This is a companion to #118583, although it can be landed independently because since #117922 dialects do not have to use the same Python binding framework as the Python core code. This PR ports all of the in-tree dialect and pass extensions to nanobind, with the exception of those that remain for testing pybind11 support. This PR also: * removes CollectDiagnosticsToStringScope from NanobindAdaptors.h. This was overlooked in a previous PR and it is duplicated in Diagnostics.h. --------- Co-authored-by: Jacques Pienaar <jpienaar@google.com>
246 lines
8.7 KiB
Python
246 lines
8.7 KiB
Python
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
from mlir.ir import *
|
|
from mlir.dialects import sparse_tensor as st, tensor
|
|
import textwrap
|
|
|
|
|
|
def run(f):
|
|
print("\nTEST:", f.__name__)
|
|
f()
|
|
return f
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingAttr1D
|
|
@run
|
|
def testEncodingAttr1D():
|
|
with Context() as ctx:
|
|
parsed = Attribute.parse(
|
|
textwrap.dedent(
|
|
"""\
|
|
#sparse_tensor.encoding<{
|
|
map = (d0) -> (d0 : compressed),
|
|
posWidth = 16,
|
|
crdWidth = 32,
|
|
explicitVal = 1.0 : f64
|
|
}>\
|
|
"""
|
|
)
|
|
)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 16, crdWidth = 32, explicitVal = 1.000000e+00 : f64 }>
|
|
print(parsed)
|
|
|
|
casted = st.EncodingAttr(parsed)
|
|
# CHECK: equal: True
|
|
print(f"equal: {casted == parsed}")
|
|
|
|
# CHECK: lvl_types: [262144]
|
|
print(f"lvl_types: {casted.lvl_types}")
|
|
# CHECK: dim_to_lvl: (d0) -> (d0)
|
|
print(f"dim_to_lvl: {casted.dim_to_lvl}")
|
|
# CHECK: lvl_to_dim: (d0) -> (d0)
|
|
print(f"lvl_to_dim: {casted.lvl_to_dim}")
|
|
# CHECK: pos_width: 16
|
|
print(f"pos_width: {casted.pos_width}")
|
|
# CHECK: crd_width: 32
|
|
print(f"crd_width: {casted.crd_width}")
|
|
# CHECK: explicit_val: 1.000000e+00
|
|
print(f"explicit_val: {casted.explicit_val}")
|
|
# CHECK: implicit_val: None
|
|
print(f"implicit_val: {casted.implicit_val}")
|
|
|
|
new_explicit_val = FloatAttr.get_f64(1.0)
|
|
created = st.EncodingAttr.get(
|
|
casted.lvl_types, None, None, 0, 0, new_explicit_val
|
|
)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), explicitVal = 1.000000e+00 : f64 }>
|
|
print(created)
|
|
# CHECK: created_equal: False
|
|
print(f"created_equal: {created == casted}")
|
|
|
|
# Verify that the factory creates an instance of the proper type.
|
|
# CHECK: is_proper_instance: True
|
|
print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}")
|
|
# CHECK: created_pos_width: 0
|
|
print(f"created_pos_width: {created.pos_width}")
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingAttrStructure
|
|
@run
|
|
def testEncodingAttrStructure():
|
|
with Context() as ctx:
|
|
parsed = Attribute.parse(
|
|
textwrap.dedent(
|
|
"""\
|
|
#sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense,
|
|
d1 mod 4 : structured[2, 4]),
|
|
posWidth = 16,
|
|
crdWidth = 32,
|
|
}>\
|
|
"""
|
|
)
|
|
)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, d1 mod 4 : structured[2, 4]), posWidth = 16, crdWidth = 32 }>
|
|
print(parsed)
|
|
|
|
casted = st.EncodingAttr(parsed)
|
|
# CHECK: equal: True
|
|
print(f"equal: {casted == parsed}")
|
|
|
|
# CHECK: lvl_types: [65536, 65536, 4406638542848]
|
|
print(f"lvl_types: {casted.lvl_types}")
|
|
# CHECK: lvl_formats_enum: [{{65536|LevelFormat.dense}}, {{65536|LevelFormat.dense}}, {{2097152|LevelFormat.n_out_of_m}}]
|
|
print(f"lvl_formats_enum: {casted.lvl_formats_enum}")
|
|
# CHECK: structured_n: 2
|
|
print(f"structured_n: {casted.structured_n}")
|
|
# CHECK: structured_m: 4
|
|
print(f"structured_m: {casted.structured_m}")
|
|
# CHECK: dim_to_lvl: (d0, d1) -> (d0, d1 floordiv 4, d1 mod 4)
|
|
print(f"dim_to_lvl: {casted.dim_to_lvl}")
|
|
# CHECK: lvl_to_dim: (d0, d1, d2) -> (d0, d1 * 4 + d2)
|
|
print(f"lvl_to_dim: {casted.lvl_to_dim}")
|
|
# CHECK: pos_width: 16
|
|
print(f"pos_width: {casted.pos_width}")
|
|
# CHECK: crd_width: 32
|
|
print(f"crd_width: {casted.crd_width}")
|
|
|
|
created = st.EncodingAttr.get(
|
|
casted.lvl_types, casted.dim_to_lvl, casted.lvl_to_dim, 0, 0
|
|
)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, d1 mod 4 : structured[2, 4]) }>
|
|
print(created)
|
|
# CHECK: created_equal: False
|
|
print(f"created_equal: {created == casted}")
|
|
|
|
built_2_4 = st.EncodingAttr.build_level_type(
|
|
st.LevelFormat.n_out_of_m, [], 2, 4
|
|
)
|
|
built_dense = st.EncodingAttr.build_level_type(st.LevelFormat.dense)
|
|
dim_to_lvl = AffineMap.get(
|
|
2,
|
|
0,
|
|
[
|
|
AffineExpr.get_dim(0),
|
|
AffineExpr.get_floor_div(AffineExpr.get_dim(1), 4),
|
|
AffineExpr.get_mod(AffineExpr.get_dim(1), 4),
|
|
],
|
|
)
|
|
lvl_to_dim = AffineMap.get(
|
|
3,
|
|
0,
|
|
[
|
|
AffineExpr.get_dim(0),
|
|
AffineExpr.get_add(
|
|
AffineExpr.get_mul(AffineExpr.get_dim(1), 4),
|
|
AffineExpr.get_dim(2),
|
|
),
|
|
],
|
|
)
|
|
built = st.EncodingAttr.get(
|
|
[built_dense, built_dense, built_2_4],
|
|
dim_to_lvl,
|
|
lvl_to_dim,
|
|
0,
|
|
0,
|
|
)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, d1 mod 4 : structured[2, 4]) }>
|
|
print(built)
|
|
# CHECK: built_equal: True
|
|
print(f"built_equal: {built == created}")
|
|
|
|
# Verify that the factory creates an instance of the proper type.
|
|
# CHECK: is_proper_instance: True
|
|
print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}")
|
|
# CHECK: created_pos_width: 0
|
|
print(f"created_pos_width: {created.pos_width}")
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingAttr2D
|
|
@run
|
|
def testEncodingAttr2D():
|
|
with Context() as ctx:
|
|
parsed = Attribute.parse(
|
|
textwrap.dedent(
|
|
"""\
|
|
#sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d1 : dense, d0 : compressed),
|
|
posWidth = 8,
|
|
crdWidth = 32,
|
|
}>\
|
|
"""
|
|
)
|
|
)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }>
|
|
print(parsed)
|
|
|
|
casted = st.EncodingAttr(parsed)
|
|
# CHECK: equal: True
|
|
print(f"equal: {casted == parsed}")
|
|
|
|
# CHECK: lvl_types: [65536, 262144]
|
|
print(f"lvl_types: {casted.lvl_types}")
|
|
# CHECK: dim_to_lvl: (d0, d1) -> (d1, d0)
|
|
print(f"dim_to_lvl: {casted.dim_to_lvl}")
|
|
# CHECK: lvl_to_dim: (d0, d1) -> (d1, d0)
|
|
print(f"lvl_to_dim: {casted.lvl_to_dim}")
|
|
# CHECK: pos_width: 8
|
|
print(f"pos_width: {casted.pos_width}")
|
|
# CHECK: crd_width: 32
|
|
print(f"crd_width: {casted.crd_width}")
|
|
|
|
created = st.EncodingAttr.get(
|
|
casted.lvl_types,
|
|
casted.dim_to_lvl,
|
|
casted.lvl_to_dim,
|
|
8,
|
|
32,
|
|
)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }>
|
|
print(created)
|
|
# CHECK: created_equal: True
|
|
print(f"created_equal: {created == casted}")
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingAttrOnTensorType
|
|
@run
|
|
def testEncodingAttrOnTensorType():
|
|
with Context() as ctx, Location.unknown():
|
|
encoding = st.EncodingAttr(
|
|
Attribute.parse(
|
|
textwrap.dedent(
|
|
"""\
|
|
#sparse_tensor.encoding<{
|
|
map = (d0) -> (d0 : compressed),
|
|
posWidth = 64,
|
|
crdWidth = 32,
|
|
}>\
|
|
"""
|
|
)
|
|
)
|
|
)
|
|
tt = RankedTensorType.get((1024,), F32Type.get(), encoding=encoding)
|
|
# CHECK: tensor<1024xf32, #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 32 }>>
|
|
print(tt)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 32 }>
|
|
print(tt.encoding)
|
|
assert tt.encoding == encoding
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingEmptyTensor
|
|
@run
|
|
def testEncodingEmptyTensor():
|
|
with Context(), Location.unknown():
|
|
module = Module.create()
|
|
with InsertionPoint(module.body):
|
|
levels = [st.LevelFormat.compressed]
|
|
ordering = AffineMap.get_permutation([0])
|
|
encoding = st.EncodingAttr.get(levels, ordering, ordering, 32, 32)
|
|
tensor.empty((1024,), F32Type.get(), encoding=encoding)
|
|
|
|
# CHECK: #sparse = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 32, crdWidth = 32 }>
|
|
# CHECK: module {
|
|
# CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<1024xf32, #sparse>
|
|
# CHECK: }
|
|
print(module)
|