Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp

594 lines
24 KiB
C++

//===- SparseReinterpretMap.cpp - reinterpret sparse tensor maps ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// File Local Helper classes.
//===----------------------------------------------------------------------===//
// CRTP to help implementing a rewriter that demaps all its inputs.
template <typename SubClass, typename SourceOp>
struct DemapInsRewriter : public OpRewritePattern<SourceOp> {
using OpRewritePattern<SourceOp>::OpRewritePattern;
using OpAdaptor = typename SourceOp::Adaptor;
LogicalResult matchAndRewrite(SourceOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// Demaps non-trivial inputs.
SmallVector<Value> deMappedIns(op->getOperands());
for (Value &in : deMappedIns)
if (auto stt = tryGetSparseTensorType(in); stt && !stt->isIdentity())
in = rewriter.create<ReinterpretMapOp>(loc, stt->getDemappedType(), in);
// CRTP call.
OpAdaptor adaptor(deMappedIns, op);
return static_cast<const SubClass *>(this)->rewriteOp(op, adaptor,
rewriter);
}
};
// Flattens an affine expression into a list of AffineDimExprs.
struct AffineDimCollector : public AffineExprVisitor<AffineDimCollector> {
explicit AffineDimCollector(unsigned dimNum) : dims(dimNum){};
void visitDimExpr(AffineDimExpr expr) { dims.set(expr.getPosition()); }
BitVector dims;
};
// Flattens an affine expression into a list of AffineDimExprs.
struct AffineExprAdmissibleVisitor
: public AffineExprVisitor<AffineExprAdmissibleVisitor> {
explicit AffineExprAdmissibleVisitor(bool isOutput)
: admissible(true), isOutput(isOutput){};
// We only allow AffineDimExpr on output.
void visitAddExpr(AffineBinaryOpExpr expr) {
if (isOutput)
admissible = false;
}
void visitMulExpr(AffineBinaryOpExpr expr) {
if (isOutput)
admissible = false;
}
// We disallow mod, floor div and ceil div on inputs.
void visitModExpr(AffineBinaryOpExpr expr) { admissible = false; }
void visitFloorDivExpr(AffineBinaryOpExpr expr) { admissible = false; }
void visitCeilDivExpr(AffineBinaryOpExpr expr) { admissible = false; }
operator bool() { return admissible; }
private:
bool admissible;
bool isOutput;
};
// The first BitVector stores levels where inadmissible exprs are used.
// The second BitVector stores the AffineDimExp that are used by the
// inadmissible expressions.
using InadmissInfo = std::pair<BitVector, BitVector>;
} // namespace
//===----------------------------------------------------------------------===//
// File Local Helper methods.
//===----------------------------------------------------------------------===//
// Collects the inadmissible affine expression imposed on levels.
static InadmissInfo collectInadmissInfo(AffineMap map, bool isOutput) {
auto ret = std::make_pair(BitVector(map.getNumResults()),
BitVector(map.getNumDims()));
AffineDimCollector collector(map.getNumDims());
for (unsigned lvl = 0, e = map.getNumResults(); lvl < e; lvl++) {
AffineExprAdmissibleVisitor admissible(isOutput);
admissible.walkPostOrder(map.getResult(lvl));
if (!admissible) {
// Record the inadmissible level.
ret.first.set(lvl);
// Record the AffineDimExpr that is used in the inadmissible expr.
collector.walkPostOrder(map.getResult(lvl));
}
}
ret.second = collector.dims;
return ret;
}
// Builds the AffineMap to replace the idx in idxMap to lvl such that all tht
// inadmissible affine expressions can be eliminated.
// For example, we can rewrite
// idxMap = (d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod 3)
// to
// idxMap = (l0, l1, l2, l3) -> (l0, l1, l2, l3)
// by composing inverse(idxMap), that is
// inverse(idxMap) . idxMap = (l0, l1, l2, l3) -> (l0 * 2 + l2, l1 * 3 + l3)
// -> ((l0 * 2 + l2) floordiv 2,
// (l1 * 3 + l3) floordiv 3,
// (l0 * 2 + l2) mod 2,
// (l1 * 3 + l3) mod 3) = (l0, l1, l2, l3)
//
// This function builds the inverse(idxMap) that replace every dimensions used
// in `info` to levels, and updates the iterator type array `itTps` for the new
// index variable introduced.
//
// Note that the returned affine map does not retain the order of the input
// affine map. Instead, it always uses the first `info.inAdlvls.count()` for the
// replaced levels, and remaining ones for unused dimensions.
// For example, to handle
// idxMap = (d0, d1) -> (d0, d1 floordiv 4, d2 mod 4)
// which is a typical map for block_2to4. The function returns:
// inverse(idxMap) = (l0, l1, d0) -> (d0, l0 * 4 + l1)
// in which, (l0, l1) together replaces `d1`, yet they appear
// before `d0` in the resulting affine map.
// The index (loop) order can later be canonicalized by a topo sort.
static AffineMap
genReplaceDimToLvlMap(const InadmissInfo &info, AffineMap idxMap,
SmallVector<utils::IteratorType> &itTps) {
MLIRContext *ctx = idxMap.getContext();
auto [inAdLvls, usedDims] = info;
// Note that idxMap does not equal to dim2Lvl map, it is computed by
// composing idx2Dim(dim2Lvl). They are only equal when idx2Dim is an
// ID map.
// TODO: we might fail here, in those case we should really return
// failure instead of assertion error.
auto lvl2Idx = inferLvlToDim(idxMap, ctx);
assert(lvl2Idx.getNumResults() <= idxMap.getNumDims());
if (lvl2Idx.getNumResults() != idxMap.getNumDims()) {
// This could happen when some dimensions are projected.
// E.g., idx2Lvl = (*i*, j, k) -> (j, k)
// ==> lvl2Idx = (j, k) -> (j, k)
// In this case, we append the unused dimesion at the end.
// ==> lvl2Idx = (j, k, *i*) -> (*i*, j, k)
SmallVector<AffineExpr> results;
AffineDimCollector usedInLvl(idxMap.getNumDims());
for (auto e : idxMap.getResults())
usedInLvl.walkPostOrder(e);
unsigned curUsedDimID = 0;
unsigned curUnusedDimID = lvl2Idx.getNumDims();
BitVector unused = usedInLvl.dims.flip();
for (unsigned i = 0; i < idxMap.getNumDims(); i++) {
if (unused.test(i))
results.push_back(getAffineDimExpr(curUnusedDimID++, ctx));
else
results.push_back(lvl2Idx.getResult(curUsedDimID++));
}
lvl2Idx =
AffineMap::get(lvl2Idx.getNumDims() + unused.count(), 0, results, ctx);
}
assert(lvl2Idx.getNumResults() == idxMap.getNumDims());
// We do not need to replace the DimExpr that is not used in inadmissible
// level expressions. We use the first inAdLvl.count() dim to represent the
// replaced level, the remainings are reserved for unchanged ones.
// Note that results from the inverse map computed previously does not follow
// the convention we used, and we need to fix the mismatch below.
unsigned curRepID = 0;
unsigned curOriID = inAdLvls.count();
SmallVector<AffineExpr> results;
SmallVector<AffineExpr> dimRep(idxMap.getNumResults(), AffineExpr());
SmallVector<utils::IteratorType> transItTps;
for (unsigned l : inAdLvls.set_bits()) {
// By our convention, the inadmissible level `l` always appears in the
// leading part (accumulated by curRepID) of the affine map's parameter
// list. Record the mapping so that we can replace all the uses of `l` to
// the correct position after the translation.
dimRep[l] = getAffineDimExpr(curRepID++, ctx);
// A new index variable is introduced for the inadmissible level, inherit
// the iterator type. E.g., if l0 = d0 floordiv 2, the
// iterator type of l0 equals to the iterator type of d0.
AffineExpr lvlExp = idxMap.getResult(l);
AffineDimCollector collector(idxMap.getNumDims());
collector.walkPostOrder(lvlExp);
// We assumes a level can only be derived from one dimension.
assert(collector.dims.count() == 1);
transItTps.push_back(itTps[collector.dims.find_first()]);
}
for (unsigned d = 0, e = idxMap.getNumDims(); d < e; d++) {
if (usedDims.test(d)) {
// The dimension is used in some of the inadmissible levels, and it need
// to be inversed. Get the inversion from the inverse map, and fix the
// mismatch captured by the above loop.
results.push_back(lvl2Idx.getResult(d).replaceDims(dimRep));
} else {
// The dimension is not used in any of the inadmissible levels, and it
// does not need to be inversed. Fix the mismatch by mapping it to the
// trailing part of the affine map (accumulated by curOriID).
results.push_back(getAffineDimExpr(curOriID++, ctx));
transItTps.push_back(itTps[d]);
}
}
unsigned numDim = idxMap.getNumDims() - usedDims.count() + inAdLvls.count();
// Update iterator type.
itTps.assign(transItTps.begin(), transItTps.end());
return AffineMap::get(numDim, 0, results, ctx);
}
// Translates the index map in the linalg::GenericOp from idx->dim map to
// idx->lvl map. Returns failure if the index map can not be translated to an
// admissible form.
// Returns the translated index map array and the iterator type array.
static std::optional<std::pair<ArrayAttr, ArrayAttr>>
translateMap(linalg::GenericOp op, PatternRewriter &rewriter) {
// idxMap is a idx2dim map before reinterpretation.
MLIRContext *ctx = op.getContext();
SmallVector<AffineMap> idxMapArray = op.getIndexingMapsArray();
SmallVector<utils::IteratorType> itTps = op.getIteratorTypesArray();
for (unsigned i = 0, e = idxMapArray.size(); i < e; i++) {
Value tensor = op->getOpOperand(i).get();
auto stt = tryGetSparseTensorType(tensor);
if (stt && !stt->isIdentity()) {
AffineMap dim2Lvl = stt->getDimToLvl();
// By composing the idx2dim(dim2lvl), we got a idx2lvl Map
idxMapArray[i] = dim2Lvl.compose(idxMapArray[i]);
}
}
// A naive way to handle common constant expressions that arise during dim2lvl
// translation.
auto populateCstMapping = [ctx](DenseMap<AffineExpr, AffineExpr> &cstMapping,
unsigned pos, int64_t lvlSz) {
if (!ShapedType::isDynamic(lvlSz)) {
auto c0 = getAffineConstantExpr(0, ctx);
auto lvlExp = getAffineDimExpr(pos, ctx);
auto szExp = getAffineConstantExpr(lvlSz, ctx);
// lvl floordiv lvlSz = 0
auto divExp =
getAffineBinaryOpExpr(AffineExprKind::FloorDiv, lvlExp, szExp);
cstMapping.try_emplace(divExp, c0);
// lvl mod lvlSz = lvl
auto modExp = getAffineBinaryOpExpr(AffineExprKind::Mod, lvlExp, szExp);
cstMapping.try_emplace(modExp, lvlExp);
}
};
unsigned boundedNum = 0;
// A fixed-point algorithm.
bool changed = true;
while (changed) {
changed = false;
for (OpOperand &operand : op->getOpOperands()) {
auto stt = tryGetSparseTensorType(operand.get());
// Skip on dense operands.
if (!stt || !stt->getEncoding())
continue;
unsigned tid = operand.getOperandNumber();
bool isOutput = &operand == op.getDpsInitOperand(0);
AffineMap idxMap = idxMapArray[tid];
InadmissInfo inAdInfo = collectInadmissInfo(idxMap, isOutput);
auto [inAdLvls, dimExprs] = inAdInfo;
for (unsigned d : dimExprs.set_bits()) {
// The first `boundedNum` used in the AffineMap is introduced to
// resolve previous inadmissible expressions. We can not replace them
// as it might bring back the inadmissible expressions.
if (d < boundedNum)
return std::nullopt;
}
if (inAdLvls.count() != 0) {
// Naive constant progagation, should be sufficient to handle block
// sparsity in our cases.
SmallVector<int64_t> lvlShape = stt->getLvlShape();
DenseMap<AffineExpr, AffineExpr> cstMapping;
unsigned position = 0;
for (unsigned lvl : inAdLvls.set_bits()) {
int64_t lvlSz = lvlShape[lvl];
populateCstMapping(cstMapping, position, lvlSz);
position++;
}
AffineMap lvl2Idx = genReplaceDimToLvlMap(inAdInfo, idxMap, itTps);
// Compose the lvl2Idx Map to all AffineIdxMap to eliminate
// inadmissible expressions.
for (unsigned tid = 0, e = idxMapArray.size(); tid < e; tid++) {
AffineMap transMap = idxMapArray[tid].compose(lvl2Idx);
idxMapArray[tid] = transMap.replace(
cstMapping, /*numResultDims=*/transMap.getNumDims(),
/*numResultSyms=*/0);
}
changed = true;
boundedNum += inAdLvls.count();
}
}
};
SmallVector<Attribute> iterAttr =
llvm::map_to_vector(itTps, [ctx](auto itTp) -> Attribute {
return linalg::IteratorTypeAttr::get(ctx, itTp);
});
return std::make_pair(rewriter.getAffineMapArrayAttr(idxMapArray),
rewriter.getArrayAttr(iterAttr));
}
// Generates a "de"mapping reinterpretation of the map.
static Value genDemap(OpBuilder &builder, SparseTensorEncodingAttr enc,
Value val) {
return builder.create<ReinterpretMapOp>(val.getLoc(), enc.withoutDimToLvl(),
val);
}
// Generates a "re"mapping reinterpretation of the map.
static Value genRemap(OpBuilder &builder, SparseTensorEncodingAttr enc,
Value val) {
return builder.create<ReinterpretMapOp>(val.getLoc(), enc, val);
}
static SmallVector<Value> remapValueRange(OpBuilder &rewriter, TypeRange types,
ValueRange outs) {
SmallVector<Value> ret(outs);
assert(outs.size() == types.size());
for (auto [r, t] : llvm::zip(ret, types))
if (r.getType() != t)
r = rewriter.create<ReinterpretMapOp>(r.getLoc(), t, r);
return ret;
}
/// Whether the operation has any sparse tensor with non-identity dim2lvl maps.
static bool hasNonIdentityOperandsOrResults(Operation *op) {
auto hasNonIdentityMap = [](Value v) {
auto stt = tryGetSparseTensorType(v);
return stt && !stt->isIdentity();
};
return llvm::any_of(op->getOperands(), hasNonIdentityMap) ||
llvm::any_of(op->getResults(), hasNonIdentityMap);
}
namespace {
//===----------------------------------------------------------------------===//
// Rewriting rules for linalg generic ops.
//===----------------------------------------------------------------------===//
/// Sparse rewriting rule for the generic `linalg` operation.
struct GenericOpReinterpretMap
: public DemapInsRewriter<GenericOpReinterpretMap, linalg::GenericOp> {
public:
using DemapInsRewriter::DemapInsRewriter;
LogicalResult rewriteOp(linalg::GenericOp linalgOp, OpAdaptor adaptor,
PatternRewriter &rewriter) const {
// Only rewrite single output operations with pure (sparse) tensor
// semantics.
if (linalgOp.getNumDpsInits() != 1 || !linalgOp.hasTensorSemantics() ||
!hasAnySparseOperandOrResult(linalgOp) ||
!hasNonIdentityOperandsOrResults(linalgOp))
return failure();
// Try translating the index map.
auto transMap = translateMap(linalgOp, rewriter);
if (!transMap)
return rewriter.notifyMatchFailure(
linalgOp, "the sparse kernel can not be sparsified.");
// On success, replace update the linalg operands and maps in place.
Value res = linalgOp.getResult(0);
auto stt = tryGetSparseTensorType(res);
auto [idxMap, itTp] = *transMap;
rewriter.startRootUpdate(linalgOp);
linalgOp.setIndexingMapsAttr(idxMap);
linalgOp.setIteratorTypesAttr(itTp);
// Use demapped arguments.
linalgOp.getInputsMutable().assign(adaptor.getInputs());
linalgOp.getDpsInitsMutable().assign(adaptor.getOutputs());
res.setType(adaptor.getOutputs()[0].getType());
rewriter.finalizeRootUpdate(linalgOp);
rewriter.setInsertionPointAfter(linalgOp);
if (stt && stt->hasEncoding()) {
Value t = genRemap(rewriter, stt->getEncoding(), res);
rewriter.replaceAllUsesExcept(res, t, t.getDefiningOp());
}
return success();
}
};
//===----------------------------------------------------------------------===//
// Reinterpret Map Rewriters for operations other than linalg.generics
//===----------------------------------------------------------------------===//
template <typename AllocOp>
struct TensorAllocDemapper : public OpRewritePattern<AllocOp> {
using OpRewritePattern<AllocOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AllocOp op,
PatternRewriter &rewriter) const override {
if (!hasNonIdentityOperandsOrResults(op))
return failure();
Location loc = op.getLoc();
auto stt = getSparseTensorType(op.getResult());
SmallVector<Value> maxDimCrds;
maxDimCrds.reserve(stt.getDimRank());
ValueRange dynSz = op.getDynamicSizes();
for (int64_t dimSz : stt.getDimShape()) {
if (ShapedType::isDynamic(dimSz)) {
Value maxCrd = rewriter.create<arith::SubIOp>(
loc, dynSz.front(), constantIndex(rewriter, loc, 1));
maxDimCrds.push_back(maxCrd);
dynSz = dynSz.drop_front();
} else {
maxDimCrds.push_back(constantIndex(rewriter, loc, dimSz - 1));
}
}
ValueRange maxLvlCrds = stt.translateCrds(rewriter, loc, maxDimCrds,
CrdTransDirectionKind::dim2lvl);
auto lvlShape = stt.getLvlShape();
SmallVector<Value> dynLvlSzs;
for (unsigned i = 0, e = lvlShape.size(); i < e; i++) {
if (ShapedType::isDynamic(lvlShape[i])) {
Value sz = rewriter.create<arith::AddIOp>(
loc, maxLvlCrds[i], constantIndex(rewriter, loc, 1));
dynLvlSzs.push_back(sz);
}
}
assert(dynSz.empty()); // should have consumed all.
rewriter.startRootUpdate(op);
op->setOperands(dynLvlSzs);
op.getResult().setType(stt.getDemappedType());
rewriter.finalizeRootUpdate(op);
rewriter.setInsertionPointAfter(op);
Value t = genRemap(rewriter, stt.getEncoding(), op.getResult());
rewriter.replaceAllUsesExcept(op.getResult(), t, t.getDefiningOp());
return success();
}
};
struct TensorInsertDemapper
: public DemapInsRewriter<TensorInsertDemapper, tensor::InsertOp> {
using DemapInsRewriter::DemapInsRewriter;
LogicalResult rewriteOp(tensor::InsertOp op, OpAdaptor adaptor,
PatternRewriter &rewriter) const {
if (!hasAnySparseResult(op))
return failure();
Location loc = op.getLoc();
auto stt = getSparseTensorType(op.getResult());
ValueRange lvlCrd = stt.translateCrds(rewriter, loc, op.getIndices(),
CrdTransDirectionKind::dim2lvl);
auto insertOp = rewriter.create<sparse_tensor::InsertOp>(
loc, op.getScalar(), adaptor.getDest(), lvlCrd);
Value out = genRemap(rewriter, stt.getEncoding(), insertOp.getResult());
rewriter.replaceOp(op, out);
return success();
}
};
struct ForeachOpDemapper
: public DemapInsRewriter<ForeachOpDemapper, ForeachOp> {
using DemapInsRewriter::DemapInsRewriter;
LogicalResult rewriteOp(ForeachOp op, OpAdaptor adaptor,
PatternRewriter &rewriter) const {
// Only handle operations with sparse input/output with non-identity dim2lvl
// maps.
if (!hasNonIdentityOperandsOrResults(op))
return failure();
// TODO: demap constant as well.
if (auto constOp = op.getTensor().getDefiningOp<arith::ConstantOp>())
if (auto attr = dyn_cast<SparseElementsAttr>(constOp.getValue()))
return failure();
Location loc = op.getLoc();
// Cache the type information since we update the foreach op in-place.
auto srcStt = getSparseTensorType(op.getTensor());
SmallVector<Type> prevRetTps(op.getResultTypes());
rewriter.startRootUpdate(op);
op.getTensorMutable().assign(adaptor.getTensor());
op.getInitArgsMutable().assign(adaptor.getInitArgs());
// Update results' types.
for (auto r : op.getResults())
if (auto stt = tryGetSparseTensorType(r); stt && !stt->isIdentity())
r.setType(stt->getDemappedType());
Level lvlRank = getSparseTensorType(adaptor.getTensor()).getLvlRank();
// Update the foreach body.
SmallVector<Type> blockArgTps(lvlRank, rewriter.getIndexType());
blockArgTps.push_back(srcStt.getElementType());
blockArgTps.append(adaptor.getInitArgs().getTypes().begin(),
adaptor.getInitArgs().getTypes().end());
Block *body = op.getBody();
// Block Args: [dimCrd, val, initArgs]
unsigned preArgNum = body->getNumArguments();
for (Type t : blockArgTps)
body->addArgument(t, loc);
// Block Args: [dimCrd, val, initArgs, lvlCrds, val, DemappedArgs]
rewriter.setInsertionPointToStart(body);
ValueRange lvlCrds = body->getArguments().slice(preArgNum, lvlRank);
ValueRange dimCrds = srcStt.translateCrds(rewriter, loc, lvlCrds,
CrdTransDirectionKind::lvl2dim);
rewriter.replaceAllUsesWith(
body->getArguments().take_front(srcStt.getDimRank()), dimCrds);
body->eraseArguments(0, srcStt.getDimRank());
// Block Args: [val, initArgs, lvlCrds, val, DemappedArgs]
unsigned numInitArgs = op.getInitArgs().size();
rewriter.replaceAllUsesWith(body->getArgument(0),
body->getArgument(lvlRank + numInitArgs + 1));
body->eraseArgument(0);
// Block Args: [initArgs, lvlCrds, val, DemappedArgs]
ValueRange srcArgs = body->getArguments().take_front(numInitArgs);
ValueRange dstArgs = body->getArguments().take_back(numInitArgs);
// Remap back before replacement.
SmallVector<Value> reMappedArgs =
remapValueRange(rewriter, srcArgs.getTypes(), dstArgs);
rewriter.replaceAllUsesWith(srcArgs, reMappedArgs);
body->eraseArguments(0, numInitArgs);
// Block Args: [lvlCrds, DemappedArgs] and we are done.
// Update yield operations.
if (numInitArgs != 0) {
rewriter.setInsertionPointToEnd(body);
auto yield = llvm::cast<YieldOp>(body->getTerminator());
if (auto stt = tryGetSparseTensorType(yield.getResult());
stt && !stt->isIdentity()) {
Value y = genDemap(rewriter, stt->getEncoding(), yield.getResult());
rewriter.create<YieldOp>(loc, y);
rewriter.eraseOp(yield);
}
}
rewriter.finalizeRootUpdate(op);
rewriter.setInsertionPointAfter(op);
SmallVector<Value> outs =
remapValueRange(rewriter, prevRetTps, op.getResults());
// Replace all the uses of the foreach results, expect the use in
// reinterpret_map used to remap the output.
for (auto [from, to] : llvm::zip(op.getResults(), outs))
rewriter.replaceAllUsesExcept(from, to, to.getDefiningOp());
return success();
}
};
} // namespace
void mlir::populateSparseReinterpretMap(RewritePatternSet &patterns,
ReinterpretMapScope scope) {
if (scope == ReinterpretMapScope::kAll ||
scope == ReinterpretMapScope::kGenericOnly) {
patterns.add<GenericOpReinterpretMap>(patterns.getContext());
}
if (scope == ReinterpretMapScope::kAll ||
scope == ReinterpretMapScope::kExceptGeneric) {
patterns.add<TensorAllocDemapper<bufferization::AllocTensorOp>,
TensorAllocDemapper<tensor::EmptyOp>, TensorInsertDemapper,
ForeachOpDemapper>(patterns.getContext());
}
}