Files
clang-p2996/mlir/lib/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.cpp
David Truby be9f8ffd81 [mlir][flang][openmp] Rework wsloop reduction operations (#80019)
This patch reworks the way that wsloop reduction operations function to
better match the expected semantics from the OpenMP specification,
following the rework of parallel reductions.

The new semantics create a private reduction variable as a block
argument which should be used normally for all operations on that
variable in the region; this private variable is then combined with the
others into the shared variable. This way no special omp.reduction
operations are needed inside the region. These block arguments follow
the loop control block arguments.

---------

Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
2024-02-13 19:13:54 +00:00

3036 lines
130 KiB
C++

//===- OpenMPToLLVMIRTranslation.cpp - Translate OpenMP dialect to LLVM IR-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a translation between the MLIR OpenMP dialect and LLVM
// IR.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Operation.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Target/LLVMIR/Dialect/OpenMPCommon.h"
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <any>
#include <optional>
#include <utility>
using namespace mlir;
namespace {
static llvm::omp::ScheduleKind
convertToScheduleKind(std::optional<omp::ClauseScheduleKind> schedKind) {
if (!schedKind.has_value())
return llvm::omp::OMP_SCHEDULE_Default;
switch (schedKind.value()) {
case omp::ClauseScheduleKind::Static:
return llvm::omp::OMP_SCHEDULE_Static;
case omp::ClauseScheduleKind::Dynamic:
return llvm::omp::OMP_SCHEDULE_Dynamic;
case omp::ClauseScheduleKind::Guided:
return llvm::omp::OMP_SCHEDULE_Guided;
case omp::ClauseScheduleKind::Auto:
return llvm::omp::OMP_SCHEDULE_Auto;
case omp::ClauseScheduleKind::Runtime:
return llvm::omp::OMP_SCHEDULE_Runtime;
}
llvm_unreachable("unhandled schedule clause argument");
}
/// ModuleTranslation stack frame for OpenMP operations. This keeps track of the
/// insertion points for allocas.
class OpenMPAllocaStackFrame
: public LLVM::ModuleTranslation::StackFrameBase<OpenMPAllocaStackFrame> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPAllocaStackFrame)
explicit OpenMPAllocaStackFrame(llvm::OpenMPIRBuilder::InsertPointTy allocaIP)
: allocaInsertPoint(allocaIP) {}
llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
};
/// ModuleTranslation stack frame containing the partial mapping between MLIR
/// values and their LLVM IR equivalents.
class OpenMPVarMappingStackFrame
: public LLVM::ModuleTranslation::StackFrameBase<
OpenMPVarMappingStackFrame> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPVarMappingStackFrame)
explicit OpenMPVarMappingStackFrame(
const DenseMap<Value, llvm::Value *> &mapping)
: mapping(mapping) {}
DenseMap<Value, llvm::Value *> mapping;
};
} // namespace
/// Find the insertion point for allocas given the current insertion point for
/// normal operations in the builder.
static llvm::OpenMPIRBuilder::InsertPointTy
findAllocaInsertPoint(llvm::IRBuilderBase &builder,
const LLVM::ModuleTranslation &moduleTranslation) {
// If there is an alloca insertion point on stack, i.e. we are in a nested
// operation and a specific point was provided by some surrounding operation,
// use it.
llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
WalkResult walkResult = moduleTranslation.stackWalk<OpenMPAllocaStackFrame>(
[&](const OpenMPAllocaStackFrame &frame) {
allocaInsertPoint = frame.allocaInsertPoint;
return WalkResult::interrupt();
});
if (walkResult.wasInterrupted())
return allocaInsertPoint;
// Otherwise, insert to the entry block of the surrounding function.
// If the current IRBuilder InsertPoint is the function's entry, it cannot
// also be used for alloca insertion which would result in insertion order
// confusion. Create a new BasicBlock for the Builder and use the entry block
// for the allocs.
// TODO: Create a dedicated alloca BasicBlock at function creation such that
// we do not need to move the current InertPoint here.
if (builder.GetInsertBlock() ==
&builder.GetInsertBlock()->getParent()->getEntryBlock()) {
assert(builder.GetInsertPoint() == builder.GetInsertBlock()->end() &&
"Assuming end of basic block");
llvm::BasicBlock *entryBB = llvm::BasicBlock::Create(
builder.getContext(), "entry", builder.GetInsertBlock()->getParent(),
builder.GetInsertBlock()->getNextNode());
builder.CreateBr(entryBB);
builder.SetInsertPoint(entryBB);
}
llvm::BasicBlock &funcEntryBlock =
builder.GetInsertBlock()->getParent()->getEntryBlock();
return llvm::OpenMPIRBuilder::InsertPointTy(
&funcEntryBlock, funcEntryBlock.getFirstInsertionPt());
}
/// Converts the given region that appears within an OpenMP dialect operation to
/// LLVM IR, creating a branch from the `sourceBlock` to the entry block of the
/// region, and a branch from any block with an successor-less OpenMP terminator
/// to `continuationBlock`. Populates `continuationBlockPHIs` with the PHI nodes
/// of the continuation block if provided.
static llvm::BasicBlock *convertOmpOpRegions(
Region &region, StringRef blockName, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation, LogicalResult &bodyGenStatus,
SmallVectorImpl<llvm::PHINode *> *continuationBlockPHIs = nullptr) {
llvm::BasicBlock *continuationBlock =
splitBB(builder, true, "omp.region.cont");
llvm::BasicBlock *sourceBlock = builder.GetInsertBlock();
llvm::LLVMContext &llvmContext = builder.getContext();
for (Block &bb : region) {
llvm::BasicBlock *llvmBB = llvm::BasicBlock::Create(
llvmContext, blockName, builder.GetInsertBlock()->getParent(),
builder.GetInsertBlock()->getNextNode());
moduleTranslation.mapBlock(&bb, llvmBB);
}
llvm::Instruction *sourceTerminator = sourceBlock->getTerminator();
// Terminators (namely YieldOp) may be forwarding values to the region that
// need to be available in the continuation block. Collect the types of these
// operands in preparation of creating PHI nodes.
SmallVector<llvm::Type *> continuationBlockPHITypes;
bool operandsProcessed = false;
unsigned numYields = 0;
for (Block &bb : region.getBlocks()) {
if (omp::YieldOp yield = dyn_cast<omp::YieldOp>(bb.getTerminator())) {
if (!operandsProcessed) {
for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
continuationBlockPHITypes.push_back(
moduleTranslation.convertType(yield->getOperand(i).getType()));
}
operandsProcessed = true;
} else {
assert(continuationBlockPHITypes.size() == yield->getNumOperands() &&
"mismatching number of values yielded from the region");
for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
llvm::Type *operandType =
moduleTranslation.convertType(yield->getOperand(i).getType());
(void)operandType;
assert(continuationBlockPHITypes[i] == operandType &&
"values of mismatching types yielded from the region");
}
}
numYields++;
}
}
// Insert PHI nodes in the continuation block for any values forwarded by the
// terminators in this region.
if (!continuationBlockPHITypes.empty())
assert(
continuationBlockPHIs &&
"expected continuation block PHIs if converted regions yield values");
if (continuationBlockPHIs) {
llvm::IRBuilderBase::InsertPointGuard guard(builder);
continuationBlockPHIs->reserve(continuationBlockPHITypes.size());
builder.SetInsertPoint(continuationBlock, continuationBlock->begin());
for (llvm::Type *ty : continuationBlockPHITypes)
continuationBlockPHIs->push_back(builder.CreatePHI(ty, numYields));
}
// Convert blocks one by one in topological order to ensure
// defs are converted before uses.
SetVector<Block *> blocks = getTopologicallySortedBlocks(region);
for (Block *bb : blocks) {
llvm::BasicBlock *llvmBB = moduleTranslation.lookupBlock(bb);
// Retarget the branch of the entry block to the entry block of the
// converted region (regions are single-entry).
if (bb->isEntryBlock()) {
assert(sourceTerminator->getNumSuccessors() == 1 &&
"provided entry block has multiple successors");
assert(sourceTerminator->getSuccessor(0) == continuationBlock &&
"ContinuationBlock is not the successor of the entry block");
sourceTerminator->setSuccessor(0, llvmBB);
}
llvm::IRBuilderBase::InsertPointGuard guard(builder);
if (failed(
moduleTranslation.convertBlock(*bb, bb->isEntryBlock(), builder))) {
bodyGenStatus = failure();
return continuationBlock;
}
// Special handling for `omp.yield` and `omp.terminator` (we may have more
// than one): they return the control to the parent OpenMP dialect operation
// so replace them with the branch to the continuation block. We handle this
// here to avoid relying inter-function communication through the
// ModuleTranslation class to set up the correct insertion point. This is
// also consistent with MLIR's idiom of handling special region terminators
// in the same code that handles the region-owning operation.
Operation *terminator = bb->getTerminator();
if (isa<omp::TerminatorOp, omp::YieldOp>(terminator)) {
builder.CreateBr(continuationBlock);
for (unsigned i = 0, e = terminator->getNumOperands(); i < e; ++i)
(*continuationBlockPHIs)[i]->addIncoming(
moduleTranslation.lookupValue(terminator->getOperand(i)), llvmBB);
}
}
// After all blocks have been traversed and values mapped, connect the PHI
// nodes to the results of preceding blocks.
LLVM::detail::connectPHINodes(region, moduleTranslation);
// Remove the blocks and values defined in this region from the mapping since
// they are not visible outside of this region. This allows the same region to
// be converted several times, that is cloned, without clashes, and slightly
// speeds up the lookups.
moduleTranslation.forgetMapping(region);
return continuationBlock;
}
/// Convert ProcBindKind from MLIR-generated enum to LLVM enum.
static llvm::omp::ProcBindKind getProcBindKind(omp::ClauseProcBindKind kind) {
switch (kind) {
case omp::ClauseProcBindKind::Close:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_close;
case omp::ClauseProcBindKind::Master:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_master;
case omp::ClauseProcBindKind::Primary:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_primary;
case omp::ClauseProcBindKind::Spread:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_spread;
}
llvm_unreachable("Unknown ClauseProcBindKind kind");
}
/// Converts an OpenMP 'master' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpMaster(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// MasterOp has only one region associated with it.
auto &region = cast<omp::MasterOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.master.region", builder, moduleTranslation,
bodyGenStatus);
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createMaster(
ompLoc, bodyGenCB, finiCB));
return success();
}
/// Converts an OpenMP 'critical' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpCritical(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto criticalOp = cast<omp::CriticalOp>(opInst);
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// CriticalOp has only one region associated with it.
auto &region = cast<omp::CriticalOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.critical.region", builder,
moduleTranslation, bodyGenStatus);
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::LLVMContext &llvmContext = moduleTranslation.getLLVMContext();
llvm::Constant *hint = nullptr;
// If it has a name, it probably has a hint too.
if (criticalOp.getNameAttr()) {
// The verifiers in OpenMP Dialect guarentee that all the pointers are
// non-null
auto symbolRef = cast<SymbolRefAttr>(criticalOp.getNameAttr());
auto criticalDeclareOp =
SymbolTable::lookupNearestSymbolFrom<omp::CriticalDeclareOp>(criticalOp,
symbolRef);
hint = llvm::ConstantInt::get(
llvm::Type::getInt32Ty(llvmContext),
static_cast<int>(criticalDeclareOp.getHintVal()));
}
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createCritical(
ompLoc, bodyGenCB, finiCB, criticalOp.getName().value_or(""), hint));
return success();
}
/// Returns a reduction declaration that corresponds to the given reduction
/// operation in the given container. Currently only supports reductions inside
/// WsLoopOp and ParallelOp but can be easily extended as long as the given
/// construct implements getNumReductionVars.
template <typename T>
static std::optional<omp::ReductionDeclareOp>
findReductionDeclInContainer(T container, omp::ReductionOp reduction) {
for (unsigned i = 0, e = container.getNumReductionVars(); i < e; ++i) {
if (container.getReductionVars()[i] != reduction.getAccumulator())
continue;
SymbolRefAttr reductionSymbol =
cast<SymbolRefAttr>((*container.getReductions())[i]);
auto declareOp =
SymbolTable::lookupNearestSymbolFrom<omp::ReductionDeclareOp>(
container, reductionSymbol);
return declareOp;
}
return std::nullopt;
}
/// Searches for a reduction in a provided region and the regions
/// it is nested in
static omp::ReductionDeclareOp findReductionDecl(Operation &containerOp,
omp::ReductionOp reduction) {
std::optional<omp::ReductionDeclareOp> declareOp = std::nullopt;
Operation *container = &containerOp;
while (!declareOp.has_value() && container) {
// Check if current container is supported for reductions searches
if (auto par = dyn_cast<omp::ParallelOp>(*container)) {
declareOp = findReductionDeclInContainer(par, reduction);
} else if (auto loop = dyn_cast<omp::WsLoopOp>(*container)) {
declareOp = findReductionDeclInContainer(loop, reduction);
} else {
break;
}
// See if we can search parent for reductions as well
container = containerOp.getParentOp();
}
assert(declareOp.has_value() &&
"reduction operation must be associated with a declaration");
return *declareOp;
}
/// Populates `reductions` with reduction declarations used in the given loop.
template <typename T>
static void
collectReductionDecls(T loop,
SmallVectorImpl<omp::ReductionDeclareOp> &reductions) {
std::optional<ArrayAttr> attr = loop.getReductions();
if (!attr)
return;
reductions.reserve(reductions.size() + loop.getNumReductionVars());
for (auto symbolRef : attr->getAsRange<SymbolRefAttr>()) {
reductions.push_back(
SymbolTable::lookupNearestSymbolFrom<omp::ReductionDeclareOp>(
loop, symbolRef));
}
}
/// Translates the blocks contained in the given region and appends them to at
/// the current insertion point of `builder`. The operations of the entry block
/// are appended to the current insertion block, which is not expected to have a
/// terminator. If set, `continuationBlockArgs` is populated with translated
/// values that correspond to the values omp.yield'ed from the region.
static LogicalResult inlineConvertOmpRegions(
Region &region, StringRef blockName, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<llvm::Value *> *continuationBlockArgs = nullptr) {
if (region.empty())
return success();
// Special case for single-block regions that don't create additional blocks:
// insert operations without creating additional blocks.
if (llvm::hasSingleElement(region)) {
moduleTranslation.mapBlock(&region.front(), builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(
region.front(), /*ignoreArguments=*/true, builder)))
return failure();
// The continuation arguments are simply the translated terminator operands.
if (continuationBlockArgs)
llvm::append_range(
*continuationBlockArgs,
moduleTranslation.lookupValues(region.front().back().getOperands()));
// Drop the mapping that is no longer necessary so that the same region can
// be processed multiple times.
moduleTranslation.forgetMapping(region);
return success();
}
LogicalResult bodyGenStatus = success();
SmallVector<llvm::PHINode *> phis;
llvm::BasicBlock *continuationBlock = convertOmpOpRegions(
region, blockName, builder, moduleTranslation, bodyGenStatus, &phis);
if (failed(bodyGenStatus))
return failure();
if (continuationBlockArgs)
llvm::append_range(*continuationBlockArgs, phis);
builder.SetInsertPoint(continuationBlock,
continuationBlock->getFirstInsertionPt());
return success();
}
namespace {
/// Owning equivalents of OpenMPIRBuilder::(Atomic)ReductionGen that are used to
/// store lambdas with capture.
using OwningReductionGen = std::function<llvm::OpenMPIRBuilder::InsertPointTy(
llvm::OpenMPIRBuilder::InsertPointTy, llvm::Value *, llvm::Value *,
llvm::Value *&)>;
using OwningAtomicReductionGen =
std::function<llvm::OpenMPIRBuilder::InsertPointTy(
llvm::OpenMPIRBuilder::InsertPointTy, llvm::Type *, llvm::Value *,
llvm::Value *)>;
} // namespace
/// Create an OpenMPIRBuilder-compatible reduction generator for the given
/// reduction declaration. The generator uses `builder` but ignores its
/// insertion point.
static OwningReductionGen
makeReductionGen(omp::ReductionDeclareOp decl, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
// The lambda is mutable because we need access to non-const methods of decl
// (which aren't actually mutating it), and we must capture decl by-value to
// avoid the dangling reference after the parent function returns.
OwningReductionGen gen =
[&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint,
llvm::Value *lhs, llvm::Value *rhs,
llvm::Value *&result) mutable {
Region &reductionRegion = decl.getReductionRegion();
moduleTranslation.mapValue(reductionRegion.front().getArgument(0), lhs);
moduleTranslation.mapValue(reductionRegion.front().getArgument(1), rhs);
builder.restoreIP(insertPoint);
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(reductionRegion,
"omp.reduction.nonatomic.body",
builder, moduleTranslation, &phis)))
return llvm::OpenMPIRBuilder::InsertPointTy();
assert(phis.size() == 1);
result = phis[0];
return builder.saveIP();
};
return gen;
}
/// Create an OpenMPIRBuilder-compatible atomic reduction generator for the
/// given reduction declaration. The generator uses `builder` but ignores its
/// insertion point. Returns null if there is no atomic region available in the
/// reduction declaration.
static OwningAtomicReductionGen
makeAtomicReductionGen(omp::ReductionDeclareOp decl,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (decl.getAtomicReductionRegion().empty())
return OwningAtomicReductionGen();
// The lambda is mutable because we need access to non-const methods of decl
// (which aren't actually mutating it), and we must capture decl by-value to
// avoid the dangling reference after the parent function returns.
OwningAtomicReductionGen atomicGen =
[&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint, llvm::Type *,
llvm::Value *lhs, llvm::Value *rhs) mutable {
Region &atomicRegion = decl.getAtomicReductionRegion();
moduleTranslation.mapValue(atomicRegion.front().getArgument(0), lhs);
moduleTranslation.mapValue(atomicRegion.front().getArgument(1), rhs);
builder.restoreIP(insertPoint);
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(atomicRegion,
"omp.reduction.atomic.body", builder,
moduleTranslation, &phis)))
return llvm::OpenMPIRBuilder::InsertPointTy();
assert(phis.empty());
return builder.saveIP();
};
return atomicGen;
}
/// Converts an OpenMP 'ordered' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpOrdered(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto orderedOp = cast<omp::OrderedOp>(opInst);
omp::ClauseDepend dependType = *orderedOp.getDependTypeVal();
bool isDependSource = dependType == omp::ClauseDepend::dependsource;
unsigned numLoops = *orderedOp.getNumLoopsVal();
SmallVector<llvm::Value *> vecValues =
moduleTranslation.lookupValues(orderedOp.getDependVecVars());
size_t indexVecValues = 0;
while (indexVecValues < vecValues.size()) {
SmallVector<llvm::Value *> storeValues;
storeValues.reserve(numLoops);
for (unsigned i = 0; i < numLoops; i++) {
storeValues.push_back(vecValues[indexVecValues]);
indexVecValues++;
}
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createOrderedDepend(
ompLoc, allocaIP, numLoops, storeValues, ".cnt.addr", isDependSource));
}
return success();
}
/// Converts an OpenMP 'ordered_region' operation into LLVM IR using
/// OpenMPIRBuilder.
static LogicalResult
convertOmpOrderedRegion(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto orderedRegionOp = cast<omp::OrderedRegionOp>(opInst);
// TODO: The code generation for ordered simd directive is not supported yet.
if (orderedRegionOp.getSimd())
return failure();
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// OrderedOp has only one region associated with it.
auto &region = cast<omp::OrderedRegionOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.ordered.region", builder,
moduleTranslation, bodyGenStatus);
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(
moduleTranslation.getOpenMPBuilder()->createOrderedThreadsSimd(
ompLoc, bodyGenCB, finiCB, !orderedRegionOp.getSimd()));
return bodyGenStatus;
}
static LogicalResult
convertOmpSections(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
using StorableBodyGenCallbackTy =
llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy;
auto sectionsOp = cast<omp::SectionsOp>(opInst);
// TODO: Support the following clauses: private, firstprivate, lastprivate,
// reduction, allocate
if (!sectionsOp.getReductionVars().empty() || sectionsOp.getReductions() ||
!sectionsOp.getAllocateVars().empty() ||
!sectionsOp.getAllocatorsVars().empty())
return emitError(sectionsOp.getLoc())
<< "reduction and allocate clauses are not supported for sections "
"construct";
LogicalResult bodyGenStatus = success();
SmallVector<StorableBodyGenCallbackTy> sectionCBs;
for (Operation &op : *sectionsOp.getRegion().begin()) {
auto sectionOp = dyn_cast<omp::SectionOp>(op);
if (!sectionOp) // omp.terminator
continue;
Region &region = sectionOp.getRegion();
auto sectionCB = [&region, &builder, &moduleTranslation, &bodyGenStatus](
InsertPointTy allocaIP, InsertPointTy codeGenIP) {
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.section.region", builder,
moduleTranslation, bodyGenStatus);
};
sectionCBs.push_back(sectionCB);
}
// No sections within omp.sections operation - skip generation. This situation
// is only possible if there is only a terminator operation inside the
// sections operation
if (sectionCBs.empty())
return success();
assert(isa<omp::SectionOp>(*sectionsOp.getRegion().op_begin()));
// TODO: Perform appropriate actions according to the data-sharing
// attribute (shared, private, firstprivate, ...) of variables.
// Currently defaults to shared.
auto privCB = [&](InsertPointTy, InsertPointTy codeGenIP, llvm::Value &,
llvm::Value &vPtr,
llvm::Value *&replacementValue) -> InsertPointTy {
replacementValue = &vPtr;
return codeGenIP;
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSections(
ompLoc, allocaIP, sectionCBs, privCB, finiCB, false,
sectionsOp.getNowait()));
return bodyGenStatus;
}
/// Converts an OpenMP single construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpSingle(omp::SingleOp &singleOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
LogicalResult bodyGenStatus = success();
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
builder.restoreIP(codegenIP);
convertOmpOpRegions(singleOp.getRegion(), "omp.single.region", builder,
moduleTranslation, bodyGenStatus);
};
auto finiCB = [&](InsertPointTy codeGenIP) {};
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSingle(
ompLoc, bodyCB, finiCB, singleOp.getNowait(), /*DidIt=*/nullptr));
return bodyGenStatus;
}
// Convert an OpenMP Teams construct to LLVM IR using OpenMPIRBuilder
static LogicalResult
convertOmpTeams(omp::TeamsOp op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
LogicalResult bodyGenStatus = success();
if (!op.getAllocatorsVars().empty() || op.getReductions())
return op.emitError("unhandled clauses for translation to LLVM IR");
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
builder.restoreIP(codegenIP);
convertOmpOpRegions(op.getRegion(), "omp.teams.region", builder,
moduleTranslation, bodyGenStatus);
};
llvm::Value *numTeamsLower = nullptr;
if (Value numTeamsLowerVar = op.getNumTeamsLower())
numTeamsLower = moduleTranslation.lookupValue(numTeamsLowerVar);
llvm::Value *numTeamsUpper = nullptr;
if (Value numTeamsUpperVar = op.getNumTeamsUpper())
numTeamsUpper = moduleTranslation.lookupValue(numTeamsUpperVar);
llvm::Value *threadLimit = nullptr;
if (Value threadLimitVar = op.getThreadLimit())
threadLimit = moduleTranslation.lookupValue(threadLimitVar);
llvm::Value *ifExpr = nullptr;
if (Value ifExprVar = op.getIfExpr())
ifExpr = moduleTranslation.lookupValue(ifExprVar);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTeams(
ompLoc, bodyCB, numTeamsLower, numTeamsUpper, threadLimit, ifExpr));
return bodyGenStatus;
}
/// Converts an OpenMP task construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpTaskOp(omp::TaskOp taskOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
LogicalResult bodyGenStatus = success();
if (taskOp.getUntiedAttr() || taskOp.getMergeableAttr() ||
taskOp.getInReductions() || taskOp.getPriority() ||
!taskOp.getAllocateVars().empty()) {
return taskOp.emitError("unhandled clauses for translation to LLVM IR");
}
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
// Save the alloca insertion point on ModuleTranslation stack for use in
// nested regions.
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
builder.restoreIP(codegenIP);
convertOmpOpRegions(taskOp.getRegion(), "omp.task.region", builder,
moduleTranslation, bodyGenStatus);
};
SmallVector<llvm::OpenMPIRBuilder::DependData> dds;
if (!taskOp.getDependVars().empty() && taskOp.getDepends()) {
for (auto dep :
llvm::zip(taskOp.getDependVars(), taskOp.getDepends()->getValue())) {
llvm::omp::RTLDependenceKindTy type;
switch (
cast<mlir::omp::ClauseTaskDependAttr>(std::get<1>(dep)).getValue()) {
case mlir::omp::ClauseTaskDepend::taskdependin:
type = llvm::omp::RTLDependenceKindTy::DepIn;
break;
// The OpenMP runtime requires that the codegen for 'depend' clause for
// 'out' dependency kind must be the same as codegen for 'depend' clause
// with 'inout' dependency.
case mlir::omp::ClauseTaskDepend::taskdependout:
case mlir::omp::ClauseTaskDepend::taskdependinout:
type = llvm::omp::RTLDependenceKindTy::DepInOut;
break;
};
llvm::Value *depVal = moduleTranslation.lookupValue(std::get<0>(dep));
llvm::OpenMPIRBuilder::DependData dd(type, depVal->getType(), depVal);
dds.emplace_back(dd);
}
}
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTask(
ompLoc, allocaIP, bodyCB, !taskOp.getUntied(),
moduleTranslation.lookupValue(taskOp.getFinalExpr()),
moduleTranslation.lookupValue(taskOp.getIfExpr()), dds));
return bodyGenStatus;
}
/// Converts an OpenMP taskgroup construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpTaskgroupOp(omp::TaskGroupOp tgOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
LogicalResult bodyGenStatus = success();
if (!tgOp.getTaskReductionVars().empty() || !tgOp.getAllocateVars().empty()) {
return tgOp.emitError("unhandled clauses for translation to LLVM IR");
}
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
builder.restoreIP(codegenIP);
convertOmpOpRegions(tgOp.getRegion(), "omp.taskgroup.region", builder,
moduleTranslation, bodyGenStatus);
};
InsertPointTy allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTaskgroup(
ompLoc, allocaIP, bodyCB));
return bodyGenStatus;
}
/// Allocate space for privatized reduction variables.
template <typename T>
static void
allocReductionVars(T loop, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
SmallVector<omp::ReductionDeclareOp> &reductionDecls,
SmallVector<llvm::Value *> &privateReductionVariables,
DenseMap<Value, llvm::Value *> &reductionVariableMap) {
llvm::IRBuilderBase::InsertPointGuard guard(builder);
builder.restoreIP(allocaIP);
auto args =
loop.getRegion().getArguments().take_back(loop.getNumReductionVars());
for (std::size_t i = 0; i < loop.getNumReductionVars(); ++i) {
llvm::Value *var = builder.CreateAlloca(
moduleTranslation.convertType(reductionDecls[i].getType()));
moduleTranslation.mapValue(args[i], var);
privateReductionVariables.push_back(var);
reductionVariableMap.try_emplace(loop.getReductionVars()[i], var);
}
}
/// Collect reduction info
template <typename T>
static void collectReductionInfo(
T loop, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
SmallVector<omp::ReductionDeclareOp> &reductionDecls,
SmallVector<OwningReductionGen> &owningReductionGens,
SmallVector<OwningAtomicReductionGen> &owningAtomicReductionGens,
const SmallVector<llvm::Value *> &privateReductionVariables,
SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> &reductionInfos) {
unsigned numReductions = loop.getNumReductionVars();
for (unsigned i = 0; i < numReductions; ++i) {
owningReductionGens.push_back(
makeReductionGen(reductionDecls[i], builder, moduleTranslation));
owningAtomicReductionGens.push_back(
makeAtomicReductionGen(reductionDecls[i], builder, moduleTranslation));
}
// Collect the reduction information.
reductionInfos.reserve(numReductions);
for (unsigned i = 0; i < numReductions; ++i) {
llvm::OpenMPIRBuilder::AtomicReductionGenTy atomicGen = nullptr;
if (owningAtomicReductionGens[i])
atomicGen = owningAtomicReductionGens[i];
llvm::Value *variable =
moduleTranslation.lookupValue(loop.getReductionVars()[i]);
reductionInfos.push_back(
{moduleTranslation.convertType(reductionDecls[i].getType()), variable,
privateReductionVariables[i], owningReductionGens[i], atomicGen});
}
}
/// Converts an OpenMP workshare loop into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpWsLoop(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto loop = cast<omp::WsLoopOp>(opInst);
// TODO: this should be in the op verifier instead.
if (loop.getLowerBound().empty())
return failure();
// Static is the default.
auto schedule =
loop.getScheduleVal().value_or(omp::ClauseScheduleKind::Static);
// Find the loop configuration.
llvm::Value *step = moduleTranslation.lookupValue(loop.getStep()[0]);
llvm::Type *ivType = step->getType();
llvm::Value *chunk = nullptr;
if (loop.getScheduleChunkVar()) {
llvm::Value *chunkVar =
moduleTranslation.lookupValue(loop.getScheduleChunkVar());
chunk = builder.CreateSExtOrTrunc(chunkVar, ivType);
}
SmallVector<omp::ReductionDeclareOp> reductionDecls;
collectReductionDecls(loop, reductionDecls);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
SmallVector<llvm::Value *> privateReductionVariables;
DenseMap<Value, llvm::Value *> reductionVariableMap;
allocReductionVars(loop, builder, moduleTranslation, allocaIP, reductionDecls,
privateReductionVariables, reductionVariableMap);
// Store the mapping between reduction variables and their private copies on
// ModuleTranslation stack. It can be then recovered when translating
// omp.reduce operations in a separate call.
LLVM::ModuleTranslation::SaveStack<OpenMPVarMappingStackFrame> mappingGuard(
moduleTranslation, reductionVariableMap);
// Before the loop, store the initial values of reductions into reduction
// variables. Although this could be done after allocas, we don't want to mess
// up with the alloca insertion point.
for (unsigned i = 0; i < loop.getNumReductionVars(); ++i) {
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(reductionDecls[i].getInitializerRegion(),
"omp.reduction.neutral", builder,
moduleTranslation, &phis)))
return failure();
assert(phis.size() == 1 && "expected one value to be yielded from the "
"reduction neutral element declaration region");
builder.CreateStore(phis[0], privateReductionVariables[i]);
}
// Set up the source location value for OpenMP runtime.
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
// Generator of the canonical loop body.
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
LogicalResult bodyGenStatus = success();
auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
// Make sure further conversions know about the induction variable.
moduleTranslation.mapValue(
loop.getRegion().front().getArgument(loopInfos.size()), iv);
// Capture the body insertion point for use in nested loops. BodyIP of the
// CanonicalLoopInfo always points to the beginning of the entry block of
// the body.
bodyInsertPoints.push_back(ip);
if (loopInfos.size() != loop.getNumLoops() - 1)
return;
// Convert the body of the loop.
builder.restoreIP(ip);
convertOmpOpRegions(loop.getRegion(), "omp.wsloop.region", builder,
moduleTranslation, bodyGenStatus);
};
// Delegate actual loop construction to the OpenMP IRBuilder.
// TODO: this currently assumes WsLoop is semantically similar to SCF loop,
// i.e. it has a positive step, uses signed integer semantics. Reconsider
// this code when WsLoop clearly supports more cases.
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
for (unsigned i = 0, e = loop.getNumLoops(); i < e; ++i) {
llvm::Value *lowerBound =
moduleTranslation.lookupValue(loop.getLowerBound()[i]);
llvm::Value *upperBound =
moduleTranslation.lookupValue(loop.getUpperBound()[i]);
llvm::Value *step = moduleTranslation.lookupValue(loop.getStep()[i]);
// Make sure loop trip count are emitted in the preheader of the outermost
// loop at the latest so that they are all available for the new collapsed
// loop will be created below.
llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
if (i != 0) {
loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back());
computeIP = loopInfos.front()->getPreheaderIP();
}
loopInfos.push_back(ompBuilder->createCanonicalLoop(
loc, bodyGen, lowerBound, upperBound, step,
/*IsSigned=*/true, loop.getInclusive(), computeIP));
if (failed(bodyGenStatus))
return failure();
}
// Collapse loops. Store the insertion point because LoopInfos may get
// invalidated.
llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP();
llvm::CanonicalLoopInfo *loopInfo =
ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
// TODO: Handle doacross loops when the ordered clause has a parameter.
bool isOrdered = loop.getOrderedVal().has_value();
std::optional<omp::ScheduleModifier> scheduleModifier =
loop.getScheduleModifier();
bool isSimd = loop.getSimdModifier();
ompBuilder->applyWorkshareLoop(
ompLoc.DL, loopInfo, allocaIP, !loop.getNowait(),
convertToScheduleKind(schedule), chunk, isSimd,
scheduleModifier == omp::ScheduleModifier::monotonic,
scheduleModifier == omp::ScheduleModifier::nonmonotonic, isOrdered);
// Continue building IR after the loop. Note that the LoopInfo returned by
// `collapseLoops` points inside the outermost loop and is intended for
// potential further loop transformations. Use the insertion point stored
// before collapsing loops instead.
builder.restoreIP(afterIP);
// Process the reductions if required.
if (loop.getNumReductionVars() == 0)
return success();
// Create the reduction generators. We need to own them here because
// ReductionInfo only accepts references to the generators.
SmallVector<OwningReductionGen> owningReductionGens;
SmallVector<OwningAtomicReductionGen> owningAtomicReductionGens;
SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> reductionInfos;
collectReductionInfo(loop, builder, moduleTranslation, reductionDecls,
owningReductionGens, owningAtomicReductionGens,
privateReductionVariables, reductionInfos);
// The call to createReductions below expects the block to have a
// terminator. Create an unreachable instruction to serve as terminator
// and remove it later.
llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable();
builder.SetInsertPoint(tempTerminator);
llvm::OpenMPIRBuilder::InsertPointTy contInsertPoint =
ompBuilder->createReductions(builder.saveIP(), allocaIP, reductionInfos,
loop.getNowait());
if (!contInsertPoint.getBlock())
return loop->emitOpError() << "failed to convert reductions";
auto nextInsertionPoint =
ompBuilder->createBarrier(contInsertPoint, llvm::omp::OMPD_for);
tempTerminator->eraseFromParent();
builder.restoreIP(nextInsertionPoint);
return success();
}
/// Converts the OpenMP parallel operation to LLVM IR.
static LogicalResult
convertOmpParallel(omp::ParallelOp opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// Collect reduction declarations
SmallVector<omp::ReductionDeclareOp> reductionDecls;
collectReductionDecls(opInst, reductionDecls);
// Allocate reduction vars
SmallVector<llvm::Value *> privateReductionVariables;
DenseMap<Value, llvm::Value *> reductionVariableMap;
allocReductionVars(opInst, builder, moduleTranslation, allocaIP,
reductionDecls, privateReductionVariables,
reductionVariableMap);
// Store the mapping between reduction variables and their private copies on
// ModuleTranslation stack. It can be then recovered when translating
// omp.reduce operations in a separate call.
LLVM::ModuleTranslation::SaveStack<OpenMPVarMappingStackFrame> mappingGuard(
moduleTranslation, reductionVariableMap);
// Initialize reduction vars
builder.restoreIP(allocaIP);
for (unsigned i = 0; i < opInst.getNumReductionVars(); ++i) {
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(
reductionDecls[i].getInitializerRegion(), "omp.reduction.neutral",
builder, moduleTranslation, &phis)))
bodyGenStatus = failure();
assert(phis.size() == 1 &&
"expected one value to be yielded from the "
"reduction neutral element declaration region");
builder.restoreIP(allocaIP);
builder.CreateStore(phis[0], privateReductionVariables[i]);
}
// Save the alloca insertion point on ModuleTranslation stack for use in
// nested regions.
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
// ParallelOp has only one region associated with it.
builder.restoreIP(codeGenIP);
auto regionBlock =
convertOmpOpRegions(opInst.getRegion(), "omp.par.region", builder,
moduleTranslation, bodyGenStatus);
// Process the reductions if required.
if (opInst.getNumReductionVars() > 0) {
// Collect reduction info
SmallVector<OwningReductionGen> owningReductionGens;
SmallVector<OwningAtomicReductionGen> owningAtomicReductionGens;
SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> reductionInfos;
collectReductionInfo(opInst, builder, moduleTranslation, reductionDecls,
owningReductionGens, owningAtomicReductionGens,
privateReductionVariables, reductionInfos);
// Move to region cont block
builder.SetInsertPoint(regionBlock->getTerminator());
// Generate reductions from info
llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable();
builder.SetInsertPoint(tempTerminator);
llvm::OpenMPIRBuilder::InsertPointTy contInsertPoint =
ompBuilder->createReductions(builder.saveIP(), allocaIP,
reductionInfos, false);
if (!contInsertPoint.getBlock()) {
bodyGenStatus = opInst->emitOpError() << "failed to convert reductions";
return;
}
tempTerminator->eraseFromParent();
builder.restoreIP(contInsertPoint);
}
};
// TODO: Perform appropriate actions according to the data-sharing
// attribute (shared, private, firstprivate, ...) of variables.
// Currently defaults to shared.
auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
llvm::Value &, llvm::Value &vPtr,
llvm::Value *&replacementValue) -> InsertPointTy {
replacementValue = &vPtr;
return codeGenIP;
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::Value *ifCond = nullptr;
if (auto ifExprVar = opInst.getIfExprVar())
ifCond = moduleTranslation.lookupValue(ifExprVar);
llvm::Value *numThreads = nullptr;
if (auto numThreadsVar = opInst.getNumThreadsVar())
numThreads = moduleTranslation.lookupValue(numThreadsVar);
auto pbKind = llvm::omp::OMP_PROC_BIND_default;
if (auto bind = opInst.getProcBindVal())
pbKind = getProcBindKind(*bind);
// TODO: Is the Parallel construct cancellable?
bool isCancellable = false;
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(
ompBuilder->createParallel(ompLoc, allocaIP, bodyGenCB, privCB, finiCB,
ifCond, numThreads, pbKind, isCancellable));
return bodyGenStatus;
}
/// Converts an OpenMP simd loop into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpSimdLoop(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto loop = cast<omp::SimdLoopOp>(opInst);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
// Generator of the canonical loop body.
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
LogicalResult bodyGenStatus = success();
auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
// Make sure further conversions know about the induction variable.
moduleTranslation.mapValue(
loop.getRegion().front().getArgument(loopInfos.size()), iv);
// Capture the body insertion point for use in nested loops. BodyIP of the
// CanonicalLoopInfo always points to the beginning of the entry block of
// the body.
bodyInsertPoints.push_back(ip);
if (loopInfos.size() != loop.getNumLoops() - 1)
return;
// Convert the body of the loop.
builder.restoreIP(ip);
convertOmpOpRegions(loop.getRegion(), "omp.simdloop.region", builder,
moduleTranslation, bodyGenStatus);
};
// Delegate actual loop construction to the OpenMP IRBuilder.
// TODO: this currently assumes SimdLoop is semantically similar to SCF loop,
// i.e. it has a positive step, uses signed integer semantics. Reconsider
// this code when SimdLoop clearly supports more cases.
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
for (unsigned i = 0, e = loop.getNumLoops(); i < e; ++i) {
llvm::Value *lowerBound =
moduleTranslation.lookupValue(loop.getLowerBound()[i]);
llvm::Value *upperBound =
moduleTranslation.lookupValue(loop.getUpperBound()[i]);
llvm::Value *step = moduleTranslation.lookupValue(loop.getStep()[i]);
// Make sure loop trip count are emitted in the preheader of the outermost
// loop at the latest so that they are all available for the new collapsed
// loop will be created below.
llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
if (i != 0) {
loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back(),
ompLoc.DL);
computeIP = loopInfos.front()->getPreheaderIP();
}
loopInfos.push_back(ompBuilder->createCanonicalLoop(
loc, bodyGen, lowerBound, upperBound, step,
/*IsSigned=*/true, /*Inclusive=*/true, computeIP));
if (failed(bodyGenStatus))
return failure();
}
// Collapse loops.
llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP();
llvm::CanonicalLoopInfo *loopInfo =
ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
llvm::ConstantInt *simdlen = nullptr;
if (std::optional<uint64_t> simdlenVar = loop.getSimdlen())
simdlen = builder.getInt64(simdlenVar.value());
llvm::ConstantInt *safelen = nullptr;
if (std::optional<uint64_t> safelenVar = loop.getSafelen())
safelen = builder.getInt64(safelenVar.value());
llvm::MapVector<llvm::Value *, llvm::Value *> alignedVars;
ompBuilder->applySimd(
loopInfo, alignedVars,
loop.getIfExpr() ? moduleTranslation.lookupValue(loop.getIfExpr())
: nullptr,
llvm::omp::OrderKind::OMP_ORDER_unknown, simdlen, safelen);
builder.restoreIP(afterIP);
return success();
}
/// Convert an Atomic Ordering attribute to llvm::AtomicOrdering.
static llvm::AtomicOrdering
convertAtomicOrdering(std::optional<omp::ClauseMemoryOrderKind> ao) {
if (!ao)
return llvm::AtomicOrdering::Monotonic; // Default Memory Ordering
switch (*ao) {
case omp::ClauseMemoryOrderKind::Seq_cst:
return llvm::AtomicOrdering::SequentiallyConsistent;
case omp::ClauseMemoryOrderKind::Acq_rel:
return llvm::AtomicOrdering::AcquireRelease;
case omp::ClauseMemoryOrderKind::Acquire:
return llvm::AtomicOrdering::Acquire;
case omp::ClauseMemoryOrderKind::Release:
return llvm::AtomicOrdering::Release;
case omp::ClauseMemoryOrderKind::Relaxed:
return llvm::AtomicOrdering::Monotonic;
}
llvm_unreachable("Unknown ClauseMemoryOrderKind kind");
}
/// Convert omp.atomic.read operation to LLVM IR.
static LogicalResult
convertOmpAtomicRead(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto readOp = cast<omp::AtomicReadOp>(opInst);
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::AtomicOrdering AO = convertAtomicOrdering(readOp.getMemoryOrderVal());
llvm::Value *x = moduleTranslation.lookupValue(readOp.getX());
llvm::Value *v = moduleTranslation.lookupValue(readOp.getV());
llvm::Type *elementType =
moduleTranslation.convertType(readOp.getElementType());
llvm::OpenMPIRBuilder::AtomicOpValue V = {v, elementType, false, false};
llvm::OpenMPIRBuilder::AtomicOpValue X = {x, elementType, false, false};
builder.restoreIP(ompBuilder->createAtomicRead(ompLoc, X, V, AO));
return success();
}
/// Converts an omp.atomic.write operation to LLVM IR.
static LogicalResult
convertOmpAtomicWrite(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto writeOp = cast<omp::AtomicWriteOp>(opInst);
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::AtomicOrdering ao = convertAtomicOrdering(writeOp.getMemoryOrderVal());
llvm::Value *expr = moduleTranslation.lookupValue(writeOp.getExpr());
llvm::Value *dest = moduleTranslation.lookupValue(writeOp.getX());
llvm::Type *ty = moduleTranslation.convertType(writeOp.getExpr().getType());
llvm::OpenMPIRBuilder::AtomicOpValue x = {dest, ty, /*isSigned=*/false,
/*isVolatile=*/false};
builder.restoreIP(ompBuilder->createAtomicWrite(ompLoc, x, expr, ao));
return success();
}
/// Converts an LLVM dialect binary operation to the corresponding enum value
/// for `atomicrmw` supported binary operation.
llvm::AtomicRMWInst::BinOp convertBinOpToAtomic(Operation &op) {
return llvm::TypeSwitch<Operation *, llvm::AtomicRMWInst::BinOp>(&op)
.Case([&](LLVM::AddOp) { return llvm::AtomicRMWInst::BinOp::Add; })
.Case([&](LLVM::SubOp) { return llvm::AtomicRMWInst::BinOp::Sub; })
.Case([&](LLVM::AndOp) { return llvm::AtomicRMWInst::BinOp::And; })
.Case([&](LLVM::OrOp) { return llvm::AtomicRMWInst::BinOp::Or; })
.Case([&](LLVM::XOrOp) { return llvm::AtomicRMWInst::BinOp::Xor; })
.Case([&](LLVM::UMaxOp) { return llvm::AtomicRMWInst::BinOp::UMax; })
.Case([&](LLVM::UMinOp) { return llvm::AtomicRMWInst::BinOp::UMin; })
.Case([&](LLVM::FAddOp) { return llvm::AtomicRMWInst::BinOp::FAdd; })
.Case([&](LLVM::FSubOp) { return llvm::AtomicRMWInst::BinOp::FSub; })
.Default(llvm::AtomicRMWInst::BinOp::BAD_BINOP);
}
/// Converts an OpenMP atomic update operation using OpenMPIRBuilder.
static LogicalResult
convertOmpAtomicUpdate(omp::AtomicUpdateOp &opInst,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// Convert values and types.
auto &innerOpList = opInst.getRegion().front().getOperations();
bool isRegionArgUsed{false}, isXBinopExpr{false};
llvm::AtomicRMWInst::BinOp binop;
mlir::Value mlirExpr;
// Find the binary update operation that uses the region argument
// and get the expression to update
for (Operation &innerOp : innerOpList) {
if (innerOp.getNumOperands() == 2) {
binop = convertBinOpToAtomic(innerOp);
if (!llvm::is_contained(innerOp.getOperands(),
opInst.getRegion().getArgument(0)))
continue;
isRegionArgUsed = true;
isXBinopExpr = innerOp.getNumOperands() > 0 &&
innerOp.getOperand(0) == opInst.getRegion().getArgument(0);
mlirExpr = (isXBinopExpr ? innerOp.getOperand(1) : innerOp.getOperand(0));
break;
}
}
if (!isRegionArgUsed)
return opInst.emitError("no atomic update operation with region argument"
" as operand found inside atomic.update region");
llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr);
llvm::Value *llvmX = moduleTranslation.lookupValue(opInst.getX());
llvm::Type *llvmXElementType = moduleTranslation.convertType(
opInst.getRegion().getArgument(0).getType());
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::AtomicOrdering atomicOrdering =
convertAtomicOrdering(opInst.getMemoryOrderVal());
// Generate update code.
LogicalResult updateGenStatus = success();
auto updateFn = [&opInst, &moduleTranslation, &updateGenStatus](
llvm::Value *atomicx,
llvm::IRBuilder<> &builder) -> llvm::Value * {
Block &bb = *opInst.getRegion().begin();
moduleTranslation.mapValue(*opInst.getRegion().args_begin(), atomicx);
moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(bb, true, builder))) {
updateGenStatus = (opInst.emitError()
<< "unable to convert update operation to llvm IR");
return nullptr;
}
omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
assert(yieldop && yieldop.getResults().size() == 1 &&
"terminator must be omp.yield op and it must have exactly one "
"argument");
return moduleTranslation.lookupValue(yieldop.getResults()[0]);
};
// Handle ambiguous alloca, if any.
auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(ompBuilder->createAtomicUpdate(
ompLoc, allocaIP, llvmAtomicX, llvmExpr, atomicOrdering, binop, updateFn,
isXBinopExpr));
return updateGenStatus;
}
static LogicalResult
convertOmpAtomicCapture(omp::AtomicCaptureOp atomicCaptureOp,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
mlir::Value mlirExpr;
bool isXBinopExpr = false, isPostfixUpdate = false;
llvm::AtomicRMWInst::BinOp binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
omp::AtomicUpdateOp atomicUpdateOp = atomicCaptureOp.getAtomicUpdateOp();
omp::AtomicWriteOp atomicWriteOp = atomicCaptureOp.getAtomicWriteOp();
assert((atomicUpdateOp || atomicWriteOp) &&
"internal op must be an atomic.update or atomic.write op");
if (atomicWriteOp) {
isPostfixUpdate = true;
mlirExpr = atomicWriteOp.getExpr();
} else {
isPostfixUpdate = atomicCaptureOp.getSecondOp() ==
atomicCaptureOp.getAtomicUpdateOp().getOperation();
auto &innerOpList = atomicUpdateOp.getRegion().front().getOperations();
bool isRegionArgUsed{false};
// Find the binary update operation that uses the region argument
// and get the expression to update
for (Operation &innerOp : innerOpList) {
if (innerOp.getNumOperands() == 2) {
binop = convertBinOpToAtomic(innerOp);
if (!llvm::is_contained(innerOp.getOperands(),
atomicUpdateOp.getRegion().getArgument(0)))
continue;
isRegionArgUsed = true;
isXBinopExpr =
innerOp.getNumOperands() > 0 &&
innerOp.getOperand(0) == atomicUpdateOp.getRegion().getArgument(0);
mlirExpr =
(isXBinopExpr ? innerOp.getOperand(1) : innerOp.getOperand(0));
break;
}
}
if (!isRegionArgUsed)
return atomicUpdateOp.emitError(
"no atomic update operation with region argument"
" as operand found inside atomic.update region");
}
llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr);
llvm::Value *llvmX =
moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().getX());
llvm::Value *llvmV =
moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().getV());
llvm::Type *llvmXElementType = moduleTranslation.convertType(
atomicCaptureOp.getAtomicReadOp().getElementType());
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicV = {llvmV, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::AtomicOrdering atomicOrdering =
convertAtomicOrdering(atomicCaptureOp.getMemoryOrderVal());
LogicalResult updateGenStatus = success();
auto updateFn = [&](llvm::Value *atomicx,
llvm::IRBuilder<> &builder) -> llvm::Value * {
if (atomicWriteOp)
return moduleTranslation.lookupValue(atomicWriteOp.getExpr());
Block &bb = *atomicUpdateOp.getRegion().begin();
moduleTranslation.mapValue(*atomicUpdateOp.getRegion().args_begin(),
atomicx);
moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(bb, true, builder))) {
updateGenStatus = (atomicUpdateOp.emitError()
<< "unable to convert update operation to llvm IR");
return nullptr;
}
omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
assert(yieldop && yieldop.getResults().size() == 1 &&
"terminator must be omp.yield op and it must have exactly one "
"argument");
return moduleTranslation.lookupValue(yieldop.getResults()[0]);
};
// Handle ambiguous alloca, if any.
auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(ompBuilder->createAtomicCapture(
ompLoc, allocaIP, llvmAtomicX, llvmAtomicV, llvmExpr, atomicOrdering,
binop, updateFn, atomicUpdateOp, isPostfixUpdate, isXBinopExpr));
return updateGenStatus;
}
/// Converts an OpenMP reduction operation using OpenMPIRBuilder. Expects the
/// mapping between reduction variables and their private equivalents to have
/// been stored on the ModuleTranslation stack. Currently only supports
/// reduction within WsLoopOp and ParallelOp, but can be easily extended.
static LogicalResult
convertOmpReductionOp(omp::ReductionOp reductionOp,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
// Find the declaration that corresponds to the reduction op.
omp::ReductionDeclareOp declaration;
Operation *reductionParent = reductionOp->getParentOp();
if (dyn_cast<omp::ParallelOp>(reductionParent) ||
dyn_cast<omp::WsLoopOp>(reductionParent)) {
declaration = findReductionDecl(*reductionParent, reductionOp);
} else {
llvm_unreachable("Unhandled reduction container");
}
assert(declaration && "could not find reduction declaration");
// Retrieve the mapping between reduction variables and their private
// equivalents.
const DenseMap<Value, llvm::Value *> *reductionVariableMap = nullptr;
moduleTranslation.stackWalk<OpenMPVarMappingStackFrame>(
[&](const OpenMPVarMappingStackFrame &frame) {
if (frame.mapping.contains(reductionOp.getAccumulator())) {
reductionVariableMap = &frame.mapping;
return WalkResult::interrupt();
}
return WalkResult::advance();
});
assert(reductionVariableMap && "couldn't find private reduction variables");
// Translate the reduction operation by emitting the body of the corresponding
// reduction declaration.
Region &reductionRegion = declaration.getReductionRegion();
llvm::Value *privateReductionVar =
reductionVariableMap->lookup(reductionOp.getAccumulator());
llvm::Value *reductionVal = builder.CreateLoad(
moduleTranslation.convertType(reductionOp.getOperand().getType()),
privateReductionVar);
moduleTranslation.mapValue(reductionRegion.front().getArgument(0),
reductionVal);
moduleTranslation.mapValue(
reductionRegion.front().getArgument(1),
moduleTranslation.lookupValue(reductionOp.getOperand()));
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(reductionRegion, "omp.reduction.body",
builder, moduleTranslation, &phis)))
return failure();
assert(phis.size() == 1 && "expected one value to be yielded from "
"the reduction body declaration region");
builder.CreateStore(phis[0], privateReductionVar);
return success();
}
/// Converts an OpenMP Threadprivate operation into LLVM IR using
/// OpenMPIRBuilder.
static LogicalResult
convertOmpThreadprivate(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
auto threadprivateOp = cast<omp::ThreadprivateOp>(opInst);
Value symAddr = threadprivateOp.getSymAddr();
auto *symOp = symAddr.getDefiningOp();
if (!isa<LLVM::AddressOfOp>(symOp))
return opInst.emitError("Addressing symbol not found");
LLVM::AddressOfOp addressOfOp = dyn_cast<LLVM::AddressOfOp>(symOp);
LLVM::GlobalOp global =
addressOfOp.getGlobal(moduleTranslation.symbolTable());
llvm::GlobalValue *globalValue = moduleTranslation.lookupGlobal(global);
llvm::Type *type = globalValue->getValueType();
llvm::TypeSize typeSize =
builder.GetInsertBlock()->getModule()->getDataLayout().getTypeStoreSize(
type);
llvm::ConstantInt *size = builder.getInt64(typeSize.getFixedValue());
llvm::StringRef suffix = llvm::StringRef(".cache", 6);
std::string cacheName = (Twine(global.getSymName()).concat(suffix)).str();
llvm::Value *callInst =
moduleTranslation.getOpenMPBuilder()->createCachedThreadPrivate(
ompLoc, globalValue, size, cacheName);
moduleTranslation.mapValue(opInst.getResult(0), callInst);
return success();
}
static llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseKind
convertToDeviceClauseKind(mlir::omp::DeclareTargetDeviceType deviceClause) {
switch (deviceClause) {
case mlir::omp::DeclareTargetDeviceType::host:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseHost;
break;
case mlir::omp::DeclareTargetDeviceType::nohost:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseNoHost;
break;
case mlir::omp::DeclareTargetDeviceType::any:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseAny;
break;
}
llvm_unreachable("unhandled device clause");
}
static llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind
convertToCaptureClauseKind(
mlir::omp::DeclareTargetCaptureClause captureClasue) {
switch (captureClasue) {
case mlir::omp::DeclareTargetCaptureClause::to:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
case mlir::omp::DeclareTargetCaptureClause::link:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink;
case mlir::omp::DeclareTargetCaptureClause::enter:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter;
}
llvm_unreachable("unhandled capture clause");
}
static llvm::SmallString<64>
getDeclareTargetRefPtrSuffix(LLVM::GlobalOp globalOp,
llvm::OpenMPIRBuilder &ompBuilder) {
llvm::SmallString<64> suffix;
llvm::raw_svector_ostream os(suffix);
if (globalOp.getVisibility() == mlir::SymbolTable::Visibility::Private) {
auto loc = globalOp->getLoc()->findInstanceOf<FileLineColLoc>();
auto fileInfoCallBack = [&loc]() {
return std::pair<std::string, uint64_t>(
llvm::StringRef(loc.getFilename()), loc.getLine());
};
os << llvm::format(
"_%x", ompBuilder.getTargetEntryUniqueInfo(fileInfoCallBack).FileID);
}
os << "_decl_tgt_ref_ptr";
return suffix;
}
// Returns the reference pointer generated by the lowering of the declare target
// operation in cases where the link clause is used or the to clause is used in
// USM mode.
static llvm::Value *
getRefPtrIfDeclareTarget(mlir::Value value,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// An easier way to do this may just be to keep track of any pointer
// references and their mapping to their respective operation
if (auto addressOfOp =
llvm::dyn_cast_if_present<LLVM::AddressOfOp>(value.getDefiningOp())) {
if (auto gOp = llvm::dyn_cast_or_null<LLVM::GlobalOp>(
addressOfOp->getParentOfType<mlir::ModuleOp>().lookupSymbol(
addressOfOp.getGlobalName()))) {
if (auto declareTargetGlobal =
llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(
gOp.getOperation())) {
// In this case, we must utilise the reference pointer generated by the
// declare target operation, similar to Clang
if ((declareTargetGlobal.getDeclareTargetCaptureClause() ==
mlir::omp::DeclareTargetCaptureClause::link) ||
(declareTargetGlobal.getDeclareTargetCaptureClause() ==
mlir::omp::DeclareTargetCaptureClause::to &&
ompBuilder->Config.hasRequiresUnifiedSharedMemory())) {
llvm::SmallString<64> suffix =
getDeclareTargetRefPtrSuffix(gOp, *ompBuilder);
if (gOp.getSymName().contains(suffix))
return moduleTranslation.getLLVMModule()->getNamedValue(
gOp.getSymName());
return moduleTranslation.getLLVMModule()->getNamedValue(
(gOp.getSymName().str() + suffix.str()).str());
}
}
}
}
return nullptr;
}
// A small helper structure to contain data gathered
// for map lowering and coalese it into one area and
// avoiding extra computations such as searches in the
// llvm module for lowered mapped varibles or checking
// if something is declare target (and retrieving the
// value) more than neccessary.
struct MapInfoData : llvm::OpenMPIRBuilder::MapInfosTy {
llvm::SmallVector<bool, 4> IsDeclareTarget;
llvm::SmallVector<bool, 4> IsAMember;
llvm::SmallVector<mlir::Operation *, 4> MapClause;
llvm::SmallVector<llvm::Value *, 4> OriginalValue;
// Stripped off array/pointer to get the underlying
// element type
llvm::SmallVector<llvm::Type *, 4> BaseType;
/// Append arrays in \a CurInfo.
void append(MapInfoData &CurInfo) {
IsDeclareTarget.append(CurInfo.IsDeclareTarget.begin(),
CurInfo.IsDeclareTarget.end());
MapClause.append(CurInfo.MapClause.begin(), CurInfo.MapClause.end());
OriginalValue.append(CurInfo.OriginalValue.begin(),
CurInfo.OriginalValue.end());
BaseType.append(CurInfo.BaseType.begin(), CurInfo.BaseType.end());
llvm::OpenMPIRBuilder::MapInfosTy::append(CurInfo);
}
};
uint64_t getArrayElementSizeInBits(LLVM::LLVMArrayType arrTy, DataLayout &dl) {
if (auto nestedArrTy = llvm::dyn_cast_if_present<LLVM::LLVMArrayType>(
arrTy.getElementType()))
return getArrayElementSizeInBits(nestedArrTy, dl);
return dl.getTypeSizeInBits(arrTy.getElementType());
}
// This function calculates the size to be offloaded for a specified type, given
// its associated map clause (which can contain bounds information which affects
// the total size), this size is calculated based on the underlying element type
// e.g. given a 1-D array of ints, we will calculate the size from the integer
// type * number of elements in the array. This size can be used in other
// calculations but is ultimately used as an argument to the OpenMP runtimes
// kernel argument structure which is generated through the combinedInfo data
// structures.
// This function is somewhat equivalent to Clang's getExprTypeSize inside of
// CGOpenMPRuntime.cpp.
llvm::Value *getSizeInBytes(DataLayout &dl, const mlir::Type &type,
Operation *clauseOp, llvm::Value *basePointer,
llvm::Type *baseType, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
// utilising getTypeSizeInBits instead of getTypeSize as getTypeSize gives
// the size in inconsistent byte or bit format.
uint64_t underlyingTypeSzInBits = dl.getTypeSizeInBits(type);
if (auto arrTy = llvm::dyn_cast_if_present<LLVM::LLVMArrayType>(type))
underlyingTypeSzInBits = getArrayElementSizeInBits(arrTy, dl);
if (auto memberClause =
mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(clauseOp)) {
// This calculates the size to transfer based on bounds and the underlying
// element type, provided bounds have been specified (Fortran
// pointers/allocatables/target and arrays that have sections specified fall
// into this as well).
if (!memberClause.getBounds().empty()) {
llvm::Value *elementCount = builder.getInt64(1);
for (auto bounds : memberClause.getBounds()) {
if (auto boundOp = mlir::dyn_cast_if_present<mlir::omp::DataBoundsOp>(
bounds.getDefiningOp())) {
// The below calculation for the size to be mapped calculated from the
// map_info's bounds is: (elemCount * [UB - LB] + 1), later we
// multiply by the underlying element types byte size to get the full
// size to be offloaded based on the bounds
elementCount = builder.CreateMul(
elementCount,
builder.CreateAdd(
builder.CreateSub(
moduleTranslation.lookupValue(boundOp.getUpperBound()),
moduleTranslation.lookupValue(boundOp.getLowerBound())),
builder.getInt64(1)));
}
}
// The size in bytes x number of elements, the sizeInBytes stored is
// the underyling types size, e.g. if ptr<i32>, it'll be the i32's
// size, so we do some on the fly runtime math to get the size in
// bytes from the extent (ub - lb) * sizeInBytes. NOTE: This may need
// some adjustment for members with more complex types.
return builder.CreateMul(elementCount,
builder.getInt64(underlyingTypeSzInBits / 8));
}
}
return builder.getInt64(underlyingTypeSzInBits / 8);
}
void collectMapDataFromMapOperands(MapInfoData &mapData,
llvm::SmallVectorImpl<Value> &mapOperands,
LLVM::ModuleTranslation &moduleTranslation,
DataLayout &dl,
llvm::IRBuilderBase &builder) {
for (mlir::Value mapValue : mapOperands) {
if (auto mapOp = mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(
mapValue.getDefiningOp())) {
mlir::Value offloadPtr =
mapOp.getVarPtrPtr() ? mapOp.getVarPtrPtr() : mapOp.getVarPtr();
mapData.OriginalValue.push_back(
moduleTranslation.lookupValue(offloadPtr));
mapData.Pointers.push_back(mapData.OriginalValue.back());
if (llvm::Value *refPtr =
getRefPtrIfDeclareTarget(offloadPtr,
moduleTranslation)) { // declare target
mapData.IsDeclareTarget.push_back(true);
mapData.BasePointers.push_back(refPtr);
} else { // regular mapped variable
mapData.IsDeclareTarget.push_back(false);
mapData.BasePointers.push_back(mapData.OriginalValue.back());
}
mapData.BaseType.push_back(
moduleTranslation.convertType(mapOp.getVarType()));
mapData.Sizes.push_back(getSizeInBytes(
dl, mapOp.getVarType(), mapOp, mapData.BasePointers.back(),
mapData.BaseType.back(), builder, moduleTranslation));
mapData.MapClause.push_back(mapOp.getOperation());
mapData.Types.push_back(
llvm::omp::OpenMPOffloadMappingFlags(mapOp.getMapType().value()));
mapData.Names.push_back(LLVM::createMappingInformation(
mapOp.getLoc(), *moduleTranslation.getOpenMPBuilder()));
mapData.DevicePointers.push_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
// Check if this is a member mapping and correctly assign that it is, if
// it is a member of a larger object.
// TODO: Need better handling of members, and distinguishing of members
// that are implicitly allocated on device vs explicitly passed in as
// arguments.
// TODO: May require some further additions to support nested record
// types, i.e. member maps that can have member maps.
mapData.IsAMember.push_back(false);
for (mlir::Value mapValue : mapOperands) {
if (auto map = mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(
mapValue.getDefiningOp())) {
for (auto member : map.getMembers()) {
if (member == mapOp) {
mapData.IsAMember.back() = true;
}
}
}
}
}
}
}
// This creates two insertions into the MapInfosTy data structure for the
// "parent" of a set of members, (usually a container e.g.
// class/structure/derived type) when subsequent members have also been
// explicitly mapped on the same map clause. Certain types, such as Fortran
// descriptors are mapped like this as well, however, the members are
// implicit as far as a user is concerned, but we must explicitly map them
// internally.
//
// This function also returns the memberOfFlag for this particular parent,
// which is utilised in subsequent member mappings (by modifying there map type
// with it) to indicate that a member is part of this parent and should be
// treated by the runtime as such. Important to achieve the correct mapping.
static llvm::omp::OpenMPOffloadMappingFlags mapParentWithMembers(
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl,
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo, MapInfoData &mapData,
uint64_t mapDataIndex, bool isTargetParams) {
// Map the first segment of our structure
combinedInfo.Types.emplace_back(
isTargetParams
? llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM
: llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_NONE);
combinedInfo.DevicePointers.emplace_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
combinedInfo.Names.emplace_back(LLVM::createMappingInformation(
mapData.MapClause[mapDataIndex]->getLoc(), ompBuilder));
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIndex]);
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIndex]);
// Calculate size of the parent object being mapped based on the
// addresses at runtime, highAddr - lowAddr = size. This of course
// doesn't factor in allocated data like pointers, hence the further
// processing of members specified by users, or in the case of
// Fortran pointers and allocatables, the mapping of the pointed to
// data by the descriptor (which itself, is a structure containing
// runtime information on the dynamically allocated data).
llvm::Value *lowAddr = builder.CreatePointerCast(
mapData.Pointers[mapDataIndex], builder.getPtrTy());
llvm::Value *highAddr = builder.CreatePointerCast(
builder.CreateConstGEP1_32(mapData.BaseType[mapDataIndex],
mapData.Pointers[mapDataIndex], 1),
builder.getPtrTy());
llvm::Value *size = builder.CreateIntCast(
builder.CreatePtrDiff(builder.getInt8Ty(), highAddr, lowAddr),
builder.getInt64Ty(),
/*isSigned=*/false);
combinedInfo.Sizes.push_back(size);
// This creates the initial MEMBER_OF mapping that consists of
// the parent/top level container (same as above effectively, except
// with a fixed initial compile time size and seperate maptype which
// indicates the true mape type (tofrom etc.) and that it is a part
// of a larger mapping and indicating the link between it and it's
// members that are also explicitly mapped).
llvm::omp::OpenMPOffloadMappingFlags mapFlag =
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO;
if (isTargetParams)
mapFlag &= ~llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
llvm::omp::OpenMPOffloadMappingFlags memberOfFlag =
ompBuilder.getMemberOfFlag(combinedInfo.BasePointers.size() - 1);
ompBuilder.setCorrectMemberOfFlag(mapFlag, memberOfFlag);
combinedInfo.Types.emplace_back(mapFlag);
combinedInfo.DevicePointers.emplace_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
combinedInfo.Names.emplace_back(LLVM::createMappingInformation(
mapData.MapClause[mapDataIndex]->getLoc(), ompBuilder));
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIndex]);
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIndex]);
combinedInfo.Sizes.emplace_back(mapData.Sizes[mapDataIndex]);
return memberOfFlag;
}
// This function is intended to add explicit mappings of members
static void processMapMembersWithParent(
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl,
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo, MapInfoData &mapData,
uint64_t mapDataIndex, llvm::omp::OpenMPOffloadMappingFlags memberOfFlag) {
auto parentClause =
mlir::dyn_cast<mlir::omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
for (auto mappedMembers : parentClause.getMembers()) {
auto memberClause =
mlir::dyn_cast<mlir::omp::MapInfoOp>(mappedMembers.getDefiningOp());
int memberDataIdx = -1;
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
if (mapData.MapClause[i] == memberClause)
memberDataIdx = i;
}
assert(memberDataIdx >= 0 && "could not find mapped member of structure");
// Same MemberOfFlag to indicate its link with parent and other members
// of, and we flag that it's part of a pointer and object coupling.
auto mapFlag =
llvm::omp::OpenMPOffloadMappingFlags(memberClause.getMapType().value());
mapFlag &= ~llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
ompBuilder.setCorrectMemberOfFlag(mapFlag, memberOfFlag);
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
combinedInfo.Types.emplace_back(mapFlag);
combinedInfo.DevicePointers.emplace_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
combinedInfo.Names.emplace_back(
LLVM::createMappingInformation(memberClause.getLoc(), ompBuilder));
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[memberDataIdx]);
std::vector<llvm::Value *> idx{builder.getInt64(0)};
llvm::Value *offsetAddress = nullptr;
if (!memberClause.getBounds().empty()) {
if (mapData.BaseType[memberDataIdx]->isArrayTy()) {
for (int i = memberClause.getBounds().size() - 1; i >= 0; --i) {
if (auto boundOp = mlir::dyn_cast_if_present<mlir::omp::DataBoundsOp>(
memberClause.getBounds()[i].getDefiningOp())) {
idx.push_back(
moduleTranslation.lookupValue(boundOp.getLowerBound()));
}
}
} else {
std::vector<llvm::Value *> dimensionIndexSizeOffset{
builder.getInt64(1)};
for (size_t i = 1; i < memberClause.getBounds().size(); ++i) {
if (auto boundOp = mlir::dyn_cast_if_present<mlir::omp::DataBoundsOp>(
memberClause.getBounds()[i].getDefiningOp())) {
dimensionIndexSizeOffset.push_back(builder.CreateMul(
moduleTranslation.lookupValue(boundOp.getExtent()),
dimensionIndexSizeOffset[i - 1]));
}
}
for (int i = memberClause.getBounds().size() - 1; i >= 0; --i) {
if (auto boundOp = mlir::dyn_cast_if_present<mlir::omp::DataBoundsOp>(
memberClause.getBounds()[i].getDefiningOp())) {
if (!offsetAddress)
offsetAddress = builder.CreateMul(
moduleTranslation.lookupValue(boundOp.getLowerBound()),
dimensionIndexSizeOffset[i]);
else
offsetAddress = builder.CreateAdd(
offsetAddress,
builder.CreateMul(
moduleTranslation.lookupValue(boundOp.getLowerBound()),
dimensionIndexSizeOffset[i]));
}
}
}
}
llvm::Value *memberIdx =
builder.CreateLoad(builder.getPtrTy(), mapData.Pointers[memberDataIdx]);
memberIdx = builder.CreateInBoundsGEP(
mapData.BaseType[memberDataIdx], memberIdx,
offsetAddress ? std::vector<llvm::Value *>{offsetAddress} : idx,
"member_idx");
combinedInfo.Pointers.emplace_back(memberIdx);
combinedInfo.Sizes.emplace_back(mapData.Sizes[memberDataIdx]);
}
}
static void processMapWithMembersOf(
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl,
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo, MapInfoData &mapData,
uint64_t mapDataIndex, bool isTargetParams) {
llvm::omp::OpenMPOffloadMappingFlags memberOfParentFlag =
mapParentWithMembers(moduleTranslation, builder, ompBuilder, dl,
combinedInfo, mapData, mapDataIndex, isTargetParams);
processMapMembersWithParent(moduleTranslation, builder, ompBuilder, dl,
combinedInfo, mapData, mapDataIndex,
memberOfParentFlag);
}
// Generate all map related information and fill the combinedInfo.
static void genMapInfos(llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
DataLayout &dl,
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo,
MapInfoData &mapData,
const SmallVector<Value> &devPtrOperands = {},
const SmallVector<Value> &devAddrOperands = {},
bool isTargetParams = false) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
auto fail = [&combinedInfo]() -> void {
combinedInfo.BasePointers.clear();
combinedInfo.Pointers.clear();
combinedInfo.DevicePointers.clear();
combinedInfo.Sizes.clear();
combinedInfo.Types.clear();
combinedInfo.Names.clear();
};
// We operate under the assumption that all vectors that are
// required in MapInfoData are of equal lengths (either filled with
// default constructed data or appropiate information) so we can
// utilise the size from any component of MapInfoData, if we can't
// something is missing from the initial MapInfoData construction.
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
// NOTE/TODO: We currently do not handle member mapping seperately from it's
// parent or explicit mapping of a parent and member in the same operation,
// this will need to change in the near future, for now we primarily handle
// descriptor mapping from fortran, generalised as mapping record types
// with implicit member maps. This lowering needs further generalisation to
// fully support fortran derived types, and C/C++ structures and classes.
if (mapData.IsAMember[i])
continue;
auto mapInfoOp = mlir::dyn_cast<mlir::omp::MapInfoOp>(mapData.MapClause[i]);
if (!mapInfoOp.getMembers().empty()) {
processMapWithMembersOf(moduleTranslation, builder, *ompBuilder, dl,
combinedInfo, mapData, i, isTargetParams);
continue;
}
// Declare Target Mappings are excluded from being marked as
// OMP_MAP_TARGET_PARAM as they are not passed as parameters, they're
// marked with OMP_MAP_PTR_AND_OBJ instead.
auto mapFlag = mapData.Types[i];
if (mapData.IsDeclareTarget[i])
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
else if (isTargetParams)
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
if (auto mapInfoOp = dyn_cast<mlir::omp::MapInfoOp>(mapData.MapClause[i]))
if (mapInfoOp.getMapCaptureType().value() ==
mlir::omp::VariableCaptureKind::ByCopy &&
!mapInfoOp.getVarType().isa<LLVM::LLVMPointerType>())
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_LITERAL;
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[i]);
combinedInfo.Pointers.emplace_back(mapData.Pointers[i]);
combinedInfo.DevicePointers.emplace_back(mapData.DevicePointers[i]);
combinedInfo.Names.emplace_back(mapData.Names[i]);
combinedInfo.Types.emplace_back(mapFlag);
combinedInfo.Sizes.emplace_back(mapData.Sizes[i]);
}
auto findMapInfo = [&combinedInfo](llvm::Value *val, unsigned &index) {
index = 0;
for (llvm::Value *basePtr : combinedInfo.BasePointers) {
if (basePtr == val)
return true;
index++;
}
return false;
};
auto addDevInfos = [&, fail](auto devOperands, auto devOpType) -> void {
for (const auto &devOp : devOperands) {
// TODO: Only LLVMPointerTypes are handled.
if (!devOp.getType().template isa<LLVM::LLVMPointerType>())
return fail();
llvm::Value *mapOpValue = moduleTranslation.lookupValue(devOp);
// Check if map info is already present for this entry.
unsigned infoIndex;
if (findMapInfo(mapOpValue, infoIndex)) {
combinedInfo.Types[infoIndex] |=
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM;
combinedInfo.DevicePointers[infoIndex] = devOpType;
} else {
combinedInfo.BasePointers.emplace_back(mapOpValue);
combinedInfo.Pointers.emplace_back(mapOpValue);
combinedInfo.DevicePointers.emplace_back(devOpType);
combinedInfo.Names.emplace_back(
LLVM::createMappingInformation(devOp.getLoc(), *ompBuilder));
combinedInfo.Types.emplace_back(
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM);
combinedInfo.Sizes.emplace_back(builder.getInt64(0));
}
}
};
addDevInfos(devPtrOperands, llvm::OpenMPIRBuilder::DeviceInfoTy::Pointer);
addDevInfos(devAddrOperands, llvm::OpenMPIRBuilder::DeviceInfoTy::Address);
}
static LogicalResult
convertOmpTargetData(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::Value *ifCond = nullptr;
int64_t deviceID = llvm::omp::OMP_DEVICEID_UNDEF;
SmallVector<Value> mapOperands;
SmallVector<Value> useDevPtrOperands;
SmallVector<Value> useDevAddrOperands;
llvm::omp::RuntimeFunction RTLFn;
DataLayout DL = DataLayout(op->getParentOfType<ModuleOp>());
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
LogicalResult result =
llvm::TypeSwitch<Operation *, LogicalResult>(op)
.Case([&](omp::DataOp dataOp) {
if (auto ifExprVar = dataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifExprVar);
if (auto devId = dataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
mapOperands = dataOp.getMapOperands();
useDevPtrOperands = dataOp.getUseDevicePtr();
useDevAddrOperands = dataOp.getUseDeviceAddr();
return success();
})
.Case([&](omp::EnterDataOp enterDataOp) {
if (enterDataOp.getNowait())
return (LogicalResult)(enterDataOp.emitError(
"`nowait` is not supported yet"));
if (auto ifExprVar = enterDataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifExprVar);
if (auto devId = enterDataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
RTLFn = llvm::omp::OMPRTL___tgt_target_data_begin_mapper;
mapOperands = enterDataOp.getMapOperands();
return success();
})
.Case([&](omp::ExitDataOp exitDataOp) {
if (exitDataOp.getNowait())
return (LogicalResult)(exitDataOp.emitError(
"`nowait` is not supported yet"));
if (auto ifExprVar = exitDataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifExprVar);
if (auto devId = exitDataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
RTLFn = llvm::omp::OMPRTL___tgt_target_data_end_mapper;
mapOperands = exitDataOp.getMapOperands();
return success();
})
.Case([&](omp::UpdateDataOp updateDataOp) {
if (updateDataOp.getNowait())
return (LogicalResult)(updateDataOp.emitError(
"`nowait` is not supported yet"));
if (auto ifExprVar = updateDataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifExprVar);
if (auto devId = updateDataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
RTLFn = llvm::omp::OMPRTL___tgt_target_data_update_mapper;
mapOperands = updateDataOp.getMapOperands();
return success();
})
.Default([&](Operation *op) {
return op->emitError("unsupported OpenMP operation: ")
<< op->getName();
});
if (failed(result))
return failure();
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
MapInfoData mapData;
collectMapDataFromMapOperands(mapData, mapOperands, moduleTranslation, DL,
builder);
// Fill up the arrays with all the mapped variables.
llvm::OpenMPIRBuilder::MapInfosTy combinedInfo;
auto genMapInfoCB =
[&](InsertPointTy codeGenIP) -> llvm::OpenMPIRBuilder::MapInfosTy & {
builder.restoreIP(codeGenIP);
if (auto dataOp = dyn_cast<omp::DataOp>(op)) {
genMapInfos(builder, moduleTranslation, DL, combinedInfo, mapData,
useDevPtrOperands, useDevAddrOperands);
} else {
genMapInfos(builder, moduleTranslation, DL, combinedInfo, mapData);
}
return combinedInfo;
};
llvm::OpenMPIRBuilder::TargetDataInfo info(/*RequiresDevicePointerInfo=*/true,
/*SeparateBeginEndCalls=*/true);
using BodyGenTy = llvm::OpenMPIRBuilder::BodyGenTy;
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy codeGenIP, BodyGenTy bodyGenType) {
assert(isa<omp::DataOp>(op) && "BodyGen requested for non DataOp");
Region &region = cast<omp::DataOp>(op).getRegion();
switch (bodyGenType) {
case BodyGenTy::Priv:
// Check if any device ptr/addr info is available
if (!info.DevicePtrInfoMap.empty()) {
builder.restoreIP(codeGenIP);
unsigned argIndex = 0;
for (auto &devPtrOp : useDevPtrOperands) {
llvm::Value *mapOpValue = moduleTranslation.lookupValue(devPtrOp);
const auto &arg = region.front().getArgument(argIndex);
moduleTranslation.mapValue(arg,
info.DevicePtrInfoMap[mapOpValue].second);
argIndex++;
}
for (auto &devAddrOp : useDevAddrOperands) {
llvm::Value *mapOpValue = moduleTranslation.lookupValue(devAddrOp);
const auto &arg = region.front().getArgument(argIndex);
auto *LI = builder.CreateLoad(
builder.getPtrTy(), info.DevicePtrInfoMap[mapOpValue].second);
moduleTranslation.mapValue(arg, LI);
argIndex++;
}
bodyGenStatus = inlineConvertOmpRegions(region, "omp.data.region",
builder, moduleTranslation);
}
break;
case BodyGenTy::DupNoPriv:
break;
case BodyGenTy::NoPriv:
// If device info is available then region has already been generated
if (info.DevicePtrInfoMap.empty()) {
builder.restoreIP(codeGenIP);
bodyGenStatus = inlineConvertOmpRegions(region, "omp.data.region",
builder, moduleTranslation);
}
break;
}
return builder.saveIP();
};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
if (isa<omp::DataOp>(op)) {
builder.restoreIP(ompBuilder->createTargetData(
ompLoc, allocaIP, builder.saveIP(), builder.getInt64(deviceID), ifCond,
info, genMapInfoCB, nullptr, bodyGenCB));
} else {
builder.restoreIP(ompBuilder->createTargetData(
ompLoc, allocaIP, builder.saveIP(), builder.getInt64(deviceID), ifCond,
info, genMapInfoCB, &RTLFn));
}
return bodyGenStatus;
}
/// Lowers the FlagsAttr which is applied to the module on the device
/// pass when offloading, this attribute contains OpenMP RTL globals that can
/// be passed as flags to the frontend, otherwise they are set to default
LogicalResult convertFlagsAttr(Operation *op, mlir::omp::FlagsAttr attribute,
LLVM::ModuleTranslation &moduleTranslation) {
if (!cast<mlir::ModuleOp>(op))
return failure();
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
ompBuilder->M.addModuleFlag(llvm::Module::Max, "openmp-device",
attribute.getOpenmpDeviceVersion());
if (attribute.getNoGpuLib())
return success();
ompBuilder->createGlobalFlag(
attribute.getDebugKind() /*LangOpts().OpenMPTargetDebug*/,
"__omp_rtl_debug_kind");
ompBuilder->createGlobalFlag(
attribute
.getAssumeTeamsOversubscription() /*LangOpts().OpenMPTeamSubscription*/
,
"__omp_rtl_assume_teams_oversubscription");
ompBuilder->createGlobalFlag(
attribute
.getAssumeThreadsOversubscription() /*LangOpts().OpenMPThreadSubscription*/
,
"__omp_rtl_assume_threads_oversubscription");
ompBuilder->createGlobalFlag(
attribute.getAssumeNoThreadState() /*LangOpts().OpenMPNoThreadState*/,
"__omp_rtl_assume_no_thread_state");
ompBuilder->createGlobalFlag(
attribute
.getAssumeNoNestedParallelism() /*LangOpts().OpenMPNoNestedParallelism*/
,
"__omp_rtl_assume_no_nested_parallelism");
return success();
}
static bool getTargetEntryUniqueInfo(llvm::TargetRegionEntryInfo &targetInfo,
omp::TargetOp targetOp,
llvm::StringRef parentName = "") {
auto fileLoc = targetOp.getLoc()->findInstanceOf<FileLineColLoc>();
assert(fileLoc && "No file found from location");
StringRef fileName = fileLoc.getFilename().getValue();
llvm::sys::fs::UniqueID id;
if (auto ec = llvm::sys::fs::getUniqueID(fileName, id)) {
targetOp.emitError("Unable to get unique ID for file");
return false;
}
uint64_t line = fileLoc.getLine();
targetInfo = llvm::TargetRegionEntryInfo(parentName, id.getDevice(),
id.getFile(), line);
return true;
}
static bool targetOpSupported(Operation &opInst) {
auto targetOp = cast<omp::TargetOp>(opInst);
if (targetOp.getIfExpr()) {
opInst.emitError("If clause not yet supported");
return false;
}
if (targetOp.getDevice()) {
opInst.emitError("Device clause not yet supported");
return false;
}
if (targetOp.getThreadLimit()) {
opInst.emitError("Thread limit clause not yet supported");
return false;
}
if (targetOp.getNowait()) {
opInst.emitError("Nowait clause not yet supported");
return false;
}
return true;
}
static void
handleDeclareTargetMapVar(MapInfoData &mapData,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder) {
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
// In the case of declare target mapped variables, the basePointer is
// the reference pointer generated by the convertDeclareTargetAttr
// method. Whereas the kernelValue is the original variable, so for
// the device we must replace all uses of this original global variable
// (stored in kernelValue) with the reference pointer (stored in
// basePointer for declare target mapped variables), as for device the
// data is mapped into this reference pointer and should be loaded
// from it, the original variable is discarded. On host both exist and
// metadata is generated (elsewhere in the convertDeclareTargetAttr)
// function to link the two variables in the runtime and then both the
// reference pointer and the pointer are assigned in the kernel argument
// structure for the host.
if (mapData.IsDeclareTarget[i]) {
// The users iterator will get invalidated if we modify an element,
// so we populate this vector of uses to alter each user on an individual
// basis to emit its own load (rather than one load for all).
llvm::SmallVector<llvm::User *> userVec;
for (llvm::User *user : mapData.OriginalValue[i]->users())
userVec.push_back(user);
for (llvm::User *user : userVec) {
if (auto *insn = dyn_cast<llvm::Instruction>(user)) {
auto *load = builder.CreateLoad(mapData.BasePointers[i]->getType(),
mapData.BasePointers[i]);
load->moveBefore(insn);
user->replaceUsesOfWith(mapData.OriginalValue[i], load);
}
}
}
}
}
// The createDeviceArgumentAccessor function generates
// instructions for retrieving (acessing) kernel
// arguments inside of the device kernel for use by
// the kernel. This enables different semantics such as
// the creation of temporary copies of data allowing
// semantics like read-only/no host write back kernel
// arguments.
//
// This currently implements a very light version of Clang's
// EmitParmDecl's handling of direct argument handling as well
// as a portion of the argument access generation based on
// capture types found at the end of emitOutlinedFunctionPrologue
// in Clang. The indirect path handling of EmitParmDecl's may be
// required for future work, but a direct 1-to-1 copy doesn't seem
// possible as the logic is rather scattered throughout Clang's
// lowering and perhaps we wish to deviate slightly.
//
// \param mapData - A container containing vectors of information
// corresponding to the input argument, which should have a
// corresponding entry in the MapInfoData containers
// OrigialValue's.
// \param arg - This is the generated kernel function argument that
// corresponds to the passed in input argument. We generated different
// accesses of this Argument, based on capture type and other Input
// related information.
// \param input - This is the host side value that will be passed to
// the kernel i.e. the kernel input, we rewrite all uses of this within
// the kernel (as we generate the kernel body based on the target's region
// which maintians references to the original input) to the retVal argument
// apon exit of this function inside of the OMPIRBuilder. This interlinks
// the kernel argument to future uses of it in the function providing
// appropriate "glue" instructions inbetween.
// \param retVal - This is the value that all uses of input inside of the
// kernel will be re-written to, the goal of this function is to generate
// an appropriate location for the kernel argument to be accessed from,
// e.g. ByRef will result in a temporary allocation location and then
// a store of the kernel argument into this allocated memory which
// will then be loaded from, ByCopy will use the allocated memory
// directly.
static llvm::IRBuilderBase::InsertPoint
createDeviceArgumentAccessor(MapInfoData &mapData, llvm::Argument &arg,
llvm::Value *input, llvm::Value *&retVal,
llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase::InsertPoint allocaIP,
llvm::IRBuilderBase::InsertPoint codeGenIP) {
builder.restoreIP(allocaIP);
mlir::omp::VariableCaptureKind capture =
mlir::omp::VariableCaptureKind::ByRef;
// Find the associated MapInfoData entry for the current input
for (size_t i = 0; i < mapData.MapClause.size(); ++i)
if (mapData.OriginalValue[i] == input) {
if (auto mapOp = mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(
mapData.MapClause[i])) {
capture = mapOp.getMapCaptureType().value_or(
mlir::omp::VariableCaptureKind::ByRef);
}
break;
}
unsigned int allocaAS = ompBuilder.M.getDataLayout().getAllocaAddrSpace();
unsigned int defaultAS =
ompBuilder.M.getDataLayout().getProgramAddressSpace();
// Create the alloca for the argument the current point.
llvm::Value *v = builder.CreateAlloca(arg.getType(), allocaAS);
if (allocaAS != defaultAS && arg.getType()->isPointerTy())
v = builder.CreatePointerBitCastOrAddrSpaceCast(
v, arg.getType()->getPointerTo(defaultAS));
builder.CreateStore(&arg, v);
builder.restoreIP(codeGenIP);
switch (capture) {
case mlir::omp::VariableCaptureKind::ByCopy: {
retVal = v;
break;
}
case mlir::omp::VariableCaptureKind::ByRef: {
retVal = builder.CreateAlignedLoad(
v->getType(), v,
ompBuilder.M.getDataLayout().getPrefTypeAlign(v->getType()));
break;
}
case mlir::omp::VariableCaptureKind::This:
case mlir::omp::VariableCaptureKind::VLAType:
assert(false && "Currently unsupported capture kind");
break;
}
return builder.saveIP();
}
// This is a variation on Clang's GenerateOpenMPCapturedVars, which
// generates different operation (e.g. load/store) combinations for
// arguments to the kernel, based on map capture kinds which are then
// utilised in the combinedInfo in place of the original Map value.
static void
createAlteredByCaptureMap(MapInfoData &mapData,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder) {
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
// if it's declare target, skip it, it's handled seperately.
if (!mapData.IsDeclareTarget[i]) {
mlir::omp::VariableCaptureKind captureKind =
mlir::omp::VariableCaptureKind::ByRef;
if (auto mapOp = mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(
mapData.MapClause[i])) {
captureKind = mapOp.getMapCaptureType().value_or(
mlir::omp::VariableCaptureKind::ByRef);
}
switch (captureKind) {
case mlir::omp::VariableCaptureKind::ByRef: {
// Currently handles array sectioning lowerbound case, but more
// logic may be required in the future. Clang invokes EmitLValue,
// which has specialised logic for special Clang types such as user
// defines, so it is possible we will have to extend this for
// structures or other complex types. As the general idea is that this
// function mimics some of the logic from Clang that we require for
// kernel argument passing from host -> device.
if (auto mapOp = mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(
mapData.MapClause[i])) {
if (!mapOp.getBounds().empty() && mapData.BaseType[i]->isArrayTy()) {
std::vector<llvm::Value *> idx =
std::vector<llvm::Value *>{builder.getInt64(0)};
for (int i = mapOp.getBounds().size() - 1; i >= 0; --i) {
if (auto boundOp =
mlir::dyn_cast_if_present<mlir::omp::DataBoundsOp>(
mapOp.getBounds()[i].getDefiningOp())) {
idx.push_back(
moduleTranslation.lookupValue(boundOp.getLowerBound()));
}
}
mapData.Pointers[i] = builder.CreateInBoundsGEP(
mapData.BaseType[i], mapData.Pointers[i], idx);
}
}
} break;
case mlir::omp::VariableCaptureKind::ByCopy: {
llvm::Type *type = mapData.BaseType[i];
llvm::Value *newV;
if (mapData.Pointers[i]->getType()->isPointerTy())
newV = builder.CreateLoad(type, mapData.Pointers[i]);
else
newV = mapData.Pointers[i];
if (!type->isPointerTy()) {
auto curInsert = builder.saveIP();
builder.restoreIP(findAllocaInsertPoint(builder, moduleTranslation));
auto *memTempAlloc =
builder.CreateAlloca(builder.getPtrTy(), nullptr, ".casted");
builder.restoreIP(curInsert);
builder.CreateStore(newV, memTempAlloc);
newV = builder.CreateLoad(builder.getPtrTy(), memTempAlloc);
}
mapData.Pointers[i] = newV;
mapData.BasePointers[i] = newV;
} break;
case mlir::omp::VariableCaptureKind::This:
case mlir::omp::VariableCaptureKind::VLAType:
mapData.MapClause[i]->emitOpError("Unhandled capture kind");
break;
}
}
}
}
static LogicalResult
convertOmpTarget(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (!targetOpSupported(opInst))
return failure();
auto parentFn = opInst.getParentOfType<LLVM::LLVMFuncOp>();
auto targetOp = cast<omp::TargetOp>(opInst);
auto &targetRegion = targetOp.getRegion();
DataLayout dl = DataLayout(opInst.getParentOfType<ModuleOp>());
SmallVector<Value> mapOperands = targetOp.getMapOperands();
LogicalResult bodyGenStatus = success();
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto bodyCB = [&](InsertPointTy allocaIP,
InsertPointTy codeGenIP) -> InsertPointTy {
// Forward target-cpu and target-features function attributes from the
// original function to the new outlined function.
llvm::Function *llvmParentFn =
moduleTranslation.lookupFunction(parentFn.getName());
llvm::Function *llvmOutlinedFn = codeGenIP.getBlock()->getParent();
assert(llvmParentFn && llvmOutlinedFn &&
"Both parent and outlined functions must exist at this point");
if (auto attr = llvmParentFn->getFnAttribute("target-cpu");
attr.isStringAttribute())
llvmOutlinedFn->addFnAttr(attr);
if (auto attr = llvmParentFn->getFnAttribute("target-features");
attr.isStringAttribute())
llvmOutlinedFn->addFnAttr(attr);
builder.restoreIP(codeGenIP);
unsigned argIndex = 0;
for (auto &mapOp : mapOperands) {
auto mapInfoOp =
mlir::dyn_cast<mlir::omp::MapInfoOp>(mapOp.getDefiningOp());
llvm::Value *mapOpValue =
moduleTranslation.lookupValue(mapInfoOp.getVarPtr());
const auto &arg = targetRegion.front().getArgument(argIndex);
moduleTranslation.mapValue(arg, mapOpValue);
argIndex++;
}
llvm::BasicBlock *exitBlock = convertOmpOpRegions(
targetRegion, "omp.target", builder, moduleTranslation, bodyGenStatus);
builder.SetInsertPoint(exitBlock);
return builder.saveIP();
};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
StringRef parentName = parentFn.getName();
llvm::TargetRegionEntryInfo entryInfo;
if (!getTargetEntryUniqueInfo(entryInfo, targetOp, parentName))
return failure();
int32_t defaultValTeams = -1;
int32_t defaultValThreads = 0;
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
MapInfoData mapData;
collectMapDataFromMapOperands(mapData, mapOperands, moduleTranslation, dl,
builder);
// We wish to modify some of the methods in which kernel arguments are
// passed based on their capture type by the target region, this can
// involve generating new loads and stores, which changes the
// MLIR value to LLVM value mapping, however, we only wish to do this
// locally for the current function/target and also avoid altering
// ModuleTranslation, so we remap the base pointer or pointer stored
// in the map infos corresponding MapInfoData, which is later accessed
// by genMapInfos and createTarget to help generate the kernel and
// kernel arg structure. It primarily becomes relevant in cases like
// bycopy, or byref range'd arrays. In the default case, we simply
// pass thee pointer byref as both basePointer and pointer.
if (!moduleTranslation.getOpenMPBuilder()->Config.isTargetDevice())
createAlteredByCaptureMap(mapData, moduleTranslation, builder);
llvm::OpenMPIRBuilder::MapInfosTy combinedInfos;
auto genMapInfoCB = [&](llvm::OpenMPIRBuilder::InsertPointTy codeGenIP)
-> llvm::OpenMPIRBuilder::MapInfosTy & {
builder.restoreIP(codeGenIP);
genMapInfos(builder, moduleTranslation, dl, combinedInfos, mapData, {}, {},
true);
return combinedInfos;
};
auto argAccessorCB = [&](llvm::Argument &arg, llvm::Value *input,
llvm::Value *&retVal, InsertPointTy allocaIP,
InsertPointTy codeGenIP) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// We just return the unaltered argument for the host function
// for now, some alterations may be required in the future to
// keep host fallback functions working identically to the device
// version (e.g. pass ByCopy values should be treated as such on
// host and device, currently not always the case)
if (!ompBuilder->Config.isTargetDevice()) {
retVal = cast<llvm::Value>(&arg);
return codeGenIP;
}
return createDeviceArgumentAccessor(mapData, arg, input, retVal, builder,
*ompBuilder, moduleTranslation,
allocaIP, codeGenIP);
};
llvm::SmallVector<llvm::Value *, 4> kernelInput;
for (size_t i = 0; i < mapOperands.size(); ++i) {
// declare target arguments are not passed to kernels as arguments
// TODO: We currently do not handle cases where a member is explicitly
// passed in as an argument, this will likley need to be handled in
// the near future, rather than using IsAMember, it may be better to
// test if the relevant BlockArg is used within the target region and
// then use that as a basis for exclusion in the kernel inputs.
if (!mapData.IsDeclareTarget[i] && !mapData.IsAMember[i])
kernelInput.push_back(mapData.OriginalValue[i]);
}
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTarget(
ompLoc, allocaIP, builder.saveIP(), entryInfo, defaultValTeams,
defaultValThreads, kernelInput, genMapInfoCB, bodyCB, argAccessorCB));
// Remap access operations to declare target reference pointers for the
// device, essentially generating extra loadop's as necessary
if (moduleTranslation.getOpenMPBuilder()->Config.isTargetDevice())
handleDeclareTargetMapVar(mapData, moduleTranslation, builder);
return bodyGenStatus;
}
static LogicalResult
convertDeclareTargetAttr(Operation *op, mlir::omp::DeclareTargetAttr attribute,
LLVM::ModuleTranslation &moduleTranslation) {
// Amend omp.declare_target by deleting the IR of the outlined functions
// created for target regions. They cannot be filtered out from MLIR earlier
// because the omp.target operation inside must be translated to LLVM, but
// the wrapper functions themselves must not remain at the end of the
// process. We know that functions where omp.declare_target does not match
// omp.is_target_device at this stage can only be wrapper functions because
// those that aren't are removed earlier as an MLIR transformation pass.
if (FunctionOpInterface funcOp = dyn_cast<FunctionOpInterface>(op)) {
if (auto offloadMod = dyn_cast<omp::OffloadModuleInterface>(
op->getParentOfType<ModuleOp>().getOperation())) {
if (!offloadMod.getIsTargetDevice())
return success();
omp::DeclareTargetDeviceType declareType =
attribute.getDeviceType().getValue();
if (declareType == omp::DeclareTargetDeviceType::host) {
llvm::Function *llvmFunc =
moduleTranslation.lookupFunction(funcOp.getName());
llvmFunc->dropAllReferences();
llvmFunc->eraseFromParent();
}
}
return success();
}
if (LLVM::GlobalOp gOp = dyn_cast<LLVM::GlobalOp>(op)) {
llvm::Module *llvmModule = moduleTranslation.getLLVMModule();
if (auto *gVal = llvmModule->getNamedValue(gOp.getSymName())) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
bool isDeclaration = gOp.isDeclaration();
bool isExternallyVisible =
gOp.getVisibility() != mlir::SymbolTable::Visibility::Private;
auto loc = op->getLoc()->findInstanceOf<FileLineColLoc>();
llvm::StringRef mangledName = gOp.getSymName();
auto captureClause =
convertToCaptureClauseKind(attribute.getCaptureClause().getValue());
auto deviceClause =
convertToDeviceClauseKind(attribute.getDeviceType().getValue());
// unused for MLIR at the moment, required in Clang for book
// keeping
std::vector<llvm::GlobalVariable *> generatedRefs;
std::vector<llvm::Triple> targetTriple;
auto targetTripleAttr =
op->getParentOfType<mlir::ModuleOp>()
->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName())
.dyn_cast_or_null<mlir::StringAttr>();
if (targetTripleAttr)
targetTriple.emplace_back(targetTripleAttr.data());
auto fileInfoCallBack = [&loc]() {
std::string filename = "";
std::uint64_t lineNo = 0;
if (loc) {
filename = loc.getFilename().str();
lineNo = loc.getLine();
}
return std::pair<std::string, std::uint64_t>(llvm::StringRef(filename),
lineNo);
};
ompBuilder->registerTargetGlobalVariable(
captureClause, deviceClause, isDeclaration, isExternallyVisible,
ompBuilder->getTargetEntryUniqueInfo(fileInfoCallBack), mangledName,
generatedRefs, /*OpenMPSimd*/ false, targetTriple,
/*GlobalInitializer*/ nullptr, /*VariableLinkage*/ nullptr,
gVal->getType(), gVal);
if (ompBuilder->Config.isTargetDevice() &&
(attribute.getCaptureClause().getValue() !=
mlir::omp::DeclareTargetCaptureClause::to ||
ompBuilder->Config.hasRequiresUnifiedSharedMemory())) {
ompBuilder->getAddrOfDeclareTargetVar(
captureClause, deviceClause, isDeclaration, isExternallyVisible,
ompBuilder->getTargetEntryUniqueInfo(fileInfoCallBack), mangledName,
generatedRefs, /*OpenMPSimd*/ false, targetTriple, gVal->getType(),
/*GlobalInitializer*/ nullptr,
/*VariableLinkage*/ nullptr);
}
}
}
return success();
}
/// Converts the module-level set of OpenMP requires clauses into LLVM IR using
/// OpenMPIRBuilder.
static LogicalResult
convertRequiresAttr(Operation &op, omp::ClauseRequiresAttr requiresAttr,
LLVM::ModuleTranslation &moduleTranslation) {
auto *ompBuilder = moduleTranslation.getOpenMPBuilder();
// No need to read requiresAttr here, because it has already been done in
// translateModuleToLLVMIR(). There, flags are stored in the
// OpenMPIRBuilderConfig object, available to the OpenMPIRBuilder.
auto *regFn =
ompBuilder->createRegisterRequires(ompBuilder->createPlatformSpecificName(
{"omp_offloading", "requires_reg"}));
// Add registration function as global constructor
if (regFn)
llvm::appendToGlobalCtors(ompBuilder->M, regFn, /* Priority = */ 0);
return success();
}
namespace {
/// Implementation of the dialect interface that converts operations belonging
/// to the OpenMP dialect to LLVM IR.
class OpenMPDialectLLVMIRTranslationInterface
: public LLVMTranslationDialectInterface {
public:
using LLVMTranslationDialectInterface::LLVMTranslationDialectInterface;
/// Translates the given operation to LLVM IR using the provided IR builder
/// and saving the state in `moduleTranslation`.
LogicalResult
convertOperation(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) const final;
/// Given an OpenMP MLIR attribute, create the corresponding LLVM-IR, runtime
/// calls, or operation amendments
LogicalResult
amendOperation(Operation *op, ArrayRef<llvm::Instruction *> instructions,
NamedAttribute attribute,
LLVM::ModuleTranslation &moduleTranslation) const final;
};
} // namespace
LogicalResult OpenMPDialectLLVMIRTranslationInterface::amendOperation(
Operation *op, ArrayRef<llvm::Instruction *> instructions,
NamedAttribute attribute,
LLVM::ModuleTranslation &moduleTranslation) const {
return llvm::StringSwitch<llvm::function_ref<LogicalResult(Attribute)>>(
attribute.getName())
.Case("omp.is_target_device",
[&](Attribute attr) {
if (auto deviceAttr = attr.dyn_cast<BoolAttr>()) {
llvm::OpenMPIRBuilderConfig &config =
moduleTranslation.getOpenMPBuilder()->Config;
config.setIsTargetDevice(deviceAttr.getValue());
return success();
}
return failure();
})
.Case("omp.is_gpu",
[&](Attribute attr) {
if (auto gpuAttr = attr.dyn_cast<BoolAttr>()) {
llvm::OpenMPIRBuilderConfig &config =
moduleTranslation.getOpenMPBuilder()->Config;
config.setIsGPU(gpuAttr.getValue());
return success();
}
return failure();
})
.Case("omp.host_ir_filepath",
[&](Attribute attr) {
if (auto filepathAttr = attr.dyn_cast<StringAttr>()) {
llvm::OpenMPIRBuilder *ompBuilder =
moduleTranslation.getOpenMPBuilder();
ompBuilder->loadOffloadInfoMetadata(filepathAttr.getValue());
return success();
}
return failure();
})
.Case("omp.flags",
[&](Attribute attr) {
if (auto rtlAttr = attr.dyn_cast<omp::FlagsAttr>())
return convertFlagsAttr(op, rtlAttr, moduleTranslation);
return failure();
})
.Case("omp.version",
[&](Attribute attr) {
if (auto versionAttr = attr.dyn_cast<omp::VersionAttr>()) {
llvm::OpenMPIRBuilder *ompBuilder =
moduleTranslation.getOpenMPBuilder();
ompBuilder->M.addModuleFlag(llvm::Module::Max, "openmp",
versionAttr.getVersion());
return success();
}
return failure();
})
.Case("omp.declare_target",
[&](Attribute attr) {
if (auto declareTargetAttr =
attr.dyn_cast<omp::DeclareTargetAttr>())
return convertDeclareTargetAttr(op, declareTargetAttr,
moduleTranslation);
return failure();
})
.Case(
"omp.requires",
[&](Attribute attr) {
if (auto requiresAttr = attr.dyn_cast<omp::ClauseRequiresAttr>()) {
using Requires = omp::ClauseRequires;
Requires flags = requiresAttr.getValue();
llvm::OpenMPIRBuilderConfig &config =
moduleTranslation.getOpenMPBuilder()->Config;
config.setHasRequiresReverseOffload(
bitEnumContainsAll(flags, Requires::reverse_offload));
config.setHasRequiresUnifiedAddress(
bitEnumContainsAll(flags, Requires::unified_address));
config.setHasRequiresUnifiedSharedMemory(
bitEnumContainsAll(flags, Requires::unified_shared_memory));
config.setHasRequiresDynamicAllocators(
bitEnumContainsAll(flags, Requires::dynamic_allocators));
return convertRequiresAttr(*op, requiresAttr, moduleTranslation);
}
return failure();
})
.Default([](Attribute) {
// Fall through for omp attributes that do not require lowering.
return success();
})(attribute.getValue());
return failure();
}
/// Given an OpenMP MLIR operation, create the corresponding LLVM IR
/// (including OpenMP runtime calls).
LogicalResult OpenMPDialectLLVMIRTranslationInterface::convertOperation(
Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) const {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
return llvm::TypeSwitch<Operation *, LogicalResult>(op)
.Case([&](omp::BarrierOp) {
ompBuilder->createBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
return success();
})
.Case([&](omp::TaskwaitOp) {
ompBuilder->createTaskwait(builder.saveIP());
return success();
})
.Case([&](omp::TaskyieldOp) {
ompBuilder->createTaskyield(builder.saveIP());
return success();
})
.Case([&](omp::FlushOp) {
// No support in Openmp runtime function (__kmpc_flush) to accept
// the argument list.
// OpenMP standard states the following:
// "An implementation may implement a flush with a list by ignoring
// the list, and treating it the same as a flush without a list."
//
// The argument list is discarded so that, flush with a list is treated
// same as a flush without a list.
ompBuilder->createFlush(builder.saveIP());
return success();
})
.Case([&](omp::ParallelOp op) {
return convertOmpParallel(op, builder, moduleTranslation);
})
.Case([&](omp::ReductionOp reductionOp) {
return convertOmpReductionOp(reductionOp, builder, moduleTranslation);
})
.Case([&](omp::MasterOp) {
return convertOmpMaster(*op, builder, moduleTranslation);
})
.Case([&](omp::CriticalOp) {
return convertOmpCritical(*op, builder, moduleTranslation);
})
.Case([&](omp::OrderedRegionOp) {
return convertOmpOrderedRegion(*op, builder, moduleTranslation);
})
.Case([&](omp::OrderedOp) {
return convertOmpOrdered(*op, builder, moduleTranslation);
})
.Case([&](omp::WsLoopOp) {
return convertOmpWsLoop(*op, builder, moduleTranslation);
})
.Case([&](omp::SimdLoopOp) {
return convertOmpSimdLoop(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicReadOp) {
return convertOmpAtomicRead(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicWriteOp) {
return convertOmpAtomicWrite(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicUpdateOp op) {
return convertOmpAtomicUpdate(op, builder, moduleTranslation);
})
.Case([&](omp::AtomicCaptureOp op) {
return convertOmpAtomicCapture(op, builder, moduleTranslation);
})
.Case([&](omp::SectionsOp) {
return convertOmpSections(*op, builder, moduleTranslation);
})
.Case([&](omp::SingleOp op) {
return convertOmpSingle(op, builder, moduleTranslation);
})
.Case([&](omp::TeamsOp op) {
return convertOmpTeams(op, builder, moduleTranslation);
})
.Case([&](omp::TaskOp op) {
return convertOmpTaskOp(op, builder, moduleTranslation);
})
.Case([&](omp::TaskGroupOp op) {
return convertOmpTaskgroupOp(op, builder, moduleTranslation);
})
.Case<omp::YieldOp, omp::TerminatorOp, omp::ReductionDeclareOp,
omp::CriticalDeclareOp>([](auto op) {
// `yield` and `terminator` can be just omitted. The block structure
// was created in the region that handles their parent operation.
// `reduction.declare` will be used by reductions and is not
// converted directly, skip it.
// `critical.declare` is only used to declare names of critical
// sections which will be used by `critical` ops and hence can be
// ignored for lowering. The OpenMP IRBuilder will create unique
// name for critical section names.
return success();
})
.Case([&](omp::ThreadprivateOp) {
return convertOmpThreadprivate(*op, builder, moduleTranslation);
})
.Case<omp::DataOp, omp::EnterDataOp, omp::ExitDataOp, omp::UpdateDataOp>(
[&](auto op) {
return convertOmpTargetData(op, builder, moduleTranslation);
})
.Case([&](omp::TargetOp) {
return convertOmpTarget(*op, builder, moduleTranslation);
})
.Case<omp::MapInfoOp, omp::DataBoundsOp>([&](auto op) {
// No-op, should be handled by relevant owning operations e.g.
// TargetOp, EnterDataOp, ExitDataOp, DataOp etc. and then
// discarded
return success();
})
.Default([&](Operation *inst) {
return inst->emitError("unsupported OpenMP operation: ")
<< inst->getName();
});
}
void mlir::registerOpenMPDialectTranslation(DialectRegistry &registry) {
registry.insert<omp::OpenMPDialect>();
registry.addExtension(+[](MLIRContext *ctx, omp::OpenMPDialect *dialect) {
dialect->addInterfaces<OpenMPDialectLLVMIRTranslationInterface>();
});
}
void mlir::registerOpenMPDialectTranslation(MLIRContext &context) {
DialectRegistry registry;
registerOpenMPDialectTranslation(registry);
context.appendDialectRegistry(registry);
}