOpcode(AArch64::SUBXri);
Inst.clear();
Inst.addOperand(MCOperand::createReg(AArch64::SP));
Inst.addOperand(MCOperand::createReg(AArch64::SP));
Inst.addOperand(MCOperand::createImm(Size));
Inst.addOperand(MCOperand::createImm(0));
}
void createStackPointerDecrement(
MCInst &Inst, int Size,
bool NoFlagsClobber = false /*unused for AArch64*/) const override {
Inst.setOpcode(AArch64::ADDXri);
Inst.clear();
Inst.addOperand(MCOperand::createReg(AArch64::SP));
Inst.addOperand(MCOperand::createReg(AArch64::SP));
Inst.addOperand(MCOperand::createImm(Size));
Inst.addOperand(MCOperand::createImm(0));
}
void createIndirectBranch(MCInst &Inst, MCPhysReg MemBaseReg,
int64_t Disp) const {
Inst.setOpcode(AArch64::BR);
Inst.clear();
Inst.addOperand(MCOperand::createReg(MemBaseReg));
}
InstructionListType createInstrumentedIndCallHandlerExitBB() const override {
InstructionListType Insts(5);
// Code sequence for instrumented indirect call handler:
// msr nzcv, x1
// ldp x0, x1, [sp], #16
// ldr x16, [sp], #16
// ldp x0, x1, [sp], #16
// br x16
setSystemFlag(Insts[0], AArch64::X1);
createPopRegisters(Insts[1], AArch64::X0, AArch64::X1);
// Here we load address of the next function which should be called in the
// original binary to X16 register. Writing to X16 is permitted without
// needing to restore.
loadReg(Insts[2], AArch64::X16, AArch64::SP);
createPopRegisters(Insts[3], AArch64::X0, AArch64::X1);
createIndirectBranch(Insts[4], AArch64::X16, 0);
return Insts;
}
InstructionListType
createInstrumentedIndTailCallHandlerExitBB() const override {
return createInstrumentedIndCallHandlerExitBB();
}
InstructionListType createGetter(MCContext *Ctx, const char *name) const {
InstructionListType Insts(4);
MCSymbol *Locs = Ctx->getOrCreateSymbol(name);
InstructionListType Addr = materializeAddress(Locs, Ctx, AArch64::X0);
std::copy(Addr.begin(), Addr.end(), Insts.begin());
assert(Addr.size() == 2 && "Invalid Addr size");
loadReg(Insts[2], AArch64::X0, AArch64::X0);
createReturn(Insts[3]);
return Insts;
}
InstructionListType createNumCountersGetter(MCContext *Ctx) const override {
return createGetter(Ctx, "__bolt_num_counters");
}
InstructionListType
createInstrLocationsGetter(MCContext *Ctx) const override {
return createGetter(Ctx, "__bolt_instr_locations");
}
InstructionListType createInstrTablesGetter(MCContext *Ctx) const override {
return createGetter(Ctx, "__bolt_instr_tables");
}
InstructionListType createInstrNumFuncsGetter(MCContext *Ctx) const override {
return createGetter(Ctx, "__bolt_instr_num_funcs");
}
void convertIndirectCallToLoad(MCInst &Inst, MCPhysReg Reg) override {
bool IsTailCall = isTailCall(Inst);
if (IsTailCall)
removeAnnotation(Inst, MCPlus::MCAnnotation::kTailCall);
if (Inst.getOpcode() == AArch64::BR || Inst.getOpcode() == AArch64::BLR) {
Inst.setOpcode(AArch64::ORRXrs);
Inst.insert(Inst.begin(), MCOperand::createReg(Reg));
Inst.insert(Inst.begin() + 1, MCOperand::createReg(AArch64::XZR));
Inst.insert(Inst.begin() + 3, MCOperand::createImm(0));
return;
}
llvm_unreachable("not implemented");
}
InstructionListType createLoadImmediate(const MCPhysReg Dest,
uint64_t Imm) const override {
InstructionListType Insts(4);
int Shift = 48;
for (int I = 0; I < 4; I++, Shift -= 16) {
Insts[I].setOpcode(AArch64::MOVKXi);
Insts[I].addOperand(MCOperand::createReg(Dest));
Insts[I].addOperand(MCOperand::createReg(Dest));
Insts[I].addOperand(MCOperand::createImm((Imm >> Shift) & 0xFFFF));
Insts[I].addOperand(MCOperand::createImm(Shift));
}
return Insts;
}
void createIndirectCallInst(MCInst &Inst, bool IsTailCall,
MCPhysReg Reg) const {
Inst.clear();
Inst.setOpcode(IsTailCall ? AArch64::BR : AArch64::BLR);
Inst.addOperand(MCOperand::createReg(Reg));
}
InstructionListType createInstrumentedIndirectCall(MCInst &&CallInst,
MCSymbol *HandlerFuncAddr,
int CallSiteID,
MCContext *Ctx) override {
InstructionListType Insts;
// Code sequence used to enter indirect call instrumentation helper:
// stp x0, x1, [sp, #-16]! createPushRegisters
// mov target x0 convertIndirectCallToLoad -> orr x0 target xzr
// mov x1 CallSiteID createLoadImmediate ->
// movk x1, #0x0, lsl #48
// movk x1, #0x0, lsl #32
// movk x1, #0x0, lsl #16
// movk x1, #0x0
// stp x0, x1, [sp, #-16]!
// bl *HandlerFuncAddr createIndirectCall ->
// adr x0 *HandlerFuncAddr -> adrp + add
// blr x0
Insts.emplace_back();
createPushRegisters(Insts.back(), AArch64::X0, AArch64::X1);
Insts.emplace_back(CallInst);
convertIndirectCallToLoad(Insts.back(), AArch64::X0);
InstructionListType LoadImm =
createLoadImmediate(getIntArgRegister(1), CallSiteID);
Insts.insert(Insts.end(), LoadImm.begin(), LoadImm.end());
Insts.emplace_back();
createPushRegisters(Insts.back(), AArch64::X0, AArch64::X1);
Insts.resize(Insts.size() + 2);
InstructionListType Addr =
materializeAddress(HandlerFuncAddr, Ctx, AArch64::X0);
assert(Addr.size() == 2 && "Invalid Addr size");
std::copy(Addr.begin(), Addr.end(), Insts.end() - Addr.size());
Insts.emplace_back();
createIndirectCallInst(Insts.back(), isTailCall(CallInst), AArch64::X0);
// Carry over metadata including tail call marker if present.
stripAnnotations(Insts.back());
moveAnnotations(std::move(CallInst), Insts.back());
return Insts;
}
InstructionListType
createInstrumentedIndCallHandlerEntryBB(const MCSymbol *InstrTrampoline,
const MCSymbol *IndCallHandler,
MCContext *Ctx) override {
// Code sequence used to check whether InstrTampoline was initialized
// and call it if so, returns via IndCallHandler
// stp x0, x1, [sp, #-16]!
// mrs x1, nzcv
// adr x0, InstrTrampoline -> adrp + add
// ldr x0, [x0]
// subs x0, x0, #0x0
// b.eq IndCallHandler
// str x30, [sp, #-16]!
// blr x0
// ldr x30, [sp], #16
// b IndCallHandler
InstructionListType Insts;
Insts.emplace_back();
createPushRegisters(Insts.back(), AArch64::X0, AArch64::X1);
Insts.emplace_back();
getSystemFlag(Insts.back(), getIntArgRegister(1));
Insts.emplace_back();
Insts.emplace_back();
InstructionListType Addr =
materializeAddress(InstrTrampoline, Ctx, AArch64::X0);
std::copy(Addr.begin(), Addr.end(), Insts.end() - Addr.size());
assert(Addr.size() == 2 && "Invalid Addr size");
Insts.emplace_back();
loadReg(Insts.back(), AArch64::X0, AArch64::X0);
InstructionListType cmpJmp =
createCmpJE(AArch64::X0, 0, IndCallHandler, Ctx);
Insts.insert(Insts.end(), cmpJmp.begin(), cmpJmp.end());
Insts.emplace_back();
storeReg(Insts.back(), AArch64::LR, AArch64::SP);
Insts.emplace_back();
Insts.back().setOpcode(AArch64::BLR);
Insts.back().addOperand(MCOperand::createReg(AArch64::X0));
Insts.emplace_back();
loadReg(Insts.back(), AArch64::LR, AArch64::SP);
Insts.emplace_back();
createDirectCall(Insts.back(), IndCallHandler, Ctx, /*IsTailCall*/ true);
return Insts;
}
InstructionListType
createInstrIncMemory(const MCSymbol *Target, MCContext *Ctx, bool IsLeaf,
unsigned CodePointerSize) const override {
unsigned int I = 0;
InstructionListType Instrs(IsLeaf ? 12 : 10);
if (IsLeaf)
createStackPointerIncrement(Instrs[I++], 128);
createPushRegisters(Instrs[I++], AArch64::X0, AArch64::X1);
getSystemFlag(Instrs[I++], AArch64::X1);
InstructionListType Addr = materializeAddress(Target, Ctx, AArch64::X0);
assert(Addr.size() == 2 && "Invalid Addr size");
std::copy(Addr.begin(), Addr.end(), Instrs.begin() + I);
I += Addr.size();
storeReg(Instrs[I++], AArch64::X2, AArch64::SP);
InstructionListType Insts = createIncMemory(AArch64::X0, AArch64::X2);
assert(Insts.size() == 2 && "Invalid Insts size");
std::copy(Insts.begin(), Insts.end(), Instrs.begin() + I);
I += Insts.size();
loadReg(Instrs[I++], AArch64::X2, AArch64::SP);
setSystemFlag(Instrs[I++], AArch64::X1);
createPopRegisters(Instrs[I++], AArch64::X0, AArch64::X1);
if (IsLeaf)
createStackPointerDecrement(Instrs[I++], 128);
return Instrs;
}
std::vector<MCInst> createSymbolTrampoline(const MCSymbol *TgtSym,
MCContext *Ctx) override {
std::vector<MCInst> Insts;
createShortJmp(Insts, TgtSym, Ctx, /*IsTailCall*/ true);
return Insts;
}
InstructionListType materializeAddress(const MCSymbol *Target, MCContext *Ctx,
MCPhysReg RegName,
int64_t Addend = 0) const override {
// Get page-aligned address and add page offset
InstructionListType Insts(2);
Insts[0].setOpcode(AArch64::ADRP);
Insts[0].clear();
Insts[0].addOperand(MCOperand::createReg(RegName));
Insts[0].addOperand(MCOperand::createImm(0));
setOperandToSymbolRef(Insts[0], /* OpNum */ 1, Target, Addend, Ctx,
ELF::R_AARCH64_NONE);
Insts[1].setOpcode(AArch64::ADDXri);
Insts[1].clear();
Insts[1].addOperand(MCOperand::createReg(RegName));
Insts[1].addOperand(MCOperand::createReg(RegName));
Insts[1].addOperand(MCOperand::createImm(0));
Insts[1].addOperand(MCOperand::createImm(0));
setOperandToSymbolRef(Insts[1], /* OpNum */ 2, Target, Addend, Ctx,
ELF::R_AARCH64_ADD_ABS_LO12_NC);
return Insts;
}
std::optional<Relocation>
createRelocation(const MCFixup &Fixup,
const MCAsmBackend &MAB) const override {
const MCFixupKindInfo &FKI = MAB.getFixupKindInfo(Fixup.getKind());
assert(FKI.TargetOffset == 0 && "0-bit relocation offset expected");
const uint64_t RelOffset = Fixup.getOffset();
uint32_t RelType;
if (Fixup.getKind() == MCFixupKind(AArch64::fixup_aarch64_pcrel_call26))
RelType = ELF::R_AARCH64_CALL26;
else if (Fixup.getKind() ==
MCFixupKind(AArch64::fixup_aarch64_pcrel_branch26))
RelType = ELF::R_AARCH64_JUMP26;
else if (FKI.Flags & MCFixupKindInfo::FKF_IsPCRel) {
switch (FKI.TargetSize) {
default:
return std::nullopt;
case 16:
RelType = ELF::R_AARCH64_PREL16;
break;
case 32:
RelType = ELF::R_AARCH64_PREL32;
break;
case 64:
RelType = ELF::R_AARCH64_PREL64;
break;
}
} else {
switch (FKI.TargetSize) {
default:
return std::nullopt;
case 16:
RelType = ELF::R_AARCH64_ABS16;
break;
case 32:
RelType = ELF::R_AARCH64_ABS32;
break;
case 64:
RelType = ELF::R_AARCH64_ABS64;
break;
}
}
auto [RelSymbol, RelAddend] = extractFixupExpr(Fixup);
return Relocation({RelOffset, RelSymbol, RelType, RelAddend, 0});
}
uint16_t getMinFunctionAlignment() const override { return 4; }
std::optional<uint32_t>
getInstructionSize(const MCInst &Inst) const override {
return 4;
}
};
} // end anonymous namespace
namespace llvm {
namespace bolt {
MCPlusBuilder *createAArch64MCPlusBuilder(const MCInstrAnalysis *Analysis,
const MCInstrInfo *Info,
const MCRegisterInfo *RegInfo,
const MCSubtargetInfo *STI) {
return new AArch64MCPlusBuilder(Analysis, Info, RegInfo, STI);
}
} // namespace bolt
} // namespace llvm