Summary:
Around a third of our test sources have LLVM license headers. This patch removes those headers from all test
sources and also fixes any tests that depended on the length of the license header.
The reasons for this are:
* A few tests verify line numbers and will start failing if the number of lines in the LLVM license header changes. Once I landed my patch for valid SourceLocations in debug info we will probably have even more tests that verify line numbers.
* No other LLVM project is putting license headers in its test files to my knowledge.
* They make the test sources much more verbose than they have to be. Several tests have longer license headers than the actual test source.
For the record, the following tests had their line numbers changed to pass with the removal of the license header:
lldb-api :: functionalities/breakpoint/breakpoint_by_line_and_column/TestBreakpointByLineAndColumn.py
lldb-shell :: Reproducer/TestGDBRemoteRepro.test
lldb-shell :: Reproducer/TestMultipleTargets.test
lldb-shell :: Reproducer/TestReuseDirectory.test
lldb-shell :: ExecControl/StopHook/stop-hook-threads.test
lldb-shell :: ExecControl/StopHook/stop-hook.test
lldb-api :: lang/objc/exceptions/TestObjCExceptions.py
Reviewers: #lldb, espindola, JDevlieghere
Reviewed By: #lldb, JDevlieghere
Subscribers: emaste, aprantl, arphaman, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74839
363 lines
12 KiB
C++
363 lines
12 KiB
C++
#include <atomic>
|
|
#include <chrono>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#if !defined(_WIN32)
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
#include <setjmp.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <thread>
|
|
#include <time.h>
|
|
#include <vector>
|
|
|
|
#if defined(__APPLE__)
|
|
__OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2)
|
|
int pthread_threadid_np(pthread_t, __uint64_t *);
|
|
#elif defined(__linux__)
|
|
#include <sys/syscall.h>
|
|
#elif defined(__NetBSD__)
|
|
#include <lwp.h>
|
|
#elif defined(_WIN32)
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
static const char *const RETVAL_PREFIX = "retval:";
|
|
static const char *const SLEEP_PREFIX = "sleep:";
|
|
static const char *const STDERR_PREFIX = "stderr:";
|
|
static const char *const SET_MESSAGE_PREFIX = "set-message:";
|
|
static const char *const PRINT_MESSAGE_COMMAND = "print-message:";
|
|
static const char *const GET_DATA_ADDRESS_PREFIX = "get-data-address-hex:";
|
|
static const char *const GET_STACK_ADDRESS_COMMAND = "get-stack-address-hex:";
|
|
static const char *const GET_HEAP_ADDRESS_COMMAND = "get-heap-address-hex:";
|
|
|
|
static const char *const GET_CODE_ADDRESS_PREFIX = "get-code-address-hex:";
|
|
static const char *const CALL_FUNCTION_PREFIX = "call-function:";
|
|
|
|
static const char *const THREAD_PREFIX = "thread:";
|
|
static const char *const THREAD_COMMAND_NEW = "new";
|
|
static const char *const THREAD_COMMAND_PRINT_IDS = "print-ids";
|
|
static const char *const THREAD_COMMAND_SEGFAULT = "segfault";
|
|
|
|
static const char *const PRINT_PID_COMMAND = "print-pid";
|
|
|
|
static bool g_print_thread_ids = false;
|
|
static std::mutex g_print_mutex;
|
|
static bool g_threads_do_segfault = false;
|
|
|
|
static std::mutex g_jump_buffer_mutex;
|
|
static jmp_buf g_jump_buffer;
|
|
static bool g_is_segfaulting = false;
|
|
|
|
static char g_message[256];
|
|
|
|
static volatile char g_c1 = '0';
|
|
static volatile char g_c2 = '1';
|
|
|
|
static void print_pid() {
|
|
#if defined(_WIN32)
|
|
fprintf(stderr, "PID: %d\n", ::GetCurrentProcessId());
|
|
#else
|
|
fprintf(stderr, "PID: %d\n", getpid());
|
|
#endif
|
|
}
|
|
|
|
static void print_thread_id() {
|
|
// Put in the right magic here for your platform to spit out the thread id (tid)
|
|
// that debugserver/lldb-gdbserver would see as a TID. Otherwise, let the else
|
|
// clause print out the unsupported text so that the unit test knows to skip
|
|
// verifying thread ids.
|
|
#if defined(__APPLE__)
|
|
__uint64_t tid = 0;
|
|
pthread_threadid_np(pthread_self(), &tid);
|
|
printf("%" PRIx64, tid);
|
|
#elif defined(__linux__)
|
|
// This is a call to gettid() via syscall.
|
|
printf("%" PRIx64, static_cast<uint64_t>(syscall(__NR_gettid)));
|
|
#elif defined(__NetBSD__)
|
|
// Technically lwpid_t is 32-bit signed integer
|
|
printf("%" PRIx64, static_cast<uint64_t>(_lwp_self()));
|
|
#elif defined(_WIN32)
|
|
printf("%" PRIx64, static_cast<uint64_t>(::GetCurrentThreadId()));
|
|
#else
|
|
printf("{no-tid-support}");
|
|
#endif
|
|
}
|
|
|
|
static void signal_handler(int signo) {
|
|
#if defined(_WIN32)
|
|
// No signal support on Windows.
|
|
#else
|
|
const char *signal_name = nullptr;
|
|
switch (signo) {
|
|
case SIGUSR1:
|
|
signal_name = "SIGUSR1";
|
|
break;
|
|
case SIGSEGV:
|
|
signal_name = "SIGSEGV";
|
|
break;
|
|
default:
|
|
signal_name = nullptr;
|
|
}
|
|
|
|
// Print notice that we received the signal on a given thread.
|
|
{
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
if (signal_name)
|
|
printf("received %s on thread id: ", signal_name);
|
|
else
|
|
printf("received signo %d (%s) on thread id: ", signo, strsignal(signo));
|
|
print_thread_id();
|
|
printf("\n");
|
|
}
|
|
|
|
// Reset the signal handler if we're one of the expected signal handlers.
|
|
switch (signo) {
|
|
case SIGSEGV:
|
|
if (g_is_segfaulting) {
|
|
// Fix up the pointer we're writing to. This needs to happen if nothing
|
|
// intercepts the SIGSEGV (i.e. if somebody runs this from the command
|
|
// line).
|
|
longjmp(g_jump_buffer, 1);
|
|
}
|
|
break;
|
|
case SIGUSR1:
|
|
if (g_is_segfaulting) {
|
|
// Fix up the pointer we're writing to. This is used to test gdb remote
|
|
// signal delivery. A SIGSEGV will be raised when the thread is created,
|
|
// switched out for a SIGUSR1, and then this code still needs to fix the
|
|
// seg fault. (i.e. if somebody runs this from the command line).
|
|
longjmp(g_jump_buffer, 1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Reset the signal handler.
|
|
sig_t sig_result = signal(signo, signal_handler);
|
|
if (sig_result == SIG_ERR) {
|
|
fprintf(stderr, "failed to set signal handler: errno=%d\n", errno);
|
|
exit(1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void swap_chars() {
|
|
g_c1 = '1';
|
|
g_c2 = '0';
|
|
|
|
g_c1 = '0';
|
|
g_c2 = '1';
|
|
}
|
|
|
|
static void hello() {
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
printf("hello, world\n");
|
|
}
|
|
|
|
static void *thread_func(void *arg) {
|
|
static std::atomic<int> s_thread_index(1);
|
|
const int this_thread_index = s_thread_index++;
|
|
if (g_print_thread_ids) {
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
printf("thread %d id: ", this_thread_index);
|
|
print_thread_id();
|
|
printf("\n");
|
|
}
|
|
|
|
if (g_threads_do_segfault) {
|
|
// Sleep for a number of seconds based on the thread index.
|
|
// TODO add ability to send commands to test exe so we can
|
|
// handle timing more precisely. This is clunky. All we're
|
|
// trying to do is add predictability as to the timing of
|
|
// signal generation by created threads.
|
|
int sleep_seconds = 2 * (this_thread_index - 1);
|
|
std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds));
|
|
|
|
// Test creating a SEGV.
|
|
{
|
|
std::lock_guard<std::mutex> lock(g_jump_buffer_mutex);
|
|
g_is_segfaulting = true;
|
|
int *bad_p = nullptr;
|
|
if (setjmp(g_jump_buffer) == 0) {
|
|
// Force a seg fault signal on this thread.
|
|
*bad_p = 0;
|
|
} else {
|
|
// Tell the system we're no longer seg faulting.
|
|
// Used by the SIGUSR1 signal handler that we inject
|
|
// in place of the SIGSEGV so it only tries to
|
|
// recover from the SIGSEGV if this seg fault code
|
|
// was in play.
|
|
g_is_segfaulting = false;
|
|
}
|
|
}
|
|
|
|
{
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
printf("thread ");
|
|
print_thread_id();
|
|
printf(": past SIGSEGV\n");
|
|
}
|
|
}
|
|
|
|
int sleep_seconds_remaining = 60;
|
|
std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds_remaining));
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
lldb_enable_attach();
|
|
|
|
std::vector<std::thread> threads;
|
|
std::unique_ptr<uint8_t[]> heap_array_up;
|
|
int return_value = 0;
|
|
|
|
#if !defined(_WIN32)
|
|
// Set the signal handler.
|
|
sig_t sig_result = signal(SIGALRM, signal_handler);
|
|
if (sig_result == SIG_ERR) {
|
|
fprintf(stderr, "failed to set SIGALRM signal handler: errno=%d\n", errno);
|
|
exit(1);
|
|
}
|
|
|
|
sig_result = signal(SIGUSR1, signal_handler);
|
|
if (sig_result == SIG_ERR) {
|
|
fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
|
|
exit(1);
|
|
}
|
|
|
|
sig_result = signal(SIGSEGV, signal_handler);
|
|
if (sig_result == SIG_ERR) {
|
|
fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
|
|
exit(1);
|
|
}
|
|
#endif
|
|
|
|
// Process command line args.
|
|
for (int i = 1; i < argc; ++i) {
|
|
if (std::strstr(argv[i], STDERR_PREFIX)) {
|
|
// Treat remainder as text to go to stderr.
|
|
fprintf(stderr, "%s\n", (argv[i] + strlen(STDERR_PREFIX)));
|
|
} else if (std::strstr(argv[i], RETVAL_PREFIX)) {
|
|
// Treat as the return value for the program.
|
|
return_value = std::atoi(argv[i] + strlen(RETVAL_PREFIX));
|
|
} else if (std::strstr(argv[i], SLEEP_PREFIX)) {
|
|
// Treat as the amount of time to have this process sleep (in seconds).
|
|
int sleep_seconds_remaining = std::atoi(argv[i] + strlen(SLEEP_PREFIX));
|
|
|
|
// Loop around, sleeping until all sleep time is used up. Note that
|
|
// signals will cause sleep to end early with the number of seconds
|
|
// remaining.
|
|
std::this_thread::sleep_for(
|
|
std::chrono::seconds(sleep_seconds_remaining));
|
|
|
|
} else if (std::strstr(argv[i], SET_MESSAGE_PREFIX)) {
|
|
// Copy the contents after "set-message:" to the g_message buffer.
|
|
// Used for reading inferior memory and verifying contents match
|
|
// expectations.
|
|
strncpy(g_message, argv[i] + strlen(SET_MESSAGE_PREFIX),
|
|
sizeof(g_message));
|
|
|
|
// Ensure we're null terminated.
|
|
g_message[sizeof(g_message) - 1] = '\0';
|
|
|
|
} else if (std::strstr(argv[i], PRINT_MESSAGE_COMMAND)) {
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
printf("message: %s\n", g_message);
|
|
} else if (std::strstr(argv[i], GET_DATA_ADDRESS_PREFIX)) {
|
|
volatile void *data_p = nullptr;
|
|
|
|
if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_message"))
|
|
data_p = &g_message[0];
|
|
else if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_c1"))
|
|
data_p = &g_c1;
|
|
else if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_c2"))
|
|
data_p = &g_c2;
|
|
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
printf("data address: %p\n", data_p);
|
|
} else if (std::strstr(argv[i], GET_HEAP_ADDRESS_COMMAND)) {
|
|
// Create a byte array if not already present.
|
|
if (!heap_array_up)
|
|
heap_array_up.reset(new uint8_t[32]);
|
|
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
printf("heap address: %p\n", heap_array_up.get());
|
|
|
|
} else if (std::strstr(argv[i], GET_STACK_ADDRESS_COMMAND)) {
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
printf("stack address: %p\n", &return_value);
|
|
} else if (std::strstr(argv[i], GET_CODE_ADDRESS_PREFIX)) {
|
|
void (*func_p)() = nullptr;
|
|
|
|
if (std::strstr(argv[i] + strlen(GET_CODE_ADDRESS_PREFIX), "hello"))
|
|
func_p = hello;
|
|
else if (std::strstr(argv[i] + strlen(GET_CODE_ADDRESS_PREFIX),
|
|
"swap_chars"))
|
|
func_p = swap_chars;
|
|
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
printf("code address: %p\n", func_p);
|
|
} else if (std::strstr(argv[i], CALL_FUNCTION_PREFIX)) {
|
|
void (*func_p)() = nullptr;
|
|
|
|
// Defaut to providing the address of main.
|
|
if (std::strcmp(argv[i] + strlen(CALL_FUNCTION_PREFIX), "hello") == 0)
|
|
func_p = hello;
|
|
else if (std::strcmp(argv[i] + strlen(CALL_FUNCTION_PREFIX),
|
|
"swap_chars") == 0)
|
|
func_p = swap_chars;
|
|
else {
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
printf("unknown function: %s\n",
|
|
argv[i] + strlen(CALL_FUNCTION_PREFIX));
|
|
}
|
|
if (func_p)
|
|
func_p();
|
|
} else if (std::strstr(argv[i], THREAD_PREFIX)) {
|
|
// Check if we're creating a new thread.
|
|
if (std::strstr(argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_NEW)) {
|
|
threads.push_back(std::thread(thread_func, nullptr));
|
|
} else if (std::strstr(argv[i] + strlen(THREAD_PREFIX),
|
|
THREAD_COMMAND_PRINT_IDS)) {
|
|
// Turn on thread id announcing.
|
|
g_print_thread_ids = true;
|
|
|
|
// And announce us.
|
|
{
|
|
std::lock_guard<std::mutex> lock(g_print_mutex);
|
|
printf("thread 0 id: ");
|
|
print_thread_id();
|
|
printf("\n");
|
|
}
|
|
} else if (std::strstr(argv[i] + strlen(THREAD_PREFIX),
|
|
THREAD_COMMAND_SEGFAULT)) {
|
|
g_threads_do_segfault = true;
|
|
} else {
|
|
// At this point we don't do anything else with threads.
|
|
// Later use thread index and send command to thread.
|
|
}
|
|
} else if (std::strstr(argv[i], PRINT_PID_COMMAND)) {
|
|
print_pid();
|
|
} else {
|
|
// Treat the argument as text for stdout.
|
|
printf("%s\n", argv[i]);
|
|
}
|
|
}
|
|
|
|
// If we launched any threads, join them
|
|
for (std::vector<std::thread>::iterator it = threads.begin();
|
|
it != threads.end(); ++it)
|
|
it->join();
|
|
|
|
return return_value;
|
|
}
|