Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp

2101 lines
87 KiB
C++

//===- Sparsification.cpp - Implementation of sparsification --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements converting sparse tensor types to actual sparse code.
//
//===----------------------------------------------------------------------===//
#include "CodegenEnv.h"
#include "CodegenUtils.h"
#include "LoopEmitter.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TensorEncoding.h"
#include "llvm/ADT/SmallBitVector.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// Declarations
//===----------------------------------------------------------------------===//
namespace {
/// Iteration graph sorting.
enum class SortMask : unsigned {
// The individual mask bits.
kIncludeDenseOutput = 0x1, // b001
kIncludeDenseInput = 0x2, // b010
kIncludeUndef = 0x4, // b100
// The subsets of mask bits.
kIncludeAll = 0x7, // b111
kIncludeDense = 0x3, // b011
kSparseOnly = 0x0, // b000
};
inline static bool includesAny(SortMask mask1, SortMask mask2) {
return static_cast<unsigned>(mask1) & static_cast<unsigned>(mask2);
}
inline static bool includesDenseInput(SortMask mask) {
return includesAny(mask, SortMask::kIncludeDenseInput);
}
inline static bool includesDenseOutput(SortMask mask) {
return includesAny(mask, SortMask::kIncludeDenseOutput);
}
inline static bool includesDense(SortMask mask) {
return includesAny(mask, SortMask::kIncludeDense);
}
inline static bool includesUndef(SortMask mask) {
return includesAny(mask, SortMask::kIncludeUndef);
}
/// A helper class that visits an affine expression and tries to find an
/// AffineDimExpr to which the corresponding iterator from a GenericOp matches
/// the desired iterator type.
class AffineDimFinder : public AffineExprVisitor<AffineDimFinder> {
public:
explicit AffineDimFinder(linalg::GenericOp op)
: iterTypes(op.getIteratorTypes()) {}
// Overrides method from AffineExprVisitor.
void visitDimExpr(AffineDimExpr expr) {
if (pickedDim == nullptr ||
pickIterType ==
cast<linalg::IteratorTypeAttr>(iterTypes[expr.getPosition()])
.getValue()) {
pickedDim = expr;
}
}
/// Set the desired iterator type that we want to pick.
void setPickedIterType(utils::IteratorType iterType) {
pickIterType = iterType;
}
/// Get the desired AffineDimExpr.
AffineDimExpr getDimExpr() const { return pickedDim.cast<AffineDimExpr>(); }
private:
/// The picked AffineDimExpr after visit. This must be stored as
/// `AffineExpr` rather than `AffineDimExpr`, because the latter
/// doesn't have a default ctor.
AffineExpr pickedDim;
/// The iterator type that we want.
utils::IteratorType pickIterType;
/// The mapping between dim=>iterator type.
ArrayAttr iterTypes;
};
// Flattens an affine expression into a list of AffineDimExprs.
struct AffineDimCollector : public AffineExprVisitor<AffineDimCollector> {
// Overrides method from AffineExprVisitor.
void visitDimExpr(AffineDimExpr expr) { dims.push_back(expr); }
SmallVector<AffineDimExpr> dims;
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparsifier analysis methods.
//===----------------------------------------------------------------------===//
// TODO: the "idx"-vs-"ldx" naming convention is not self-explanatory,
// and those letters are too easy to confuse visually. We should switch
// to a more self-explanatory naming convention like "curLoop"-vs-"prevLoop"
// (assuming that's the actual meaning behind the "idx"-vs-"ldx" convention).
/// Determines if affine expression is invariant.
static bool isInvariantAffine(AffineExpr a, ArrayRef<LoopId> loopStack,
LoopId ldx, bool &isAtLoop) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
const LoopId i = a.cast<AffineDimExpr>().getPosition();
if (i == ldx) {
isAtLoop = true;
// Must be invariant if we are at the given loop.
return true;
}
bool isInvariant = false;
for (LoopId l : loopStack) {
isInvariant = (l == i);
if (isInvariant)
break;
}
return isInvariant;
}
case AffineExprKind::Add:
case AffineExprKind::Mul: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return isInvariantAffine(binOp.getLHS(), loopStack, ldx, isAtLoop) &&
isInvariantAffine(binOp.getRHS(), loopStack, ldx, isAtLoop);
}
default: {
assert(a.isa<AffineConstantExpr>());
return true;
}
}
}
/// Determines if affine expression is invariant.
static bool isInvariantAffine(CodegenEnv &env, AffineExpr a, LoopId ldx,
bool &isAtLoop) {
return isInvariantAffine(a, env.getCurrentLoopStack(), ldx, isAtLoop);
}
/// Helper method to construct a permuted dimension ordering
/// that adheres to the given topological sort.
//
// FIXME: does the above actually mean "dimensions", or should it say
// "level ordering"? The same dim/lvl confusion applies to all the code
// and comments in the definition below.
static AffineMap permute(CodegenEnv &env, AffineMap m) {
assert(m.getNumDims() + env.merger().getNumFilterLoops() ==
env.topSortSize() &&
"size mismatch");
// Construct the inverse of `m`; to avoid the asymptotic complexity
// of calling `m.getPermutedPosition` repeatedly.
//
// The variable `perm` must use `unsigned` rather than `Dimension`/`Level`,
// because that's what `AffineMap::getPermutationMap` requires.
// TODO: however, `perm` should be renamed to make clear what exactly
// it's storing a permutation of.
SmallVector<unsigned> perm;
const unsigned numResults = m.getNumResults();
BitVector worklist(numResults, true);
LoopOrd loopDepth = 1;
// Construct the permutation.
while (worklist.any() && loopDepth <= env.topSortSize()) {
const unsigned preSize = perm.size();
for (unsigned dim : worklist.set_bits()) {
bool isAtLoop = false;
if (m.getResult(dim).isa<AffineConstantExpr>() ||
(isInvariantAffine(m.getResult(dim), env.getLoopStackUpTo(loopDepth),
env.topSortAt(loopDepth - 1), isAtLoop) &&
isAtLoop)) {
// If the matching affine is constant expression or just become
// invariant. We can visit the dimension now without breaking the
// topSort constraint.
perm.push_back(dim);
}
}
// Removes resolved dimension.
for (unsigned i = preSize, e = perm.size(); i < e; i++)
worklist.reset(perm[i]);
// Try entering the next loop in the stack.
loopDepth++;
}
assert(perm.size() == numResults);
return AffineMap::getPermutationMap(perm, env.op().getContext());
}
/// Helper method to inspect affine expressions. Rejects cases where the
/// same index is used more than once. Also rejects compound affine
/// expressions in sparse dimensions.
/// filterIdx stores the current filter loop idx should be used for the next
/// compound affine sparse level, and it will be incremented by one when
/// used.
static bool findAffine(Merger &merger, TensorId tid, Level lvl, AffineExpr a,
DimLevelType dlt, LoopId &filterLdx,
bool setLvlFormat = true) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
const LoopId idx = merger.makeLoopId(a.cast<AffineDimExpr>().getPosition());
if (!isUndefDLT(merger.getLvlType(tid, idx)))
return false; // used more than once
if (setLvlFormat)
merger.setLevelAndType(tid, idx, lvl, dlt);
return true;
}
case AffineExprKind::Add:
case AffineExprKind::Mul:
case AffineExprKind::Constant: {
if (!isDenseDLT(dlt) && setLvlFormat) {
assert(isUndefDLT(merger.getLvlType(tid, filterLdx)));
// Use a filter loop for sparse affine expression.
merger.setLevelAndType(tid, filterLdx, lvl, dlt);
++filterLdx;
}
if (auto binOp = a.dyn_cast<AffineBinaryOpExpr>()) {
// We do not set dim level format for affine expression like d0 + d1 on
// either loop index at d0 or d1.
// We continue the recursion merely to check whether current affine is
// admissible or not.
return findAffine(merger, tid, lvl, binOp.getLHS(), dlt, filterLdx,
false) &&
findAffine(merger, tid, lvl, binOp.getRHS(), dlt, filterLdx,
false);
}
// Falls through when it is a constant Affine
return true;
}
default:
return false;
}
}
/// Helper method to inspect affine expressions for index variable reduction
/// based codegen. It finds the dependent index set for all tensor levels in the
/// current expression we are generating.
///
/// For example, when handling A[i+j][j+k], we build the two way mapping in
/// merger between (tensor, level) pairs and their dependent index variable set:
/// A_0 <=> [i, j] and A_1 <=> [j, k]
///
/// It rejects cases (returns false)
/// 1st, when the same index is used more than once, e.g., A[i+j][i]
/// 2nd, when multiplication is used in the non-trivial index expression.
/// 3rd, when a constant operand is used in the non-trivial index expression.
///
/// TODO: constant should be easy to handle.
static bool findDepIdxSet(Merger &merger, TensorId tensor, Level lvl,
AffineExpr a, DimLevelType dlt, bool isSubExp = false,
int64_t coefficient = 1) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
// Only allow positive coefficients on AffineDimExpr.
if (coefficient <= 0)
return false;
const LoopId ldx = merger.makeLoopId(a.cast<AffineDimExpr>().getPosition());
if (!isUndefDLT(merger.getLvlType(tensor, ldx)))
return false; // used more than once, e.g., A[i][i]
// TODO: Generalizes the following two cases. A[i] (with trivial index
// expression) can be treated as a special affine index expression. We do
// not necessarily need to differentiate them.
if (!isSubExp) {
assert(coefficient == 1);
merger.setLevelAndType(tensor, ldx, lvl, dlt);
}
if (isSubExp) {
// The current loops appears in more than one affine expressions on the
// same tensor. We can not handle this case. e.g., A[i+j][i+k], `i` is
// used twice.
if (merger.hasDependentLvl(ldx, tensor)) {
// TODO: This can be supported by coiterate slices if the loop idx is
// appeared on affine index for different tensor, or take slice on
// multiple dimensions when it is on the same tensor.
// E.g.,
// `d0 + d1` for indexing t0[lvl0] and `d0 + d2` for indexing t1[lvl0]
// d0_1 = getNextSliceOffset t0 along lvl0
// d0_2 = getNextSliceOffset t1 along lvl0
// if d0_1 == d0_2 then d0 = d0_1 = d0_1
// else increase min(d0_1, d0_2).
return false;
}
merger.setLoopDependentTensorLevel(ldx, tensor, lvl, dlt, coefficient);
}
return true;
}
case AffineExprKind::Constant:
// TODO: Support Constant AffineExp for slice-based codegen
case AffineExprKind::Mul: {
// TODO: Support index expression like `2 * d0`, we now only support more
// complicated cases like `2 * d0 + d1`.
if (!isSubExp)
return false;
auto binOp = a.cast<AffineBinaryOpExpr>();
auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
if (rhs.isa<AffineConstantExpr>())
std::swap(lhs, rhs);
// Must be in form of `constant * d`.
assert(lhs.isa<AffineConstantExpr>() && rhs.isa<AffineDimExpr>());
int64_t coefficient = lhs.cast<AffineConstantExpr>().getValue();
return findDepIdxSet(merger, tensor, lvl, rhs, dlt, isSubExp, coefficient);
}
case AffineExprKind::Add: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return findDepIdxSet(merger, tensor, lvl, binOp.getLHS(), dlt, true) &&
findDepIdxSet(merger, tensor, lvl, binOp.getRHS(), dlt, true);
}
default:
return false;
}
}
/// Get the total number of compound affine expressions in the
/// `getMatchingIndexingMap` for the given tensor. For the following inputs:
///
/// map = (d0, d1, d2) => (d0 + d1 : compressed, d2 : compressed)
///
/// Returns 1 (because the first level is compressed and its corresponding
/// indexing-expression is `d0 + d1`)
static unsigned getNumNonTrivialIdxExpOnSparseLvls(AffineMap map,
Value tensor) {
// The `tensor` is not guaranteed to have `RankedTensorType`, therefore
// we can't use `getRankedTensorType`/`getSparseTensorType` here.
// However, we don't need to handle `StorageSpecifierType`, so we
// can use `SparseTensorType` once we guard against non-tensors.
const auto rtp = dyn_cast<RankedTensorType>(tensor.getType());
if (!rtp)
return 0;
const SparseTensorType stt(rtp);
// FIXME: There's some dim/lvl confusion here. The previous version of
// the code asserted that there are `lvlRank`-many expressions, but then
// the `exprs[d]` expression assumes there are in fact `dimRank`-many
// expressions. Even though `ArrayRef::operator[]` will check for OOB,
// the mismatch between the assertion and the usage belies that this code
// cannot support non-permutations.
//
// Elsewhere in this file the maps returned by
// `linalg::GenericOp::getMatchingIndexingMap` are inconsistent about
// whether they're expected to have `lvlRank`-many or `dimRank`-many
// expressions (cf., `genSubscript` vs `findSparseAnnotations`);
// so those are no help in determining which is actually intended.
//
// For now we work around this problem by asserting the two ranks agree.
const Dimension dimRank = stt.getDimRank();
const Level lvlRank = stt.getLvlRank();
assert(dimRank == lvlRank && "Non-permutations not currently supported");
const auto exprs = map.getResults();
assert(static_cast<Dimension>(exprs.size()) == dimRank &&
"AffineMap does not have dimension-rank many results");
(void)dimRank;
unsigned num = 0;
for (Level l = 0; l < lvlRank; l++) {
// FIXME: `toOrigDim` is deprecated.
const Dimension d = toOrigDim(stt.getEncoding(), l);
if (!exprs[d].isa<AffineDimExpr>() && !stt.isDenseLvl(l))
num++;
}
return num;
}
/// Get the total number of sparse levels with compound affine
/// expressions, summed over all operands of the `GenericOp`.
static unsigned getNumNonTrivialIdxExpOnSparseLvls(linalg::GenericOp op) {
unsigned num = 0;
for (OpOperand &t : op->getOpOperands())
num += getNumNonTrivialIdxExpOnSparseLvls(op.getMatchingIndexingMap(&t),
t.get());
return num;
}
static bool hasNonTrivialAffineOnSparseOut(linalg::GenericOp op) {
OpOperand *out = op.getDpsInitOperand(0);
if (getSparseTensorType(out->get()).isAllDense())
return false;
return getNumNonTrivialIdxExpOnSparseLvls(op.getMatchingIndexingMap(out),
out->get());
}
/// Helper method to inspect sparse encodings in the tensor types.
/// Fills the per-dimension sparsity information for all tensors.
/// Returns true if the sparse annotations and affine subscript
/// expressions of all tensors are admissible. Returns false if
/// no annotations are found or inadmissible constructs occur.
/// We currently support two different ways to handle non-trivial index
/// expression on sparse tensors, and they accept different affine expressions.
/// When using filter-loop-based approach, it accept (almost) arbitrary affine
/// index expression on sparse tensor but it is much less efficient, and will be
/// gradually removed from the codebase.
/// When using dependent index reducton-based approach, it currently only
/// supports affine addition index expression.
static bool findSparseAnnotations(CodegenEnv &env, bool idxReducBased) {
bool annotated = false;
// `filterLdx` may be mutated by `findAffine`.
LoopId filterLdx = env.merger().getStartingFilterLoopId();
for (OpOperand &t : env.op()->getOpOperands()) {
const TensorId tid = env.makeTensorId(t.getOperandNumber());
const auto map = env.op().getMatchingIndexingMap(&t);
const auto enc = getSparseTensorEncoding(t.get().getType());
if (enc)
annotated = true;
const Level lvlRank = map.getNumResults();
assert(!enc || lvlRank == enc.getLvlRank());
assert(static_cast<Level>(env.op().getRank(&t)) == lvlRank);
// We only need to do index reduction if there is at least one non-trivial
// index expression on sparse levels.
// If all non-trivial index expression is on dense levels, we can
// efficiently rely on the random access to locate the element.
bool needIdxReduc =
enc && getNumNonTrivialIdxExpOnSparseLvls(map, t.get()) != 0;
// If then current tensor being inspected requires affine index, it need
// to be sliced.
for (Level l = 0; l < lvlRank; l++) {
// FIXME: `toOrigDim` is deprecated.
const AffineExpr a = map.getResult(toOrigDim(enc, l));
const DimLevelType dlt = enc.getLvlType(l);
if (idxReducBased && needIdxReduc) {
if (!findDepIdxSet(env.merger(), tid, l, a, dlt))
return false; // inadmissible affine expression
} else {
if (!findAffine(env.merger(), tid, l, a, dlt, filterLdx))
return false; // inadmissible affine expression
}
}
}
assert(filterLdx == env.merger().getNumLoops());
return annotated;
}
/// A helper to compute a topological sort. O(n^2) time complexity
/// as we use adj matrix for the graph.
/// The sorted result will put the first Reduction iterator to the
/// latest possible `LoopOrd`.
///
/// The `inDegree` is indexed by `LoopId`, and the `adjM` is indexed by
/// `(LoopId,LoopId)`.
static bool topSortOptimal(CodegenEnv &env,
ArrayRef<utils::IteratorType> iteratorTypes,
std::vector<unsigned> &inDegree,
std::vector<std::vector<bool>> &adjM) {
std::vector<LoopId> redIt; // reduce iterator with 0 degree
std::vector<LoopId> parIt; // parallel iterator with 0 degree
std::vector<LoopId> filterIt; // filter loop with 0 degree
const LoopId numLoops = env.merger().getNumLoops();
for (LoopId i = 0; i < numLoops; i++) {
if (inDegree[i] == 0) {
if (env.merger().isFilterLoop(i))
filterIt.push_back(i);
else if (linalg::isReductionIterator(iteratorTypes[i]))
redIt.push_back(i);
else
parIt.push_back(i);
}
}
while (!redIt.empty() || !parIt.empty() || !filterIt.empty()) {
// We always choose in order of filter loop -> parallel loop -> reduction
// loop because
// 1. Putting reduction loop early might make the loop sequence
// inadmissible.
// 2. Filter loops should be put as early as possible for better
// performance, since only one (if any) iteration will carry the
// computation. E.g., for (1 to N)
// for (1 to M)
// for (1 to K)
// if (xxx)
// O(X) computation => O(NMK+NMX) time complexity
//
// By putting the filter loop one level up, we got
//
// for (1 to N)
// for (1 to K)
// if (xxx)
// for (1 to M)
// O(X) computation => O(NK+NMX) time complexity
auto &it = !filterIt.empty() ? filterIt : (!parIt.empty() ? parIt : redIt);
auto src = it.back();
env.topSortPushBack(src);
it.pop_back();
// Update in-degree, and push 0-degree node into worklist.
for (LoopId dst = 0; dst < numLoops; dst++) {
if (adjM[src][dst] && --inDegree[dst] == 0) {
if (env.merger().isFilterLoop(dst))
filterIt.push_back(dst);
else if (linalg::isReductionIterator(iteratorTypes[dst]))
redIt.push_back(dst);
else
parIt.push_back(dst);
}
}
}
return env.topSortSize() == numLoops;
}
static void addIterOrdering(LoopId f, LoopId t,
std::vector<std::vector<bool>> &adjM,
std::vector<unsigned> &inDegree) {
if (!adjM[f][t] && f != t) {
adjM[f][t] = true;
inDegree[t]++;
}
}
/// Helper method to add all constraints from the indices in one affine
/// expression before all indices in the other affine expression. For
/// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
/// The affine expression `a` is empty iff `fidx` have a value, leading to
/// b = (i0 + i1) < fidx => i0 < fidx, i1 < fidx.
/// The affine expression `b` is empty iff `tidx` have a value, leading to
/// tidx < a = (i0 + i1) => tidx < i0, tidx < i1.
///
/// The `inDegree` is indexed by `LoopId`, and the `adjM` is indexed by
/// `(LoopId,LoopId)`.
static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
std::vector<unsigned> &inDegree, AffineExpr a,
AffineExpr b, std::optional<LoopId> fidx,
std::optional<LoopId> tidx) {
if (!a && !b) {
// Recursion leaf.
assert(fidx && tidx);
const LoopId f = *fidx, t = *tidx;
addIterOrdering(f, t, adjM, inDegree);
return;
}
// Picks an affine expression and expand (recurse into) it.
const auto toExpand = a ? a : b;
switch (toExpand.getKind()) {
case AffineExprKind::DimId: {
const std::optional<LoopId> idx{
toExpand.cast<AffineDimExpr>().getPosition()};
if (toExpand == a)
addAffineOrderings(adjM, inDegree, AffineExpr(), b, idx, tidx);
else // toExpand == b
addAffineOrderings(adjM, inDegree, a, AffineExpr(), fidx, idx);
break;
}
case AffineExprKind::Add:
case AffineExprKind::Mul: {
auto binOp = toExpand.cast<AffineBinaryOpExpr>();
if (toExpand == a) {
addAffineOrderings(adjM, inDegree, binOp.getLHS(), b, fidx, tidx);
addAffineOrderings(adjM, inDegree, binOp.getRHS(), b, fidx, tidx);
} else {
addAffineOrderings(adjM, inDegree, a, binOp.getLHS(), fidx, tidx);
addAffineOrderings(adjM, inDegree, a, binOp.getRHS(), fidx, tidx);
}
break;
}
default:
break;
}
}
static void tryRelaxAffineConstraints(linalg::GenericOp op,
std::optional<LoopId> &fldx,
AffineExpr &fa,
std::optional<LoopId> &tldx,
AffineExpr &ta) {
// We use a heuristic here to only pick one dim expression from each
// compound affine expression to establish the order between two dense
// dimensions.
if (!tldx) {
AffineDimFinder finder(op);
// NOTE: The ordering can only be loosen when the destination level is
// dense (when !tldx), for [dense, sparse] -> (d0 + d1, d2), we still
// require both d0 < d2 and d1 < d2 to ensure correct ordering (i.e.,
// no ordering like d0->d2->d1).
// TODO: this is obviously a sub optimal solution.
if (!fldx && !fa.isa<AffineConstantExpr>()) {
// Heuristic: we prefer parallel loop for lhs to reduce the chance
// we add reduce < parallel ordering.
finder.setPickedIterType(utils::IteratorType::parallel);
finder.walkPostOrder(fa);
fa = finder.getDimExpr();
fldx = finder.getDimExpr().getPosition();
}
if (!ta.isa<AffineConstantExpr>()) {
// Heuristic: we prefer reduction loop for rhs to reduce the chance
// adding reduce < parallel ordering.
finder.setPickedIterType(utils::IteratorType::reduction);
finder.walkPostOrder(ta);
ta = finder.getDimExpr();
tldx = finder.getDimExpr().getPosition();
}
}
}
static void addFilterLoopBasedConstraints(CodegenEnv &env, OpOperand &t,
OpOperand *skip, SortMask mask,
std::vector<std::vector<bool>> &adjM,
std::vector<unsigned> &inDegree) {
// Get map, encoding, and tensor-identifier.
const auto map = env.op().getMatchingIndexingMap(&t);
const auto enc = getSparseTensorEncoding(t.get().getType());
const TensorId tid = env.makeTensorId(t.getOperandNumber());
// Each tensor expression and optional dimension ordering (row-major
// by default) puts an ordering constraint on the loop indices. For
// example, the tensor expression A_ijk forces the ordering i < j < k
// on the loop indices if no explicit dimension ordering is given.
const Level lvlRank = map.getNumResults();
assert(!enc || lvlRank == enc.getLvlRank());
for (Level lvl = 0; lvl < lvlRank; lvl++) {
// FIXME: `toOrigDim` is deprecated.
AffineExpr ta = map.getResult(toOrigDim(enc, lvl));
std::optional<LoopId> tldx = env.merger().getLoopId(tid, lvl);
// Filter loops should be constructed after all the dependent loops,
// i.e., d0 + d1 < filter_loop(d0 + d1)
if (tldx && env.merger().isFilterLoop(*tldx)) {
assert(!ta.isa<AffineDimExpr>() && !isDenseDLT(enc.getLvlTypes()[lvl]));
addAffineOrderings(adjM, inDegree, ta, AffineExpr(), std::nullopt, tldx);
// Now that the ordering of affine expression is captured by filter
// loop idx, we only need to ensure the affine ordering against filter
// loop. Thus, we reset the affine express to nil here to mark it as
// resolved.
ta = AffineExpr();
}
// Skip tensor during cycle resolution, though order between filter loop
// and dependent loops need to be guaranteed unconditionally.
if (&t == skip)
continue;
if (lvl > 0) {
// FIXME: `toOrigDim` is deprecated.
AffineExpr fa = map.getResult(toOrigDim(enc, lvl - 1));
std::optional<LoopId> fldx = env.merger().getLoopId(tid, lvl - 1);
// Applying order constraints on every pair of dimExpr between two
// compound affine expressions can sometime too strict:
// E.g., for [dense, dense] -> (d0 + d1, d2 + d3).
// It is totally fine to have loop sequence d0->d2->d1->d3 instead of
// requiring d0 < d2, d1 < d2, d0 < d3, d1 < d3.
// We also relax the affine constraint when use slice-based algorithm
// as there is no filter loop for affine index on sparse dimension.
// TODO: do we really need the condition?
if (!includesDense(mask))
tryRelaxAffineConstraints(env.op(), fldx, fa, tldx, ta);
// (d0 + d1) < (d2 + d3), or
// filter_loop_d-1 < (d2 + d3), or
// (d0 + d1) < filter_loop_d, or
// filter_loop_d-1 < filter_loop_d depending on whether fa/ta is reset
// above.
addAffineOrderings(adjM, inDegree, fa, ta, fldx, tldx);
}
}
}
static void addSliceBasedConstraints(CodegenEnv &env, OpOperand &t,
OpOperand *skip, SortMask mask,
std::vector<std::vector<bool>> &adjM,
std::vector<unsigned> &inDegree) {
// Get map and encoding.
const auto map = env.op().getMatchingIndexingMap(&t);
const auto enc = getSparseTensorEncoding(t.get().getType());
// No special treatment for simple indices.
if (getNumNonTrivialIdxExpOnSparseLvls(map, t.get()) == 0)
return addFilterLoopBasedConstraints(env, t, skip, mask, adjM, inDegree);
// Skip tensor during cycle resolution, though order between filter loop
// and dependent loops need to be guaranteed unconditionally.
if (&t == skip)
return;
AffineDimFinder finder(env.op());
finder.setPickedIterType(utils::IteratorType::reduction);
// To compute iteration graph for tensor[d0 + d1 + d3, d4 + d5 + d6],
// we requires there exist d_x \in {d0, d1, d3} and d_y \in {d4, d5, d6},
// and d_x > d_y && {d0, d1, d3} - d_x > {d4, d5, d6} - d_y
const Level lvlRank = map.getNumResults();
assert(!enc || lvlRank == enc.getLvlRank());
for (Level lvl = 1; lvl < lvlRank; lvl++) {
// FIXME: `toOrigDim` is deprecated.
const AffineExpr fa = map.getResult(toOrigDim(enc, lvl - 1));
const AffineExpr ta = map.getResult(toOrigDim(enc, lvl));
if (fa.isa<AffineDimExpr>() || ta.isa<AffineDimExpr>()) {
AffineDimCollector fCollector;
fCollector.walkPostOrder(fa);
AffineDimCollector tCollector;
tCollector.walkPostOrder(ta);
for (auto fd : fCollector.dims) {
for (auto td : tCollector.dims) {
const LoopId f = env.makeLoopId(fd.getPosition());
const LoopId t = env.makeLoopId(td.getPosition());
addIterOrdering(f, t, adjM, inDegree);
}
}
continue;
}
// This is a heuristic, we pick an abitrary reduction loop from lhs and
// rhs and use them as d_x and d_y.
finder.walkPostOrder(fa);
const AffineDimExpr fexp = finder.getDimExpr();
const LoopId fldx = env.makeLoopId(fexp.getPosition());
finder.walkPostOrder(ta);
const AffineDimExpr texp = finder.getDimExpr();
const LoopId tldx = env.makeLoopId(texp.getPosition());
// d_x > d_y
addIterOrdering(fldx, tldx, adjM, inDegree);
AffineDimCollector fCollector;
fCollector.walkPostOrder(fa);
AffineDimCollector tCollector;
tCollector.walkPostOrder(ta);
// make sure dx and dy is the last;
for (auto fd : fCollector.dims) {
const LoopId f = env.makeLoopId(fd.getPosition());
addIterOrdering(f, fldx, adjM, inDegree);
}
for (auto td : tCollector.dims) {
const LoopId t = env.makeLoopId(td.getPosition());
addIterOrdering(t, tldx, adjM, inDegree);
}
// Since we only support affine addition, the order between two dim
// expression does not really matters.
// {d0, d1, d3} - d_x > {d4, d5, d6} - d_y
// This is to ensure that the affine expressions are reduced in sparse
// tensor level ordering.
// TODO: this ordering could probably be loosen if we support out-of-order
// reduction.
// TODO: the evaluation order need to be ensure to
// support affine multiplication.
for (auto fd : fCollector.dims) {
const LoopId f = env.makeLoopId(fd.getPosition());
if (f == fldx) // skip d_x
continue;
for (auto td : tCollector.dims) {
const LoopId t = env.makeLoopId(td.getPosition());
if (t == tldx) // skip d_y
continue;
addIterOrdering(f, t, adjM, inDegree);
}
}
}
}
/// Computes a topologically sorted iteration graph for the linalg operation.
/// Ensures all tensors are visited in natural index order. This is
/// essential for sparse storage formats since these only support access
/// along fixed dimensions. Even for dense storage formats, however, the natural
/// index order yields innermost unit-stride access with better spatial
/// locality.
static bool computeIterationGraph(CodegenEnv &env, SortMask mask,
OpOperand *skip, bool idxReducBased = false) {
// Set up an n x n from/to adjacency matrix of the iteration graph
// for the implicit loop indices i_0 .. i_n-1.
const unsigned numLoops = env.merger().getNumLoops();
std::vector<std::vector<bool>> adjM(numLoops,
std::vector<bool>(numLoops, false));
std::vector<unsigned> inDegree(numLoops, 0); // in-degree of each node.
const auto iteratorTypes = env.op().getIteratorTypesArray();
// Iterate over the indexing maps of every tensor in the tensor expression.
for (OpOperand &t : env.op()->getOpOperands()) {
// Get map and encoding.
const auto enc = getSparseTensorEncoding(t.get().getType());
// Skips dense inputs/outputs when not requested.
const bool isDenseInput = !enc && env.op().isDpsInput(&t);
const bool isDenseOutput = !enc && !isDenseInput;
if ((isDenseInput && !includesDenseInput(mask)) ||
(isDenseOutput && !includesDenseOutput(mask)))
continue;
// Push unrelated loops into sparse iteration space, so these
// will be skipped more often.
// TODO: Do we really need this?
if (includesUndef(mask)) {
const TensorId tid = env.makeTensorId(t.getOperandNumber());
for (LoopId i = 0; i < numLoops; i++) {
const auto dltI = env.dlt(tid, i);
if (isCompressedDLT(dltI) || isLooseCompressedDLT(dltI) ||
isSingletonDLT(dltI) || is2OutOf4DLT(dltI)) {
for (LoopId j = 0; j < numLoops; j++)
if (isUndefDLT(env.dlt(tid, j))) {
addIterOrdering(i, j, adjM, inDegree);
}
} else {
assert(isDenseDLT(dltI) || isUndefDLT(dltI));
}
}
}
// Push unrelated loops into sparse iteration space, so these
// will be skipped more often.
if (idxReducBased)
addSliceBasedConstraints(env, t, skip, mask, adjM, inDegree);
else
addFilterLoopBasedConstraints(env, t, skip, mask, adjM, inDegree);
}
// Topologically sort the iteration graph to determine loop order.
// Report failure for a cyclic iteration graph.
env.topSortClear(numLoops);
return topSortOptimal(env, iteratorTypes, inDegree, adjM);
}
//===----------------------------------------------------------------------===//
// Sparsifier synthesis methods (statements and expressions).
//===----------------------------------------------------------------------===//
/// Local bufferization of all dense and sparse data structures.
static void genBuffers(CodegenEnv &env, OpBuilder &builder) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
assert(op.getNumOperands() == op.getNumDpsInputs() + 1);
SmallVector<Range, 4> loopRange =
llvm::cast<linalg::LinalgOp>(op.getOperation())
.createLoopRanges(builder, loc);
assert(loopRange.size() == env.merger().getStartingFilterLoopId());
SmallVector<Range, 4> sortedRange;
for (unsigned i = 0, e = env.topSortSize(); i < e; i++) {
LoopId ldx = env.topSortAt(i);
// FIXME: Gets rid of filter loops since we have a better algorithm to deal
// with affine index expression.
if (ldx < env.merger().getStartingFilterLoopId()) {
sortedRange.push_back(loopRange[ldx]);
}
}
env.emitter().initializeLoopEmit(
builder, loc,
/// Generates buffer for the output tensor.
/// Note that all sparse kernels assume that when all elements are written
/// to (viz. x(i) = y(i) * z(i)), the output buffer is already initialized
/// to all zeroes and only nonzeroes values are computed and written out.
/// For updates (viz. x(i) += y(i) * z(i)), only nonzeroes values are used
/// for the updates and no assumption on the original contents of the
/// output buffer is necessary.
[&op](OpBuilder &builder, Location loc, Value memref,
Value tensor) -> Value {
// Must not be a sparse tensor.
assert(!getSparseTensorEncoding(tensor.getType()));
// Two output tensor references should point to the same object.
OpOperand *lhs = op.getDpsInitOperand(0);
assert(lhs->get() == tensor);
// An output tensor can simply materialize from the buffer of the tensor
// that appears in the outs() clause. For updates, this has the
// advantage that only the nonzero value are involved in the
// computation, keeping the operation O(nnz). In all other cases, we are
// forced to zero out the buffer to enforce the assumption above, which
// may negatively impact running complexity (viz. O(n^2 + nnz) vs.
// O(nnz) for matrices).
// TODO: use better analysis to avoid zeroing out the buffer?
bool isInit = op.isInitTensor(lhs);
Value init = memref;
if (!isInit) {
Value zero = constantZero(builder, loc,
getElementTypeOrSelf(tensor.getType()));
builder.create<linalg::FillOp>(loc, ValueRange{zero},
ValueRange{init});
}
return init;
},
[&sortedRange, &env](OpBuilder &b, Location loc, Level l) {
assert(l < env.topSortSize());
// FIXME: Remove filter loop since we have a better algorithm to
// deal with affine index expression.
if (l >= env.merger().getStartingFilterLoopId())
return Value();
return mlir::getValueOrCreateConstantIndexOp(b, loc,
sortedRange[l].size);
});
}
/// Generates index for load/store on sparse tensor.
// FIXME: It's not entirely clear what "index" means here (i.e., is it
// a "coordinate", or "Ldx", or what). So the function should be renamed
// and/or the documentation expanded in order to clarify.
static Value genIndex(CodegenEnv &env, OpOperand *t) {
const auto map = env.op().getMatchingIndexingMap(t);
const auto stt = getSparseTensorType(t->get());
const Level lvlRank = stt.getLvlRank();
assert(static_cast<Level>(map.getNumResults()) == lvlRank);
// FIXME: `toOrigDim` is deprecated.
// FIXME: above we asserted that there are `lvlRank` many results,
// but this is assuming there are in fact `dimRank` many results instead.
const AffineExpr a = map.getResult(toOrigDim(stt.getEncoding(), lvlRank - 1));
assert(a.getKind() == AffineExprKind::DimId);
const LoopId idx = env.makeLoopId(a.cast<AffineDimExpr>().getPosition());
return env.getLoopVar(idx);
}
/// Generates subscript for load/store on a dense or sparse tensor.
static Value genSubscript(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
SmallVectorImpl<Value> &args) {
const Location loc = env.op().getLoc();
const TensorId tid = env.makeTensorId(t->getOperandNumber());
const auto map = env.op().getMatchingIndexingMap(t);
const auto stt = getSparseTensorType(t->get());
if (stt.hasEncoding()) {
// For sparse tensors we only push the last-level's position onto `args`.
const auto pos = env.emitter().getPosits()[tid].back();
assert(pos);
args.push_back(pos);
} else {
// For dense tensors we push all level's coordinates onto `args`.
const Level lvlRank = stt.getLvlRank();
assert(static_cast<Level>(map.getNumResults()) == lvlRank);
for (Level l = 0; l < lvlRank; l++) {
const auto lvlExpr = map.getResult(l);
const auto lvlCrd = env.emitter().genAffine(builder, loc, lvlExpr);
args.push_back(lvlCrd);
}
}
return env.emitter().getValBuffer()[tid];
}
/// Generates insertion code to implement dynamic tensor load.
static Value genInsertionLoad(CodegenEnv &env, OpBuilder &builder,
OpOperand *t) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
// Direct lexicographic coordinate order, tensor loads as zero.
if (!env.isExpand()) {
Type tp = getElementTypeOrSelf(t->get().getType());
return constantZero(builder, loc, tp);
}
// Load from expanded access pattern.
Value index = genIndex(env, t);
return builder.create<memref::LoadOp>(loc, env.getExpandValues(), index);
}
/// Generates insertion code to implement dynamic tensor load for reduction.
static Value genInsertionLoadReduce(CodegenEnv &env, OpBuilder &builder,
OpOperand *t) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
Value identity = env.getCustomRedId();
// Direct lexicographic coordinate order, tensor loads as identity.
if (!env.isExpand())
return identity;
// Load from expanded access pattern if filled, identity otherwise.
Value values = env.getExpandValues();
Value filled = env.getExpandFilled();
Value index = genIndex(env, t);
Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
Value valAtIndex = builder.create<memref::LoadOp>(loc, values, index);
return builder.create<arith::SelectOp>(loc, isFilled, valAtIndex, identity);
}
/// Generates insertion code to implement dynamic tensor store.
static void genInsertionStore(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
Value rhs) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
// Direct insertion in lexicographic coordinate order.
if (!env.isExpand()) {
const LoopOrd numLoops = op.getRank(t);
// Retrieves the first `numLoop` induction variables.
SmallVector<Value> ivs = llvm::to_vector(
llvm::drop_end(env.emitter().getLoopIVsRange(),
env.emitter().getCurrentDepth() - numLoops));
Value chain = env.getInsertionChain();
if (!env.getValidLexInsert()) {
env.updateInsertionChain(builder.create<InsertOp>(loc, rhs, chain, ivs));
} else {
// Generates runtime check for a valid lex during reduction,
// to avoid inserting the identity value for empty reductions.
// if (validLexInsert) then
// insert(rhs) into chain
// return updated chain
// else
// return unmodified chain
scf::IfOp ifValidLexInsert = builder.create<scf::IfOp>(
loc, chain.getType(), env.getValidLexInsert(),
/*else=*/true);
// True branch.
builder.setInsertionPointToStart(ifValidLexInsert.thenBlock());
Value res = builder.create<InsertOp>(loc, rhs, chain, ivs);
builder.create<scf::YieldOp>(loc, res);
// False branch.
builder.setInsertionPointToStart(ifValidLexInsert.elseBlock());
builder.create<scf::YieldOp>(loc, chain);
// Value assignment.
builder.setInsertionPointAfter(ifValidLexInsert);
env.updateInsertionChain(ifValidLexInsert.getResult(0));
}
return;
}
// Generates insertion code along expanded access pattern.
// if (!expFilled[i]) then
// expFilled[i] = true
// expAdded[inserts++] = i
// endif
// values[i] = rhs
Value values = env.getExpandValues();
Value filled = env.getExpandFilled();
Value added = env.getExpandAdded();
Value count = env.getExpandCount();
Value index = genIndex(env, t);
Value fval = constantI1(builder, loc, false);
Value tval = constantI1(builder, loc, true);
// If statement.
Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
isFilled, fval);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
/*else=*/true);
// True branch.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
builder.create<memref::StoreOp>(loc, tval, filled, index);
builder.create<memref::StoreOp>(loc, index, added, count);
Value one = constantIndex(builder, loc, 1);
Value add = builder.create<arith::AddIOp>(loc, count, one);
builder.create<scf::YieldOp>(loc, add);
// False branch.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, count);
builder.setInsertionPointAfter(ifOp);
// Value assignment.
env.updateExpandCount(ifOp.getResult(0));
builder.create<memref::StoreOp>(loc, rhs, values, index);
}
/// Generates a load on a dense or sparse tensor.
static Value genTensorLoad(CodegenEnv &env, OpBuilder &builder, ExprId exp) {
// Test if the load was hoisted to a higher loop nest.
Value val = env.exp(exp).val;
if (val)
return val;
// Load during insertion.
linalg::GenericOp op = env.op();
OpOperand *t = &op->getOpOperand(env.exp(exp).tensor);
if (env.isSparseOutput(t)) {
if (env.isCustomReduc())
return genInsertionLoadReduce(env, builder, t);
return genInsertionLoad(env, builder, t);
}
// Actual load.
SmallVector<Value> args;
Value ptr = genSubscript(env, builder, t, args);
return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
}
/// Generates a store on a dense or sparse tensor.
static void genTensorStore(CodegenEnv &env, OpBuilder &builder, ExprId exp,
Value rhs) {
// Only unary and binary are allowed to return an uninitialized rhs
// to indicate missing output. Or otherwise a custom reduction that
// received no value to accumulate.
if (!rhs) {
assert(env.exp(exp).kind == TensorExp::Kind::kUnary ||
env.exp(exp).kind == TensorExp::Kind::kBinary ||
env.exp(exp).kind == TensorExp::Kind::kReduce);
return;
}
// Test if this is a scalarized reduction.
if (env.isReduc()) {
env.updateReduc(rhs);
return;
}
// Regular store.
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
OpOperand *t = op.getDpsInitOperand(0);
if (!env.isSparseOutput(t)) {
SmallVector<Value> args;
Value ptr = genSubscript(env, builder, t, args);
builder.create<memref::StoreOp>(loc, rhs, ptr, args);
return;
}
// Store during sparse insertion.
if (env.exp(exp).kind != TensorExp::Kind::kSelect) {
genInsertionStore(env, builder, t, rhs);
return;
}
// Select operation insertion.
Value chain = env.getInsertionChain();
scf::IfOp ifOp =
builder.create<scf::IfOp>(loc, chain.getType(), rhs, /*else=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
// Existing value was preserved to be used here.
assert(env.exp(exp).val);
Value v0 = env.exp(exp).val;
genInsertionStore(env, builder, t, v0);
env.merger().clearExprValue(exp);
// Yield modified insertion chain along true branch.
Value mchain = env.getInsertionChain();
builder.create<scf::YieldOp>(op.getLoc(), mchain);
// Yield original insertion chain along false branch.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, chain);
// Done with if statement.
env.updateInsertionChain(ifOp->getResult(0));
builder.setInsertionPointAfter(ifOp);
}
/// Generates an invariant value.
inline static Value genInvariantValue(CodegenEnv &env, ExprId exp) {
return env.exp(exp).val;
}
/// Semi-ring branches are simply inlined by the sparsifier. Prior
/// analysis has verified that all computations are "local" to the inlined
/// branch or otherwise invariantly defined outside the loop nest, with the
/// exception of index computations, which need to be relinked to actual
/// inlined cloned code.
static Value relinkBranch(CodegenEnv &env, RewriterBase &rewriter, Block *block,
Value e, LoopId ldx) {
if (auto arg = dyn_cast<BlockArgument>(e)) {
// Direct arguments of the original linalg op must be converted
// into dense tensor loads. Note that we should not encounter
// anything else. This needs to be verified by semi-ring ops.
linalg::GenericOp op = env.op();
if (arg.getOwner()->getParentOp() == op) {
const TensorId tid = env.makeTensorId(arg.getArgNumber());
OpOperand *t = &op->getOpOperand(tid);
assert(!getSparseTensorType(t->get()).hasEncoding()); // dense!
SmallVector<Value> args;
Value ptr = genSubscript(env, rewriter, t, args);
return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args);
}
} else if (Operation *def = e.getDefiningOp()) {
// Handle index computation.
if (auto indexOp = dyn_cast<linalg::IndexOp>(def))
return env.getLoopVar(env.makeLoopId(indexOp.getDim()));
// When still defined in new body, recurse into operands.
if (def->getBlock() == block) {
rewriter.setInsertionPoint(def);
for (unsigned i = 0, n = def->getNumOperands(); i < n; i++) {
rewriter.updateRootInPlace(def, [&]() {
def->setOperand(
i, relinkBranch(env, rewriter, block, def->getOperand(i), ldx));
});
}
}
}
return e;
}
/// Recursively generates tensor expression.
static Value genExp(CodegenEnv &env, RewriterBase &rewriter, ExprId e,
LoopId ldx) {
if (e == ::mlir::sparse_tensor::detail::kInvalidId)
return Value();
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
const TensorExp &exp = env.exp(e);
const auto kind = exp.kind;
if (kind == TensorExp::Kind::kTensor)
return genTensorLoad(env, rewriter, e);
if (kind == TensorExp::Kind::kInvariant)
return genInvariantValue(env, e);
if (kind == TensorExp::Kind::kLoopVar)
return env.getLoopVar(exp.loop);
if (kind == TensorExp::Kind::kReduce)
env.startCustomReduc(e); // enter custom
Value v0, v1;
// If either lhs/rhs is a synthetic zero, we infer the type for the zero value
// based on the type of the other operand.
if (exp.children.e0 != ::mlir::sparse_tensor::detail::kInvalidId &&
env.exp(exp.children.e0).kind == TensorExp::Kind::kSynZero) {
v1 = genExp(env, rewriter, exp.children.e1, ldx);
v0 = constantZero(rewriter, loc, v1.getType());
} else if (exp.children.e1 != ::mlir::sparse_tensor::detail::kInvalidId &&
env.exp(exp.children.e1).kind == TensorExp::Kind::kSynZero) {
v0 = genExp(env, rewriter, exp.children.e0, ldx);
v1 = constantZero(rewriter, loc, v0.getType());
} else {
v0 = genExp(env, rewriter, exp.children.e0, ldx);
v1 = genExp(env, rewriter, exp.children.e1, ldx);
}
Value ee;
if (kind == TensorExp::Kind::kReduce && (!v0 || !v1)) {
// custom reduce did not receive a value
} else {
ee = env.merger().buildExp(rewriter, loc, e, v0, v1);
if (ee &&
(kind == TensorExp::Kind::kUnary || kind == TensorExp::Kind::kBinary ||
kind == TensorExp::Kind::kBinaryBranch ||
kind == TensorExp::Kind::kReduce ||
kind == TensorExp::Kind::kSelect)) {
OpBuilder::InsertionGuard guard(rewriter);
ee = relinkBranch(env, rewriter, ee.getParentBlock(), ee, ldx);
}
}
if (kind == TensorExp::Kind::kReduce)
env.endCustomReduc(); // exit custom
if (kind == TensorExp::Kind::kSelect)
env.merger().setExprValue(e, v0); // Preserve value for later use.
return ee;
}
/// Hoists loop invariant tensor loads for which indices have been exhausted.
static void genInvariants(CodegenEnv &env, OpBuilder &builder, ExprId exp,
LoopId ldx, bool atStart) {
if (exp == ::mlir::sparse_tensor::detail::kInvalidId)
return;
if (env.exp(exp).kind == TensorExp::Kind::kTensor) {
// Inspect tensor indices.
bool isAtLoop = ldx == ::mlir::sparse_tensor::detail::kInvalidId;
linalg::GenericOp op = env.op();
OpOperand &t = op->getOpOperand(env.exp(exp).tensor);
const auto map = op.getMatchingIndexingMap(&t);
const auto stt = getSparseTensorType(t.get());
const Level lvlRank = stt.getLvlRank();
assert(static_cast<Level>(map.getNumResults()) == lvlRank);
for (Level l = 0; l < lvlRank; l++) {
// FIXME: `toOrigDim` is deprecated.
// FIXME: above we asserted that there are `lvlRank` many results,
// but this is assuming there are in fact `dimRank` many results instead.
const AffineExpr a = map.getResult(toOrigDim(stt.getEncoding(), l));
const auto sldx =
env.merger().getLoopId(env.makeTensorId(t.getOperandNumber()), l);
if (sldx && env.merger().isFilterLoop(*sldx)) {
if (!env.getLoopVar(*sldx))
// The filter loops has not been constructed.
return;
if (*sldx == ldx)
isAtLoop = true;
} else if (!isInvariantAffine(env, a, ldx, isAtLoop))
return; // still in play
}
// All exhausted at this level (isAtLoop denotes exactly at this LoopId).
if (!isAtLoop)
return;
OpOperand *lhs = op.getDpsInitOperand(0);
if (lhs == &t) {
// Start or end a scalarized reduction.
if (atStart) {
Value load = env.isCustomReduc() ? env.getCustomRedId()
: genTensorLoad(env, builder, exp);
env.startReduc(exp, load);
if (env.hasSparseOutput())
env.setValidLexInsert(constantI1(builder, env.op().getLoc(), false));
} else {
genTensorStore(env, builder, exp, env.endReduc());
env.clearValidLexInsert();
}
} else {
// Start or end loop invariant hoisting of a tensor load.
if (atStart)
env.merger().setExprValue(exp, genTensorLoad(env, builder, exp));
else
env.merger().clearExprValue(exp);
}
} else if (env.exp(exp).kind != TensorExp::Kind::kInvariant &&
env.exp(exp).kind != TensorExp::Kind::kLoopVar &&
env.exp(exp).kind != TensorExp::Kind::kSynZero) {
// Traverse into the binary operations. Note that we only hoist
// tensor loads, since subsequent MLIR/LLVM passes know how to
// deal with all other kinds of derived loop invariants.
if (env.exp(exp).kind == TensorExp::Kind::kReduce)
env.startCustomReduc(exp); // enter custom
const ExprId e0 = env.exp(exp).children.e0;
const ExprId e1 = env.exp(exp).children.e1;
genInvariants(env, builder, e0, ldx, atStart);
genInvariants(env, builder, e1, ldx, atStart);
if (env.exp(exp).kind == TensorExp::Kind::kReduce)
env.endCustomReduc(); // exit custom
}
}
/// Generates an expanded access pattern in innermost dimension.
static void genExpand(CodegenEnv &env, OpBuilder &builder, LoopOrd at,
bool atStart) {
linalg::GenericOp op = env.op();
OpOperand *lhs = op.getDpsInitOperand(0);
if (!env.atExpandLevel(lhs, op.getRank(lhs), at))
return; // not needed at this level
assert(!env.isReduc());
// Generate start or end of an expanded access pattern. Note that because
// an expansion does not rely on the ongoing contents of the sparse storage
// scheme, we can use the original tensor as incoming SSA value (which
// simplifies codegen a bit). If expansion on the actual contents is ever
// needed, we will need to use the SSA value in the insertion chain instead.
Value tensor = lhs->get();
Location loc = op.getLoc();
if (atStart) {
auto dynShape = {ShapedType::kDynamic};
Type etp = cast<ShapedType>(tensor.getType()).getElementType();
Type t1 = MemRefType::get(dynShape, etp);
Type t2 = MemRefType::get(dynShape, builder.getI1Type());
Type t3 = MemRefType::get(dynShape, builder.getIndexType());
Type t4 = builder.getIndexType();
auto r = builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
assert(r.getNumResults() == 4);
env.startExpand(r.getResult(0), r.getResult(1), r.getResult(2),
r.getResult(3));
} else {
SmallVector<Value> indices;
for (LoopOrd i = 0; i < at; i++)
indices.push_back(env.emitter().getLoopIV(i));
Value values = env.getExpandValues();
Value filled = env.getExpandFilled();
Value added = env.getExpandAdded();
Value count = env.getExpandCount();
Value chain = env.getInsertionChain();
Value compress = builder.create<CompressOp>(loc, values, filled, added,
count, chain, indices);
env.updateInsertionChain(compress);
env.endExpand();
}
}
/// Returns parallelization strategy. Any implicit loop in the Linalg
/// operation that is marked "parallel" is a candidate. Whether it is actually
/// converted to a parallel operation depends on the requested strategy.
static bool isParallelFor(CodegenEnv &env, bool isOuter, bool isSparse) {
// Reject parallelization of sparse output.
if (env.hasSparseOutput())
return false;
// Parallel loops on tensor expansion can cause data races.
if (env.isExpand())
return false;
// Inspect strategy.
switch (env.options().parallelizationStrategy) {
case SparseParallelizationStrategy::kNone:
return false;
case SparseParallelizationStrategy::kDenseOuterLoop:
return isOuter && !isSparse;
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
return isOuter;
case SparseParallelizationStrategy::kDenseAnyLoop:
return !isSparse;
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
return true;
}
llvm_unreachable("unexpected parallelization strategy");
}
/// Whether or not the current loop being generated should be parallized (if
/// possible) according to the configuration.
static bool shouldTryParallize(CodegenEnv &env, LoopId ldx, bool isOuter,
ArrayRef<TensorLevel> tidLvls) {
linalg::GenericOp op = env.op();
auto iteratorTypes = op.getIteratorTypesArray();
bool isSparse = llvm::any_of(tidLvls, [ldx, &env](TensorLevel tidLvl) {
// Queries the DLT based on the tensor id and loop idx, as requested by
// `CodegenEnv::dlt(TensorId, LoopIdx)`. The returned DLT from CodegenEnv
// should be consistent with the DLT indexed by <TensorId, Level>.
const auto dlt = env.dlt(env.unpackTensorLevel(tidLvl).first, ldx);
return isCompressedDLT(dlt) || isSingletonDLT(dlt);
});
return isParallelFor(env, isOuter, isSparse);
}
/// Generates a "filter loop" on the given tid level to locate a coordinate that
/// is of the same value as evaluated by the affine expression in its matching
/// indexing map.
static Operation *genFilterLoop(CodegenEnv &env, OpBuilder &builder, LoopId ldx,
TensorLevel tidLvl) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
assert(env.merger().isFilterLoop(ldx));
const auto [tid, lvl] = env.unpackTensorLevel(tidLvl);
// tids/lvls must only have one value because filter loops only
// corresponding to the one and only sparse tensor level.
OpOperand *t = &op->getOpOperand(tid);
auto enc = getSparseTensorEncoding(t->get().getType());
// Retrieves the affine expression for the filter loop.
// FIXME: `toOrigDim` is deprecated.
AffineExpr a = op.getMatchingIndexingMap(t).getResult(toOrigDim(enc, lvl));
return env.emitter().enterFilterLoopOverTensorAtLvl(builder, loc, tid, lvl,
a, reduc);
});
return loop;
}
/// Emit a loop to coiterate over the list of tensor levels. The generated loop
/// can either be a for loop or while loop depending on whether there is at most
/// one sparse level in the list.
static Operation *genCoIteration(CodegenEnv &env, OpBuilder &builder,
LoopId idx, ArrayRef<TensorLevel> tidLvls,
bool tryParallel, bool needsUniv) {
Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
// Construct the while-loop with a parameter for each
// index.
return env.emitter().enterCoIterationOverTensorsAtLvls(
builder, env.op().getLoc(), tidLvls, reduc, tryParallel,
/*genDedup=*/true, needsUniv);
});
assert(loop);
return loop;
}
/// Generates a for-loop or a while-loop, depending on whether it implements
/// singleton iteration or co-iteration over the given conjunction.
static Operation *genLoop(CodegenEnv &env, OpBuilder &builder, LoopOrd at,
bool needsUniv, ArrayRef<TensorLevel> tidLvls) {
const LoopId ldx = env.topSortAt(at);
if (env.merger().isFilterLoop(ldx)) {
assert(tidLvls.size() == 1);
return genFilterLoop(env, builder, ldx, tidLvls.front());
}
bool tryParallel = shouldTryParallize(env, ldx, at == 0, tidLvls);
return genCoIteration(env, builder, ldx, tidLvls, tryParallel, needsUniv);
}
/// Generates the induction structure for a while-loop.
static void finalizeWhileOp(CodegenEnv &env, OpBuilder &builder, LoopId idx,
bool needsUniv) {
Location loc = env.op().getLoc();
// Finalize each else branch of all if statements.
if (env.isReduc() || env.isExpand() || env.getInsertionChain()) {
while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
builder.getInsertionBlock()->getParentOp())) {
// Break on IfOp for slicing filtering.
if (ifOp->getAttr(LoopEmitter::getLoopEmitterLoopAttrName()) ==
StringAttr::get(ifOp->getContext(), "slice"))
break;
unsigned y = 0;
SmallVector<Value> yields;
if (env.isReduc()) {
yields.push_back(env.getReduc());
env.updateReduc(ifOp.getResult(y++));
if (env.getValidLexInsert()) {
yields.push_back(env.getValidLexInsert());
env.setValidLexInsert(ifOp.getResult(y++));
}
}
if (env.isExpand()) {
yields.push_back(env.getExpandCount());
env.updateExpandCount(ifOp->getResult(y++));
}
if (env.getInsertionChain()) {
yields.push_back(env.getInsertionChain());
env.updateInsertionChain(ifOp->getResult(y++));
}
assert(y == yields.size());
builder.create<scf::YieldOp>(loc, yields);
builder.setInsertionPointAfter(ifOp);
}
}
// No need to set the insertion point here as LoopEmitter keeps track of the
// basic block where scf::Yield should be inserted.
}
/// Generates a single if-statement within a while-loop.
static scf::IfOp genIf(CodegenEnv &env, OpBuilder &builder, LoopId ldx,
LatPointId p) {
Location loc = env.op().getLoc();
SmallVector<Type> types;
Value cond;
env.merger().foreachTensorLoopId(
p, /*simple=*/true,
[&](TensorLoopId b, TensorId tid, std::optional<Level> lvl,
DimLevelType dlt, bool isIdxRed) {
if (isIdxRed) {
// Since there is no 1:1 mapping from loop to level (multiple loops
// are required to resolve one level with non-trivial index
// expression), we need to reconstruct the tensor level types if this
// loop requires index reduction condition.
assert(lvl.has_value() && isUndefDLT(dlt));
auto stt = getSparseTensorType(env.op().getInputs()[tid]);
dlt = stt.getLvlType(*lvl);
}
assert(ldx == env.merger().loop(b));
Value clause;
if (isCompressedDLT(dlt) || isSingletonDLT(dlt) ||
isLooseCompressedDLT(dlt) || is2OutOf4DLT(dlt)) {
assert(lvl.has_value());
const Value crd = env.emitter().getCoords()[tid][*lvl];
const Value lvar = env.getLoopVar(ldx);
clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
crd, lvar);
} else {
assert(isDenseDLT(dlt) || isUndefDLT(dlt));
clause = constantI1(builder, loc, true);
}
cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
});
if (env.isReduc()) {
types.push_back(env.getReduc().getType());
if (env.getValidLexInsert())
types.push_back(env.getValidLexInsert().getType());
}
if (env.isExpand())
types.push_back(builder.getIndexType());
if (env.getInsertionChain())
types.push_back(env.getInsertionChain().getType());
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
return ifOp;
}
/// Generates end of true branch of if-statement within a while-loop.
static void endIf(CodegenEnv &env, OpBuilder &builder, scf::IfOp ifOp,
Value redInput, Value cntInput, Value insInput,
Value validIns) {
SmallVector<Value> operands;
if (env.isReduc()) {
operands.push_back(env.getReduc());
env.updateReduc(redInput);
if (env.getValidLexInsert()) {
// Any overlapping indices during a reduction creates a valid lex insert.
operands.push_back(constantI1(builder, env.op().getLoc(), true));
env.setValidLexInsert(validIns);
}
}
if (env.isExpand()) {
operands.push_back(env.getExpandCount());
env.updateExpandCount(cntInput);
}
if (env.getInsertionChain()) {
operands.push_back(env.getInsertionChain());
env.updateInsertionChain(insInput);
}
if (!operands.empty())
builder.create<scf::YieldOp>(env.op().getLoc(), operands);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
}
//===----------------------------------------------------------------------===//
// Sparsifier synthesis methods (loop sequence).
//===----------------------------------------------------------------------===//
/// Starts a loop sequence at given level. Returns true if
/// the universal loop index must be maintained at this level.
static bool startLoopSeq(CodegenEnv &env, OpBuilder &builder, ExprId exp,
LoopOrd at, LoopId idx, LoopId ldx, LatSetId lts) {
assert(!env.getLoopVar(idx));
// Emit invariants at this loop sequence level.
genInvariants(env, builder, exp, ldx, /*atStart=*/true);
// Emit access pattern expansion for sparse tensor output.
genExpand(env, builder, at, /*atStart=*/true);
// Emit further intitialization at this loop sequence level.
const LatPointId l0 = env.set(lts)[0];
bool needsUniv = false;
SmallVector<TensorLevel> tidLvls;
env.merger().foreachTensorLoopId(l0, [&](TensorLoopId b, TensorId tid,
std::optional<Level> lvl,
DimLevelType dlt, bool isIdxReduc) {
assert(env.merger().loop(b) == idx);
if (isDenseDLT(dlt) || isUndefDLT(dlt)) {
if (tid == env.merger().getSynTensorID()) {
// Needs loop emitter to set up loop bounds for synthetic tensor too if
// there is a loop condition imposed on the synthetic tensor.
tidLvls.push_back(
env.makeTensorLevel(tid, env.emitter().getCurrentDepth()));
}
needsUniv = true;
}
if (isCompressedDLT(dlt) || isSingletonDLT(dlt) ||
isLooseCompressedDLT(dlt) || is2OutOf4DLT(dlt) || isIdxReduc) {
// Only when this is a index reduction loop, can the dlt be undefined.
assert(!isUndefDLT(dlt) || isIdxReduc);
// sparse/singleton levels, or a dense/sparse index reduction loop.
tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
}
});
env.emitter().enterNewLoopSeq(builder, env.op().getLoc(), tidLvls);
// Maintain the universal index only if it is actually
// consumed by a subsequent lattice point.
if (needsUniv) {
for (const LatPointId li : env.set(lts).drop_front())
if (!env.merger().hasAnySparse(env.lat(li).simple))
return true;
}
return false;
}
static void genConstantDenseAddressFromLevel(CodegenEnv &env,
OpBuilder &builder, TensorId tid,
Level startLvl) {
// TODO: Handle affine expression on output tensor.
linalg::GenericOp op = env.op();
assert(tid < op.getNumDpsInputs());
OpOperand *input = op.getDpsInputOperands()[tid];
const auto lvlExprs = op.getMatchingIndexingMap(input).getResults();
const auto enc = getSparseTensorEncoding(input->get().getType());
if (enc) {
const Location loc = op.getLoc();
const TensorId tid = env.makeTensorId(input->getOperandNumber());
const Level lvlRank = enc.getLvlRank();
assert(lvlExprs.size() == static_cast<size_t>(lvlRank));
// FIXME: there is dim/lvl confusion here
for (Level l = startLvl; l < lvlRank; l++) {
// FIXME: `toOrigDim` is deprecated.
AffineExpr lvlExpr = lvlExprs[toOrigDim(enc, l)];
if (enc.isDenseLvl(l) && lvlExpr.isa<AffineConstantExpr>())
env.emitter().genDenseAffineAddress(
builder, loc, env.makeTensorLevel(tid, l), lvlExpr);
else
return; // break on first non-dense non-constant level
}
}
}
static void genInitConstantDenseAddress(CodegenEnv &env,
RewriterBase &rewriter) {
// We can generate address for constant affine expression before any loops
// starting from the first level as they do not depend on any thing.
// E.g., [Dense, Dense, Sparse] -> (1, 2, d0), the addresses for the first two
// levels can be determined before loops.
for (TensorId tid = 0, e = env.op().getNumDpsInputs(); tid < e; tid++)
genConstantDenseAddressFromLevel(env, rewriter, tid, 0);
}
/// Return true if the lattices bit can be iterated by a for loop.
static bool translateBitsToTidLvlPairs(
CodegenEnv &env, LatPointId li, LoopId ldx,
SmallVectorImpl<TensorLevel> &tidLvls,
SmallVectorImpl<std::pair<TensorLevel, AffineExpr>> &affineTidLvls) {
const BitVector &simple = env.lat(li).simple;
const TensorId outTid = env.merger().getOutTensorID();
const std::optional<Level> outLvl = env.merger().getLvl(outTid, ldx);
unsigned numloopCond = 0;
bool hasNonUnique = false;
env.merger().foreachTensorLoopId(
li, [&, ldx](TensorLoopId b, TensorId tid, std::optional<Level> lvl,
DimLevelType dlt, bool isIdxReduc) {
if (simple[b]) {
if (isIdxReduc) {
tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
numloopCond++;
return;
}
if (isUndefDLT(dlt)) {
// An undefined dlt in the lattices, we probably mean to
// iterate based on the level of output tensor. E.g., this
// could be a synthetic tensor (for invariants and sparse
// output tensor).
auto itType = env.op().getIteratorTypesArray()[ldx];
if (linalg::isReductionIterator(itType) &&
env.merger().getSynTensorID() == tid) {
// Coiterating with an invariant, and this is a reduction loop
// e.g., out = prod(in[i][j] op invariant);
// In this case, we can not infer the loop bound from output
// (whose level is reduced). Instead we use the synthetic tensor
// to infer the bound.
// The level of the synthetic tensor is the current loop depth;
// the rank of the synthetic tensor equals to number of loops.
lvl = env.emitter().getCurrentDepth();
} else {
// or a broadcast
// out[i][j] = in[i] (j is undef for input)
tid = outTid;
lvl = outLvl;
// Skips invalid lvl (e.g., when this is a zero ranked tensor).
if (!lvl)
return;
}
}
hasNonUnique = !isUniqueDLT(dlt) || hasNonUnique;
tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
numloopCond++;
} else if (isDenseDLT(dlt) || isIdxReduc) {
tidLvls.push_back(env.makeTensorLevel(tid, *lvl));
} else {
assert(isUndefDLT(dlt));
linalg::GenericOp op = env.op();
if (tid >= op.getNumDpsInputs())
// We only handle affine expression on input tensors (for now).
return;
OpOperand *operand = &op->getOpOperand(tid);
const auto stt = getSparseTensorType(operand->get());
// Non-annotated dense tensors requires no special handling.
if (!stt.hasEncoding())
return;
ArrayRef<AffineExpr> affines =
op.getMatchingIndexingMap(operand).getResults();
const Level lvlRank = stt.getLvlRank();
assert(affines.size() == static_cast<size_t>(lvlRank));
for (Level l = 0; l < lvlRank; l++) {
// FIXME: `toOrigDim` is deprecated.
AffineExpr exp = affines[toOrigDim(stt.getEncoding(), l)];
// Skip simple affine expression and non-dense levels (which
// have their own filter loop).
if (exp.isa<AffineDimExpr>() || !stt.isDenseLvl(l))
continue;
// Constant affine expression are handled in genLoop
if (!exp.isa<AffineConstantExpr>()) {
bool isAtLoop = false;
if (isInvariantAffine(env, exp, ldx, isAtLoop) && isAtLoop) {
// If the compound affine is invariant and we are right at the
// level. We need to generate the address according to the
// affine expression. This is also the best place we can do it
// to avoid putting it inside inner loops.
// NOTE: It assumes that the levels of the input tensor are
// initialized in order (and it is also currently guaranteed by
// computeIterationGraph), another more admissible approach
// might be accepting out-of-order access between consecutive
// dense levels.
affineTidLvls.emplace_back(env.makeTensorLevel(tid, l), exp);
}
}
}
}
});
if (isDenseDLT(env.dlt(outTid, ldx))) {
// Note that we generate dense indices of the output tensor
// unconditionally, since they may not appear in the lattice, but may be
// needed for linearized env.
tidLvls.push_back(env.makeTensorLevel(outTid, *outLvl));
}
if (numloopCond == 0) {
// Corner cases where the loop bound is defined by a *unused* operand, in
// this case, we just generate a dense "fake" loop by iterating over the
// synthetic tensor.
tidLvls.push_back(env.makeTensorLevel(env.merger().getSynTensorID(),
env.emitter().getCurrentDepth()));
numloopCond++;
}
// If we just need to one loop conditions and the conditions is not imposed on
// non-unique level, the loop can be generated by a for loop.
return numloopCond == 1 && !hasNonUnique;
}
/// Starts a single loop in current sequence.
static std::pair<Operation *, bool> startLoop(CodegenEnv &env,
OpBuilder &builder, LoopOrd at,
LatPointId li, bool needsUniv) {
// The set of tensors + lvls to generate loops on
SmallVector<TensorLevel> tidLvls;
// The set of dense tensors with non-trivial affine expression that just
// becomes invariant and the address shall now be generated at the current
// level.
SmallVector<std::pair<TensorLevel, AffineExpr>> affineTidLvls;
bool isSingleCond = translateBitsToTidLvlPairs(env, li, env.topSortAt(at),
tidLvls, affineTidLvls);
// Emit the for/while-loop control.
Operation *loop = genLoop(env, builder, at, needsUniv, tidLvls);
Location loc = env.op().getLoc();
for (auto [tidLvl, exp] : affineTidLvls) {
env.emitter().genDenseAffineAddress(builder, loc, tidLvl, exp);
}
// Until now, we have entered every <tid, lvl> pair in {cond, extra,
// affine}Tids/Lvls. The addresses of the upcoming levels which are dependent
// on constant affines expression may now be determined.
auto allTidLvls =
llvm::concat<TensorLevel>(tidLvls, llvm::make_first_range(affineTidLvls));
for (auto [tid, lvl] : env.unpackTensorLevelRange(allTidLvls)) {
if (tid != env.merger().getOutTensorID() &&
tid != env.merger().getSynTensorID())
genConstantDenseAddressFromLevel(env, builder, tid, lvl + 1);
}
return std::make_pair(loop, isSingleCond);
}
/// Ends a single loop in current sequence. Returns new values for needsUniv.
static bool endLoop(CodegenEnv &env, RewriterBase &rewriter, Operation *loop,
LoopId idx, LatPointId li, bool needsUniv,
bool isSingleCond) {
if (isSingleCond) {
// Either a for-loop or a while-loop that iterates over a slice.
// Any iteration creates a valid lex insert.
if (env.isReduc() && env.getValidLexInsert())
env.setValidLexInsert(constantI1(rewriter, env.op().getLoc(), true));
} else if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
// End a while-loop.
finalizeWhileOp(env, rewriter, idx, needsUniv);
} else {
needsUniv = false;
}
env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
env.emitter().exitCurrentLoop(rewriter, env.op().getLoc(), reduc);
return std::nullopt;
});
return needsUniv;
}
/// Ends a loop sequence at given level.
static void endLoopSeq(CodegenEnv &env, OpBuilder &builder, unsigned exp,
unsigned at, unsigned idx, unsigned ldx) {
assert(!env.getLoopVar(idx));
env.emitter().exitCurrentLoopSeq(builder, env.op().getLoc());
// Unmark bookkeeping of invariants and loop index.
genInvariants(env, builder, exp, ldx, /*atStart=*/false);
// Finalize access pattern expansion for sparse tensor output.
genExpand(env, builder, at, /*atStart=*/false);
}
/// Recursively generates code while computing iteration lattices in order
/// to manage the complexity of implementing co-iteration over unions
/// and intersections of sparse iterations spaces.
static void genStmt(CodegenEnv &env, RewriterBase &rewriter, ExprId exp,
LoopOrd at) {
// At each leaf, assign remaining tensor (sub)expression to output tensor.
if (at == env.topSortSize()) {
const LoopId ldx = env.topSortAt(at - 1);
Value rhs = genExp(env, rewriter, exp, ldx);
genTensorStore(env, rewriter, exp, rhs);
return;
}
// Construct iteration lattices for current loop index, with L0 at top.
const LoopId idx = env.topSortAt(at);
const LoopId ldx = at == 0 ? ::mlir::sparse_tensor::detail::kInvalidId
: env.topSortAt(at - 1);
const LatSetId lts =
env.merger().optimizeSet(env.merger().buildLattices(exp, idx));
// Start a loop sequence.
bool needsUniv = startLoopSeq(env, rewriter, exp, at, idx, ldx, lts);
// Emit a loop for every lattice point L0 >= Li in this loop sequence.
//
// NOTE: We cannot change this to `for (const LatPointId li : env.set(lts))`
// because the loop body causes data-movement which invalidates
// the iterator.
const unsigned lsize = env.set(lts).size();
for (unsigned i = 0; i < lsize; i++) {
const LatPointId li = env.set(lts)[i];
// Start a loop.
auto [loop, isSingleCond] = startLoop(env, rewriter, at, li, needsUniv);
// Visit all lattices points with Li >= Lj to generate the
// loop-body, possibly with if statements for coiteration.
Value redInput = env.getReduc();
Value cntInput = env.getExpandCount();
Value insInput = env.getInsertionChain();
Value validIns = env.getValidLexInsert();
// NOTE: We cannot change this to `for (const LatPointId lj : env.set(lts))`
// because the loop body causes data-movement which invalidates the
// iterator.
for (unsigned j = 0; j < lsize; j++) {
const LatPointId lj = env.set(lts)[j];
const ExprId ej = env.lat(lj).exp;
if (li == lj || env.merger().latGT(li, lj)) {
// Recurse into body of each branch.
if (!isSingleCond) {
scf::IfOp ifOp = genIf(env, rewriter, idx, lj);
genStmt(env, rewriter, ej, at + 1);
endIf(env, rewriter, ifOp, redInput, cntInput, insInput, validIns);
} else {
genStmt(env, rewriter, ej, at + 1);
}
}
}
// End a loop.
needsUniv = endLoop(env, rewriter, loop, idx, li, needsUniv, isSingleCond);
}
// End a loop sequence.
endLoopSeq(env, rewriter, exp, at, idx, ldx);
}
/// Converts the result computed by the sparse kernel into the required form.
static void genResult(CodegenEnv &env, RewriterBase &rewriter) {
linalg::GenericOp op = env.op();
OpOperand *lhs = op.getDpsInitOperand(0);
Value tensor = lhs->get();
Type resType = tensor.getType();
if (getSparseTensorEncoding(resType)) {
// The sparse tensor rematerializes from the original sparse tensor's
// underlying sparse storage format. For an insertion chain, the
// tensor materializes from the chain with 'hasInserts' enabled.
bool hasInserts = false;
if (Value chain = env.getInsertionChain()) {
hasInserts = true;
tensor = chain;
}
rewriter.replaceOpWithNewOp<LoadOp>(op, resType, tensor, hasInserts);
} else {
// To rematerialize an non-annotated tensor, simply load it
// from the bufferized value.
Value val = env.emitter().getValBuffer()[env.merger().getOutTensorID()];
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
}
}
//===----------------------------------------------------------------------===//
// Sparsifier rewriting methods.
//===----------------------------------------------------------------------===//
namespace {
/// Sparse rewriting rule for generic Lingalg operation.
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
public:
GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
: OpRewritePattern<linalg::GenericOp>(context), options(o) {}
LogicalResult matchAndRewrite(linalg::GenericOp op,
PatternRewriter &rewriter) const override {
// Only accept single output operations with pure tensor semantics.
if (op.getNumDpsInits() != 1 || !op.hasTensorSemantics())
return failure();
// Only accept trivial affine indices.
if (hasNonTrivialAffineOnSparseOut(op))
return failure();
// Sets up a code generation environment.
const unsigned numTensors = op->getNumOperands();
const unsigned numLoops = op.getNumLoops();
const unsigned numFilterLoops = getNumNonTrivialIdxExpOnSparseLvls(op);
// TODO: we should probably always use slice-based codegen whenever
// possible, we can even intermix slice-based and filter-loop based codegen.
bool idxReducBased = options.enableIndexReduction && numFilterLoops != 0;
// If we have indexing map like (d0) -> (0, d0), there might be more
// levels then loops because of the constant index, that means we can not
// use numLoops as the upper bound for ranks of all tensors.
// TODO: Constant indices are currently not support on sparse tensor, but
// are allowed in non-annotated dense tensor. Support it, it would be
// required for sparse tensor slice rank reducing too.
Level maxLvlRank = 0;
for (auto operand : op.getOperands()) {
if (auto rtp = dyn_cast<RankedTensorType>(operand.getType())) {
maxLvlRank = std::max(maxLvlRank, SparseTensorType(rtp).getLvlRank());
}
}
// A slice based algorithm for affine indices does not need filter loops.
CodegenEnv env(op, options, numTensors, numLoops,
/*numFilterLoops=*/idxReducBased ? 0 : numFilterLoops,
maxLvlRank);
// Detects sparse annotations and translates the per-level sparsity
// information for all tensors to loop indices in the kernel.
if (!findSparseAnnotations(env, idxReducBased))
return failure();
// Only standard reduction operations (add, sub, or, xor) that can be
// sparsified by merely reducing the stored values are admissible. More
// elaborate reduction operations (such as mul, and, min, max) would need
// to know whether implicit zeros occur as well. They can still be
// implemented with a custom reduction operation, accepted here as well.
if (op.getNumReductionLoops() > 0) {
Operation *yield = op.getRegion().front().getTerminator();
assert(isa<linalg::YieldOp>(yield));
Operation *redop = yield->getOperand(0).getDefiningOp();
if (!isa<arith::AddFOp>(redop) && !isa<complex::AddOp>(redop) &&
!isa<arith::AddIOp>(redop) && !isa<arith::SubFOp>(redop) &&
!isa<complex::SubOp>(redop) && !isa<arith::SubIOp>(redop) &&
!isa<arith::OrIOp>(redop) && !isa<arith::XOrIOp>(redop) &&
!isa<ReduceOp>(redop)) {
return failure();
}
}
// Constructs the tensor expressions tree from `op`, returns failure if the
// tree can not be built or the tensor expression is inadmissible.
if (failed(env.initTensorExp()))
return failure();
// Computes a topologically sorted iteration graph to ensure tensors
// are visited in natural index order. Gradually relaxes the considered
// constraints until an acyclic iteration graph results, such that sparse
// code generation can proceed. As a last resort, an attempt is made
// to resolve cycles by inserting a conversion.
bool isAdmissible = false;
bool hasCycle = true;
// A const list of all masks that we used for iteration graph
// computation. Must be ordered from more strict to less strict.
// Ideally (though might not be guaranteed), the earlier a constraint mask
// can be satisfied, the faster the generated kernel will be.
const auto allMasks = {
SortMask::kIncludeAll, SortMask::kIncludeDense,
SortMask::kIncludeDenseInput, SortMask::kIncludeDenseOutput,
SortMask::kIncludeUndef, SortMask::kSparseOnly};
for (const SortMask mask : allMasks) {
if (computeIterationGraph(env, mask, nullptr, idxReducBased)) {
hasCycle = false;
if (env.isAdmissibleTopoOrder()) {
isAdmissible = true;
break;
}
// else try a set of less strict constraints.
}
}
if (hasCycle) {
return idxReducBased
? failure() // TODO: should cycle be resolved differently?
: resolveCycle(env, rewriter); // one last shot
}
if (!isAdmissible)
return failure(); // inadmissible expression, reject
// Recursively generates code if admissible.
env.startEmit();
genBuffers(env, rewriter);
// TODO: Constant affine expression should be handled differently when using
// slice-based codegen, it does not matter now because we already reject the
// constant expression at a earlier stage.
genInitConstantDenseAddress(env, rewriter);
genStmt(env, rewriter, env.getExprId(), 0);
genResult(env, rewriter);
return success();
}
private:
// Last resort cycle resolution.
LogicalResult resolveCycle(CodegenEnv &env, PatternRewriter &rewriter) const {
// Compute topological sort while leaving out every
// sparse input tensor in succession until an acylic
// iteration graph results.
for (OpOperand *t : env.op().getDpsInputOperands()) {
const TensorId tid = env.makeTensorId(t->getOperandNumber());
Value tval = t->get();
auto srcEnc = getSparseTensorEncoding(tval.getType());
if (!srcEnc || !computeIterationGraph(env, SortMask::kSparseOnly, t))
continue;
// Found an input tensor that resolves the cycle by inserting a
// conversion into a sparse tensor that adheres to the iteration
// graph order. Also releases the temporary sparse tensor.
//
// TODO: investigate fusing the conversion with computation,
// especially if it is a direct yield!
//
auto srcTp = getRankedTensorType(tval);
// TODO: This assertion is to match the behavior from prior to
// merging dimOrdering and higherOrdering into dimToLvl. However,
// since `permute` returns a permutation, we can remove this
// restriction by instead composing the result of `permute`
// with `srcEnc.getDimToLvl`.
assert(srcEnc.isPermutation());
auto dstEnc =
srcEnc.withDimToLvl(permute(env, env.op().getMatchingIndexingMap(t)));
auto dstTp = RankedTensorType::get(srcTp.getShape(),
srcTp.getElementType(), dstEnc);
auto convert = rewriter.create<ConvertOp>(tval.getLoc(), dstTp, tval);
rewriter.updateRootInPlace(env.op(),
[&]() { env.op()->setOperand(tid, convert); });
rewriter.setInsertionPointAfter(env.op());
rewriter.create<bufferization::DeallocTensorOp>(tval.getLoc(), convert);
return success();
}
// Cannot be resolved with a single conversion.
// TODO: convert more than one?
return failure();
}
/// Options to control sparse code generation.
SparsificationOptions options;
};
} // namespace
/// Populates the given patterns list with rewriting rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparsificationPatterns(
RewritePatternSet &patterns, const SparsificationOptions &options) {
patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
}