A new basic block ordering improving existing MachineBlockPlacement. The algorithm tries to find a layout of nodes (basic blocks) of a given CFG optimizing jump locality and thus processor I-cache utilization. This is achieved via increasing the number of fall-through jumps and co-locating frequently executed nodes together. The name follows the underlying optimization problem, Extended-TSP, which is a generalization of classical (maximum) Traveling Salesmen Problem. The algorithm is a greedy heuristic that works with chains (ordered lists) of basic blocks. Initially all chains are isolated basic blocks. On every iteration, we pick a pair of chains whose merging yields the biggest increase in the ExtTSP value, which models how i-cache "friendly" a specific chain is. A pair of chains giving the maximum gain is merged into a new chain. The procedure stops when there is only one chain left, or when merging does not increase ExtTSP. In the latter case, the remaining chains are sorted by density in decreasing order. An important aspect is the way two chains are merged. Unlike earlier algorithms (e.g., based on the approach of Pettis-Hansen), two chains, X and Y, are first split into three, X1, X2, and Y. Then we consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. This improves the quality of the final result (the search space is larger) while keeping the implementation sufficiently fast. Differential Revision: https://reviews.llvm.org/D113424
943 lines
33 KiB
C++
943 lines
33 KiB
C++
//===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// ExtTSP - layout of basic blocks with i-cache optimization.
|
|
//
|
|
// The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
|
|
// optimizing jump locality and thus processor I-cache utilization. This is
|
|
// achieved via increasing the number of fall-through jumps and co-locating
|
|
// frequently executed nodes together. The name follows the underlying
|
|
// optimization problem, Extended-TSP, which is a generalization of classical
|
|
// (maximum) Traveling Salesmen Problem.
|
|
//
|
|
// The algorithm is a greedy heuristic that works with chains (ordered lists)
|
|
// of basic blocks. Initially all chains are isolated basic blocks. On every
|
|
// iteration, we pick a pair of chains whose merging yields the biggest increase
|
|
// in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
|
|
// A pair of chains giving the maximum gain is merged into a new chain. The
|
|
// procedure stops when there is only one chain left, or when merging does not
|
|
// increase ExtTSP. In the latter case, the remaining chains are sorted by
|
|
// density in the decreasing order.
|
|
//
|
|
// An important aspect is the way two chains are merged. Unlike earlier
|
|
// algorithms (e.g., based on the approach of Pettis-Hansen), two
|
|
// chains, X and Y, are first split into three, X1, X2, and Y. Then we
|
|
// consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
|
|
// X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
|
|
// This improves the quality of the final result (the search space is larger)
|
|
// while keeping the implementation sufficiently fast.
|
|
//
|
|
// Reference:
|
|
// * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
|
|
// IEEE Transactions on Computers, 2020
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/CodeLayout.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
#define DEBUG_TYPE "code-layout"
|
|
|
|
// Algorithm-specific constants. The values are tuned for the best performance
|
|
// of large-scale front-end bound binaries.
|
|
static cl::opt<double>
|
|
ForwardWeight("ext-tsp-forward-weight", cl::Hidden, cl::init(0.1),
|
|
cl::desc("The weight of forward jumps for ExtTSP value"));
|
|
|
|
static cl::opt<double>
|
|
BackwardWeight("ext-tsp-backward-weight", cl::Hidden, cl::init(0.1),
|
|
cl::desc("The weight of backward jumps for ExtTSP value"));
|
|
|
|
static cl::opt<unsigned> ForwardDistance(
|
|
"ext-tsp-forward-distance", cl::Hidden, cl::init(1024),
|
|
cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
|
|
|
|
static cl::opt<unsigned> BackwardDistance(
|
|
"ext-tsp-backward-distance", cl::Hidden, cl::init(640),
|
|
cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
|
|
|
|
// The maximum size of a chain for splitting. Larger values of the threshold
|
|
// may yield better quality at the cost of worsen run-time.
|
|
static cl::opt<unsigned> ChainSplitThreshold(
|
|
"ext-tsp-chain-split-threshold", cl::Hidden, cl::init(128),
|
|
cl::desc("The maximum size of a chain to apply splitting"));
|
|
|
|
// The option enables splitting (large) chains along in-coming and out-going
|
|
// jumps. This typically results in a better quality.
|
|
static cl::opt<bool> EnableChainSplitAlongJumps(
|
|
"ext-tsp-enable-chain-split-along-jumps", cl::Hidden, cl::init(true),
|
|
cl::desc("The maximum size of a chain to apply splitting"));
|
|
|
|
namespace {
|
|
|
|
// Epsilon for comparison of doubles.
|
|
constexpr double EPS = 1e-8;
|
|
|
|
// Compute the Ext-TSP score for a jump between a given pair of blocks,
|
|
// using their sizes, (estimated) addresses and the jump execution count.
|
|
double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
|
|
uint64_t Count) {
|
|
// Fallthrough
|
|
if (SrcAddr + SrcSize == DstAddr) {
|
|
// Assume that FallthroughWeight = 1.0 after normalization
|
|
return static_cast<double>(Count);
|
|
}
|
|
// Forward
|
|
if (SrcAddr + SrcSize < DstAddr) {
|
|
const auto Dist = DstAddr - (SrcAddr + SrcSize);
|
|
if (Dist <= ForwardDistance) {
|
|
double Prob = 1.0 - static_cast<double>(Dist) / ForwardDistance;
|
|
return ForwardWeight * Prob * Count;
|
|
}
|
|
return 0;
|
|
}
|
|
// Backward
|
|
const auto Dist = SrcAddr + SrcSize - DstAddr;
|
|
if (Dist <= BackwardDistance) {
|
|
double Prob = 1.0 - static_cast<double>(Dist) / BackwardDistance;
|
|
return BackwardWeight * Prob * Count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// A type of merging two chains, X and Y. The former chain is split into
|
|
/// X1 and X2 and then concatenated with Y in the order specified by the type.
|
|
enum class MergeTypeTy : int { X_Y, X1_Y_X2, Y_X2_X1, X2_X1_Y };
|
|
|
|
/// The gain of merging two chains, that is, the Ext-TSP score of the merge
|
|
/// together with the corresponfiding merge 'type' and 'offset'.
|
|
class MergeGainTy {
|
|
public:
|
|
explicit MergeGainTy() {}
|
|
explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType)
|
|
: Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
|
|
|
|
double score() const { return Score; }
|
|
|
|
size_t mergeOffset() const { return MergeOffset; }
|
|
|
|
MergeTypeTy mergeType() const { return MergeType; }
|
|
|
|
// Returns 'true' iff Other is preferred over this.
|
|
bool operator<(const MergeGainTy &Other) const {
|
|
return (Other.Score > EPS && Other.Score > Score + EPS);
|
|
}
|
|
|
|
// Update the current gain if Other is preferred over this.
|
|
void updateIfLessThan(const MergeGainTy &Other) {
|
|
if (*this < Other)
|
|
*this = Other;
|
|
}
|
|
|
|
private:
|
|
double Score{-1.0};
|
|
size_t MergeOffset{0};
|
|
MergeTypeTy MergeType{MergeTypeTy::X_Y};
|
|
};
|
|
|
|
class Block;
|
|
class Jump;
|
|
class Chain;
|
|
class ChainEdge;
|
|
|
|
/// A node in the graph, typically corresponding to a basic block in CFG.
|
|
class Block {
|
|
public:
|
|
Block(const Block &) = delete;
|
|
Block(Block &&) = default;
|
|
Block &operator=(const Block &) = delete;
|
|
Block &operator=(Block &&) = default;
|
|
|
|
// The original index of the block in CFG.
|
|
size_t Index{0};
|
|
// The index of the block in the current chain.
|
|
size_t CurIndex{0};
|
|
// Size of the block in the binary.
|
|
uint64_t Size{0};
|
|
// Execution count of the block in the profile data.
|
|
uint64_t ExecutionCount{0};
|
|
// Current chain of the node.
|
|
Chain *CurChain{nullptr};
|
|
// An offset of the block in the current chain.
|
|
mutable uint64_t EstimatedAddr{0};
|
|
// Forced successor of the block in CFG.
|
|
Block *ForcedSucc{nullptr};
|
|
// Forced predecessor of the block in CFG.
|
|
Block *ForcedPred{nullptr};
|
|
// Outgoing jumps from the block.
|
|
std::vector<Jump *> OutJumps;
|
|
// Incoming jumps to the block.
|
|
std::vector<Jump *> InJumps;
|
|
|
|
public:
|
|
explicit Block(size_t Index, uint64_t Size_, uint64_t EC)
|
|
: Index(Index), Size(Size_), ExecutionCount(EC) {}
|
|
bool isEntry() const { return Index == 0; }
|
|
};
|
|
|
|
/// An arc in the graph, typically corresponding to a jump between two blocks.
|
|
class Jump {
|
|
public:
|
|
Jump(const Jump &) = delete;
|
|
Jump(Jump &&) = default;
|
|
Jump &operator=(const Jump &) = delete;
|
|
Jump &operator=(Jump &&) = default;
|
|
|
|
// Source block of the jump.
|
|
Block *Source;
|
|
// Target block of the jump.
|
|
Block *Target;
|
|
// Execution count of the arc in the profile data.
|
|
uint64_t ExecutionCount{0};
|
|
|
|
public:
|
|
explicit Jump(Block *Source, Block *Target, uint64_t ExecutionCount)
|
|
: Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
|
|
};
|
|
|
|
/// A chain (ordered sequence) of blocks.
|
|
class Chain {
|
|
public:
|
|
Chain(const Chain &) = delete;
|
|
Chain(Chain &&) = default;
|
|
Chain &operator=(const Chain &) = delete;
|
|
Chain &operator=(Chain &&) = default;
|
|
|
|
explicit Chain(uint64_t Id, Block *Block)
|
|
: Id(Id), Score(0), Blocks(1, Block) {}
|
|
|
|
uint64_t id() const { return Id; }
|
|
|
|
bool isEntry() const { return Blocks[0]->Index == 0; }
|
|
|
|
double score() const { return Score; }
|
|
|
|
void setScore(double NewScore) { Score = NewScore; }
|
|
|
|
const std::vector<Block *> &blocks() const { return Blocks; }
|
|
|
|
const std::vector<std::pair<Chain *, ChainEdge *>> &edges() const {
|
|
return Edges;
|
|
}
|
|
|
|
ChainEdge *getEdge(Chain *Other) const {
|
|
for (auto It : Edges) {
|
|
if (It.first == Other)
|
|
return It.second;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void removeEdge(Chain *Other) {
|
|
auto It = Edges.begin();
|
|
while (It != Edges.end()) {
|
|
if (It->first == Other) {
|
|
Edges.erase(It);
|
|
return;
|
|
}
|
|
It++;
|
|
}
|
|
}
|
|
|
|
void addEdge(Chain *Other, ChainEdge *Edge) {
|
|
Edges.push_back(std::make_pair(Other, Edge));
|
|
}
|
|
|
|
void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) {
|
|
Blocks = MergedBlocks;
|
|
// Update the block's chains
|
|
for (size_t Idx = 0; Idx < Blocks.size(); Idx++) {
|
|
Blocks[Idx]->CurChain = this;
|
|
Blocks[Idx]->CurIndex = Idx;
|
|
}
|
|
}
|
|
|
|
void mergeEdges(Chain *Other);
|
|
|
|
void clear() {
|
|
Blocks.clear();
|
|
Blocks.shrink_to_fit();
|
|
Edges.clear();
|
|
Edges.shrink_to_fit();
|
|
}
|
|
|
|
private:
|
|
// Unique chain identifier.
|
|
uint64_t Id;
|
|
// Cached ext-tsp score for the chain.
|
|
double Score;
|
|
// Blocks of the chain.
|
|
std::vector<Block *> Blocks;
|
|
// Adjacent chains and corresponding edges (lists of jumps).
|
|
std::vector<std::pair<Chain *, ChainEdge *>> Edges;
|
|
};
|
|
|
|
/// An edge in CFG representing jumps between two chains.
|
|
/// When blocks are merged into chains, the edges are combined too so that
|
|
/// there is always at most one edge between a pair of chains
|
|
class ChainEdge {
|
|
public:
|
|
ChainEdge(const ChainEdge &) = delete;
|
|
ChainEdge(ChainEdge &&) = default;
|
|
ChainEdge &operator=(const ChainEdge &) = delete;
|
|
ChainEdge &operator=(ChainEdge &&) = default;
|
|
|
|
explicit ChainEdge(Jump *Jump)
|
|
: SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
|
|
Jumps(1, Jump) {}
|
|
|
|
const std::vector<Jump *> &jumps() const { return Jumps; }
|
|
|
|
void changeEndpoint(Chain *From, Chain *To) {
|
|
if (From == SrcChain)
|
|
SrcChain = To;
|
|
if (From == DstChain)
|
|
DstChain = To;
|
|
}
|
|
|
|
void appendJump(Jump *Jump) { Jumps.push_back(Jump); }
|
|
|
|
void moveJumps(ChainEdge *Other) {
|
|
Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
|
|
Other->Jumps.clear();
|
|
Other->Jumps.shrink_to_fit();
|
|
}
|
|
|
|
bool hasCachedMergeGain(Chain *Src, Chain *Dst) const {
|
|
return Src == SrcChain ? CacheValidForward : CacheValidBackward;
|
|
}
|
|
|
|
MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const {
|
|
return Src == SrcChain ? CachedGainForward : CachedGainBackward;
|
|
}
|
|
|
|
void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) {
|
|
if (Src == SrcChain) {
|
|
CachedGainForward = MergeGain;
|
|
CacheValidForward = true;
|
|
} else {
|
|
CachedGainBackward = MergeGain;
|
|
CacheValidBackward = true;
|
|
}
|
|
}
|
|
|
|
void invalidateCache() {
|
|
CacheValidForward = false;
|
|
CacheValidBackward = false;
|
|
}
|
|
|
|
private:
|
|
// Source chain.
|
|
Chain *SrcChain{nullptr};
|
|
// Destination chain.
|
|
Chain *DstChain{nullptr};
|
|
// Original jumps in the binary with correspinding execution counts.
|
|
std::vector<Jump *> Jumps;
|
|
// Cached ext-tsp value for merging the pair of chains.
|
|
// Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
|
|
// we store both values here.
|
|
MergeGainTy CachedGainForward;
|
|
MergeGainTy CachedGainBackward;
|
|
// Whether the cached value must be recomputed.
|
|
bool CacheValidForward{false};
|
|
bool CacheValidBackward{false};
|
|
};
|
|
|
|
void Chain::mergeEdges(Chain *Other) {
|
|
assert(this != Other && "cannot merge a chain with itself");
|
|
|
|
// Update edges adjacent to chain Other
|
|
for (auto EdgeIt : Other->Edges) {
|
|
const auto DstChain = EdgeIt.first;
|
|
const auto DstEdge = EdgeIt.second;
|
|
const auto TargetChain = DstChain == Other ? this : DstChain;
|
|
auto CurEdge = getEdge(TargetChain);
|
|
if (CurEdge == nullptr) {
|
|
DstEdge->changeEndpoint(Other, this);
|
|
this->addEdge(TargetChain, DstEdge);
|
|
if (DstChain != this && DstChain != Other) {
|
|
DstChain->addEdge(this, DstEdge);
|
|
}
|
|
} else {
|
|
CurEdge->moveJumps(DstEdge);
|
|
}
|
|
// Cleanup leftover edge
|
|
if (DstChain != Other) {
|
|
DstChain->removeEdge(Other);
|
|
}
|
|
}
|
|
}
|
|
|
|
using BlockIter = std::vector<Block *>::const_iterator;
|
|
|
|
/// A wrapper around three chains of blocks; it is used to avoid extra
|
|
/// instantiation of the vectors.
|
|
class MergedChain {
|
|
public:
|
|
MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(),
|
|
BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(),
|
|
BlockIter End3 = BlockIter())
|
|
: Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
|
|
End3(End3) {}
|
|
|
|
template <typename F> void forEach(const F &Func) const {
|
|
for (auto It = Begin1; It != End1; It++)
|
|
Func(*It);
|
|
for (auto It = Begin2; It != End2; It++)
|
|
Func(*It);
|
|
for (auto It = Begin3; It != End3; It++)
|
|
Func(*It);
|
|
}
|
|
|
|
std::vector<Block *> getBlocks() const {
|
|
std::vector<Block *> Result;
|
|
Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
|
|
std::distance(Begin3, End3));
|
|
Result.insert(Result.end(), Begin1, End1);
|
|
Result.insert(Result.end(), Begin2, End2);
|
|
Result.insert(Result.end(), Begin3, End3);
|
|
return Result;
|
|
}
|
|
|
|
const Block *getFirstBlock() const { return *Begin1; }
|
|
|
|
private:
|
|
BlockIter Begin1;
|
|
BlockIter End1;
|
|
BlockIter Begin2;
|
|
BlockIter End2;
|
|
BlockIter Begin3;
|
|
BlockIter End3;
|
|
};
|
|
|
|
/// The implementation of the ExtTSP algorithm.
|
|
class ExtTSPImpl {
|
|
using EdgeT = std::pair<uint64_t, uint64_t>;
|
|
using EdgeCountMap = DenseMap<EdgeT, uint64_t>;
|
|
|
|
public:
|
|
ExtTSPImpl(size_t NumNodes, const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const EdgeCountMap &EdgeCounts)
|
|
: NumNodes(NumNodes) {
|
|
initialize(NodeSizes, NodeCounts, EdgeCounts);
|
|
}
|
|
|
|
/// Run the algorithm and return an optimized ordering of blocks.
|
|
void run(std::vector<uint64_t> &Result) {
|
|
// Pass 1: Merge blocks with their mutually forced successors
|
|
mergeForcedPairs();
|
|
|
|
// Pass 2: Merge pairs of chains while improving the ExtTSP objective
|
|
mergeChainPairs();
|
|
|
|
// Pass 3: Merge cold blocks to reduce code size
|
|
mergeColdChains();
|
|
|
|
// Collect blocks from all chains
|
|
concatChains(Result);
|
|
}
|
|
|
|
private:
|
|
/// Initialize the algorithm's data structures.
|
|
void initialize(const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const EdgeCountMap &EdgeCounts) {
|
|
// Initialize blocks
|
|
AllBlocks.reserve(NumNodes);
|
|
for (uint64_t Node = 0; Node < NumNodes; Node++) {
|
|
uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
|
|
uint64_t ExecutionCount = NodeCounts[Node];
|
|
// The execution count of the entry block is set to at least 1
|
|
if (Node == 0 && ExecutionCount == 0)
|
|
ExecutionCount = 1;
|
|
AllBlocks.emplace_back(Node, Size, ExecutionCount);
|
|
}
|
|
|
|
// Initialize jumps between blocks
|
|
SuccNodes = std::vector<std::vector<uint64_t>>(NumNodes);
|
|
PredNodes = std::vector<std::vector<uint64_t>>(NumNodes);
|
|
AllJumps.reserve(EdgeCounts.size());
|
|
for (auto It : EdgeCounts) {
|
|
auto Pred = It.first.first;
|
|
auto Succ = It.first.second;
|
|
// Ignore self-edges
|
|
if (Pred == Succ)
|
|
continue;
|
|
|
|
SuccNodes[Pred].push_back(Succ);
|
|
PredNodes[Succ].push_back(Pred);
|
|
auto ExecutionCount = It.second;
|
|
if (ExecutionCount > 0) {
|
|
auto &Block = AllBlocks[Pred];
|
|
auto &SuccBlock = AllBlocks[Succ];
|
|
AllJumps.emplace_back(&Block, &SuccBlock, ExecutionCount);
|
|
SuccBlock.InJumps.push_back(&AllJumps.back());
|
|
Block.OutJumps.push_back(&AllJumps.back());
|
|
}
|
|
}
|
|
|
|
// Initialize chains
|
|
AllChains.reserve(NumNodes);
|
|
HotChains.reserve(NumNodes);
|
|
for (auto &Block : AllBlocks) {
|
|
AllChains.emplace_back(Block.Index, &Block);
|
|
Block.CurChain = &AllChains.back();
|
|
if (Block.ExecutionCount > 0) {
|
|
HotChains.push_back(&AllChains.back());
|
|
}
|
|
}
|
|
|
|
// Initialize chain edges
|
|
AllEdges.reserve(AllJumps.size());
|
|
for (auto &Block : AllBlocks) {
|
|
for (auto &Jump : Block.OutJumps) {
|
|
const auto SuccBlock = Jump->Target;
|
|
auto CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain);
|
|
// this edge is already present in the graph
|
|
if (CurEdge != nullptr) {
|
|
assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr);
|
|
CurEdge->appendJump(Jump);
|
|
continue;
|
|
}
|
|
// this is a new edge
|
|
AllEdges.emplace_back(Jump);
|
|
Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back());
|
|
SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// For a pair of blocks, A and B, block B is the forced successor of A,
|
|
/// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
|
|
/// to B are from A. Such blocks should be adjacent in the optimal ordering;
|
|
/// the method finds and merges such pairs of blocks.
|
|
void mergeForcedPairs() {
|
|
// Find fallthroughs based on edge weights
|
|
for (auto &Block : AllBlocks) {
|
|
if (SuccNodes[Block.Index].size() == 1 &&
|
|
PredNodes[SuccNodes[Block.Index][0]].size() == 1 &&
|
|
SuccNodes[Block.Index][0] != 0) {
|
|
size_t SuccIndex = SuccNodes[Block.Index][0];
|
|
Block.ForcedSucc = &AllBlocks[SuccIndex];
|
|
AllBlocks[SuccIndex].ForcedPred = &Block;
|
|
}
|
|
}
|
|
|
|
// There might be 'cycles' in the forced dependencies, since profile
|
|
// data isn't 100% accurate. Typically this is observed in loops, when the
|
|
// loop edges are the hottest successors for the basic blocks of the loop.
|
|
// Break the cycles by choosing the block with the smallest index as the
|
|
// head. This helps to keep the original order of the loops, which likely
|
|
// have already been rotated in the optimized manner.
|
|
for (auto &Block : AllBlocks) {
|
|
if (Block.ForcedSucc == nullptr || Block.ForcedPred == nullptr)
|
|
continue;
|
|
|
|
auto SuccBlock = Block.ForcedSucc;
|
|
while (SuccBlock != nullptr && SuccBlock != &Block) {
|
|
SuccBlock = SuccBlock->ForcedSucc;
|
|
}
|
|
if (SuccBlock == nullptr)
|
|
continue;
|
|
// Break the cycle
|
|
AllBlocks[Block.ForcedPred->Index].ForcedSucc = nullptr;
|
|
Block.ForcedPred = nullptr;
|
|
}
|
|
|
|
// Merge blocks with their fallthrough successors
|
|
for (auto &Block : AllBlocks) {
|
|
if (Block.ForcedPred == nullptr && Block.ForcedSucc != nullptr) {
|
|
auto CurBlock = &Block;
|
|
while (CurBlock->ForcedSucc != nullptr) {
|
|
const auto NextBlock = CurBlock->ForcedSucc;
|
|
mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y);
|
|
CurBlock = NextBlock;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Merge pairs of chains while improving the ExtTSP objective.
|
|
void mergeChainPairs() {
|
|
/// Deterministically compare pairs of chains
|
|
auto compareChainPairs = [](const Chain *A1, const Chain *B1,
|
|
const Chain *A2, const Chain *B2) {
|
|
if (A1 != A2)
|
|
return A1->id() < A2->id();
|
|
return B1->id() < B2->id();
|
|
};
|
|
|
|
while (HotChains.size() > 1) {
|
|
Chain *BestChainPred = nullptr;
|
|
Chain *BestChainSucc = nullptr;
|
|
auto BestGain = MergeGainTy();
|
|
// Iterate over all pairs of chains
|
|
for (auto ChainPred : HotChains) {
|
|
// Get candidates for merging with the current chain
|
|
for (auto EdgeIter : ChainPred->edges()) {
|
|
auto ChainSucc = EdgeIter.first;
|
|
auto ChainEdge = EdgeIter.second;
|
|
// Ignore loop edges
|
|
if (ChainPred == ChainSucc)
|
|
continue;
|
|
|
|
// Compute the gain of merging the two chains
|
|
auto CurGain = getBestMergeGain(ChainPred, ChainSucc, ChainEdge);
|
|
if (CurGain.score() <= EPS)
|
|
continue;
|
|
|
|
if (BestGain < CurGain ||
|
|
(std::abs(CurGain.score() - BestGain.score()) < EPS &&
|
|
compareChainPairs(ChainPred, ChainSucc, BestChainPred,
|
|
BestChainSucc))) {
|
|
BestGain = CurGain;
|
|
BestChainPred = ChainPred;
|
|
BestChainSucc = ChainSucc;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Stop merging when there is no improvement
|
|
if (BestGain.score() <= EPS)
|
|
break;
|
|
|
|
// Merge the best pair of chains
|
|
mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
|
|
BestGain.mergeType());
|
|
}
|
|
}
|
|
|
|
/// Merge cold blocks to reduce code size.
|
|
void mergeColdChains() {
|
|
for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
|
|
// Iterating over neighbors in the reverse order to make sure original
|
|
// fallthrough jumps are merged first
|
|
size_t NumSuccs = SuccNodes[SrcBB].size();
|
|
for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
|
|
auto DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
|
|
auto SrcChain = AllBlocks[SrcBB].CurChain;
|
|
auto DstChain = AllBlocks[DstBB].CurChain;
|
|
if (SrcChain != DstChain && !DstChain->isEntry() &&
|
|
SrcChain->blocks().back()->Index == SrcBB &&
|
|
DstChain->blocks().front()->Index == DstBB) {
|
|
mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compute the Ext-TSP score for a given block order and a list of jumps.
|
|
double extTSPScore(const MergedChain &MergedBlocks,
|
|
const std::vector<Jump *> &Jumps) const {
|
|
if (Jumps.empty())
|
|
return 0.0;
|
|
uint64_t CurAddr = 0;
|
|
MergedBlocks.forEach([&](const Block *BB) {
|
|
BB->EstimatedAddr = CurAddr;
|
|
CurAddr += BB->Size;
|
|
});
|
|
|
|
double Score = 0;
|
|
for (auto &Jump : Jumps) {
|
|
const auto SrcBlock = Jump->Source;
|
|
const auto DstBlock = Jump->Target;
|
|
Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
|
|
DstBlock->EstimatedAddr, Jump->ExecutionCount);
|
|
}
|
|
return Score;
|
|
}
|
|
|
|
/// Compute the gain of merging two chains.
|
|
///
|
|
/// The function considers all possible ways of merging two chains and
|
|
/// computes the one having the largest increase in ExtTSP objective. The
|
|
/// result is a pair with the first element being the gain and the second
|
|
/// element being the corresponding merging type.
|
|
MergeGainTy getBestMergeGain(Chain *ChainPred, Chain *ChainSucc,
|
|
ChainEdge *Edge) const {
|
|
if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) {
|
|
return Edge->getCachedMergeGain(ChainPred, ChainSucc);
|
|
}
|
|
|
|
// Precompute jumps between ChainPred and ChainSucc
|
|
auto Jumps = Edge->jumps();
|
|
auto EdgePP = ChainPred->getEdge(ChainPred);
|
|
if (EdgePP != nullptr) {
|
|
Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
|
|
}
|
|
assert(!Jumps.empty() && "trying to merge chains w/o jumps");
|
|
|
|
// The object holds the best currently chosen gain of merging the two chains
|
|
MergeGainTy Gain = MergeGainTy();
|
|
|
|
/// Given a merge offset and a list of merge types, try to merge two chains
|
|
/// and update Gain with a better alternative
|
|
auto tryChainMerging = [&](size_t Offset,
|
|
const std::vector<MergeTypeTy> &MergeTypes) {
|
|
// Skip merging corresponding to concatenation w/o splitting
|
|
if (Offset == 0 || Offset == ChainPred->blocks().size())
|
|
return;
|
|
// Skip merging if it breaks Forced successors
|
|
auto BB = ChainPred->blocks()[Offset - 1];
|
|
if (BB->ForcedSucc != nullptr)
|
|
return;
|
|
// Apply the merge, compute the corresponding gain, and update the best
|
|
// value, if the merge is beneficial
|
|
for (auto &MergeType : MergeTypes) {
|
|
Gain.updateIfLessThan(
|
|
computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
|
|
}
|
|
};
|
|
|
|
// Try to concatenate two chains w/o splitting
|
|
Gain.updateIfLessThan(
|
|
computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeTy::X_Y));
|
|
|
|
if (EnableChainSplitAlongJumps) {
|
|
// Attach (a part of) ChainPred before the first block of ChainSucc
|
|
for (auto &Jump : ChainSucc->blocks().front()->InJumps) {
|
|
const auto SrcBlock = Jump->Source;
|
|
if (SrcBlock->CurChain != ChainPred)
|
|
continue;
|
|
size_t Offset = SrcBlock->CurIndex + 1;
|
|
tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::X2_X1_Y});
|
|
}
|
|
|
|
// Attach (a part of) ChainPred after the last block of ChainSucc
|
|
for (auto &Jump : ChainSucc->blocks().back()->OutJumps) {
|
|
const auto DstBlock = Jump->Source;
|
|
if (DstBlock->CurChain != ChainPred)
|
|
continue;
|
|
size_t Offset = DstBlock->CurIndex;
|
|
tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1});
|
|
}
|
|
}
|
|
|
|
// Try to break ChainPred in various ways and concatenate with ChainSucc
|
|
if (ChainPred->blocks().size() <= ChainSplitThreshold) {
|
|
for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) {
|
|
// Try to split the chain in different ways. In practice, applying
|
|
// X2_Y_X1 merging is almost never provides benefits; thus, we exclude
|
|
// it from consideration to reduce the search space
|
|
tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1,
|
|
MergeTypeTy::X2_X1_Y});
|
|
}
|
|
}
|
|
Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
|
|
return Gain;
|
|
}
|
|
|
|
/// Compute the score gain of merging two chains, respecting a given
|
|
/// merge 'type' and 'offset'.
|
|
///
|
|
/// The two chains are not modified in the method.
|
|
MergeGainTy computeMergeGain(const Chain *ChainPred, const Chain *ChainSucc,
|
|
const std::vector<Jump *> &Jumps,
|
|
size_t MergeOffset,
|
|
MergeTypeTy MergeType) const {
|
|
auto MergedBlocks = mergeBlocks(ChainPred->blocks(), ChainSucc->blocks(),
|
|
MergeOffset, MergeType);
|
|
|
|
// Do not allow a merge that does not preserve the original entry block
|
|
if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
|
|
!MergedBlocks.getFirstBlock()->isEntry())
|
|
return MergeGainTy();
|
|
|
|
// The gain for the new chain
|
|
auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->score();
|
|
return MergeGainTy(NewGainScore, MergeOffset, MergeType);
|
|
}
|
|
|
|
/// Merge two chains of blocks respecting a given merge 'type' and 'offset'.
|
|
///
|
|
/// If MergeType == 0, then the result is a concatentation of two chains.
|
|
/// Otherwise, the first chain is cut into two sub-chains at the offset,
|
|
/// and merged using all possible ways of concatenating three chains.
|
|
MergedChain mergeBlocks(const std::vector<Block *> &X,
|
|
const std::vector<Block *> &Y, size_t MergeOffset,
|
|
MergeTypeTy MergeType) const {
|
|
// Split the first chain, X, into X1 and X2
|
|
BlockIter BeginX1 = X.begin();
|
|
BlockIter EndX1 = X.begin() + MergeOffset;
|
|
BlockIter BeginX2 = X.begin() + MergeOffset;
|
|
BlockIter EndX2 = X.end();
|
|
BlockIter BeginY = Y.begin();
|
|
BlockIter EndY = Y.end();
|
|
|
|
// Construct a new chain from the three existing ones
|
|
switch (MergeType) {
|
|
case MergeTypeTy::X_Y:
|
|
return MergedChain(BeginX1, EndX2, BeginY, EndY);
|
|
case MergeTypeTy::X1_Y_X2:
|
|
return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
|
|
case MergeTypeTy::Y_X2_X1:
|
|
return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
|
|
case MergeTypeTy::X2_X1_Y:
|
|
return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
|
|
}
|
|
llvm_unreachable("unexpected chain merge type");
|
|
}
|
|
|
|
/// Merge chain From into chain Into, update the list of active chains,
|
|
/// adjacency information, and the corresponding cached values.
|
|
void mergeChains(Chain *Into, Chain *From, size_t MergeOffset,
|
|
MergeTypeTy MergeType) {
|
|
assert(Into != From && "a chain cannot be merged with itself");
|
|
|
|
// Merge the blocks
|
|
auto MergedBlocks =
|
|
mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType);
|
|
Into->merge(From, MergedBlocks.getBlocks());
|
|
Into->mergeEdges(From);
|
|
From->clear();
|
|
|
|
// Update cached ext-tsp score for the new chain
|
|
auto SelfEdge = Into->getEdge(Into);
|
|
if (SelfEdge != nullptr) {
|
|
MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end());
|
|
Into->setScore(extTSPScore(MergedBlocks, SelfEdge->jumps()));
|
|
}
|
|
|
|
// Remove chain From from the list of active chains
|
|
auto Iter = std::remove(HotChains.begin(), HotChains.end(), From);
|
|
HotChains.erase(Iter, HotChains.end());
|
|
|
|
// Invalidate caches
|
|
for (auto EdgeIter : Into->edges()) {
|
|
EdgeIter.second->invalidateCache();
|
|
}
|
|
}
|
|
|
|
/// Concatenate all chains into a final order of blocks.
|
|
void concatChains(std::vector<uint64_t> &Order) {
|
|
// Collect chains and calculate some stats for their sorting
|
|
std::vector<Chain *> SortedChains;
|
|
DenseMap<const Chain *, double> ChainDensity;
|
|
for (auto &Chain : AllChains) {
|
|
if (!Chain.blocks().empty()) {
|
|
SortedChains.push_back(&Chain);
|
|
// Using doubles to avoid overflow of ExecutionCount
|
|
double Size = 0;
|
|
double ExecutionCount = 0;
|
|
for (auto Block : Chain.blocks()) {
|
|
Size += static_cast<double>(Block->Size);
|
|
ExecutionCount += static_cast<double>(Block->ExecutionCount);
|
|
}
|
|
assert(Size > 0 && "a chain of zero size");
|
|
ChainDensity[&Chain] = ExecutionCount / Size;
|
|
}
|
|
}
|
|
|
|
// Sorting chains by density in the decreasing order
|
|
std::stable_sort(SortedChains.begin(), SortedChains.end(),
|
|
[&](const Chain *C1, const Chain *C2) {
|
|
// Makre sure the original entry block is at the
|
|
// beginning of the order
|
|
if (C1->isEntry() != C2->isEntry()) {
|
|
return C1->isEntry();
|
|
}
|
|
|
|
const double D1 = ChainDensity[C1];
|
|
const double D2 = ChainDensity[C2];
|
|
// Compare by density and break ties by chain identifiers
|
|
return (D1 != D2) ? (D1 > D2) : (C1->id() < C2->id());
|
|
});
|
|
|
|
// Collect the blocks in the order specified by their chains
|
|
Order.reserve(NumNodes);
|
|
for (auto Chain : SortedChains) {
|
|
for (auto Block : Chain->blocks()) {
|
|
Order.push_back(Block->Index);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// The number of nodes in the graph.
|
|
const size_t NumNodes;
|
|
|
|
/// Successors of each node.
|
|
std::vector<std::vector<uint64_t>> SuccNodes;
|
|
|
|
/// Predecessors of each node.
|
|
std::vector<std::vector<uint64_t>> PredNodes;
|
|
|
|
/// All basic blocks.
|
|
std::vector<Block> AllBlocks;
|
|
|
|
/// All jumps between blocks.
|
|
std::vector<Jump> AllJumps;
|
|
|
|
/// All chains of basic blocks.
|
|
std::vector<Chain> AllChains;
|
|
|
|
/// All edges between chains.
|
|
std::vector<ChainEdge> AllEdges;
|
|
|
|
/// Active chains. The vector gets updated at runtime when chains are merged.
|
|
std::vector<Chain *> HotChains;
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
std::vector<uint64_t> llvm::applyExtTspLayout(
|
|
const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
|
|
size_t NumNodes = NodeSizes.size();
|
|
|
|
// Verify correctness of the input data.
|
|
assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
|
|
assert(NumNodes > 2 && "Incorrect input");
|
|
|
|
// Apply the reordering algorithm.
|
|
auto Alg = ExtTSPImpl(NumNodes, NodeSizes, NodeCounts, EdgeCounts);
|
|
std::vector<uint64_t> Result;
|
|
Alg.run(Result);
|
|
|
|
// Verify correctness of the output.
|
|
assert(Result.front() == 0 && "Original entry point is not preserved");
|
|
assert(Result.size() == NumNodes && "Incorrect size of reordered layout");
|
|
return Result;
|
|
}
|
|
|
|
double llvm::calcExtTspScore(
|
|
const std::vector<uint64_t> &Order, const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
|
|
// Estimate addresses of the blocks in memory
|
|
auto Addr = std::vector<uint64_t>(NodeSizes.size(), 0);
|
|
for (size_t Idx = 1; Idx < Order.size(); Idx++) {
|
|
Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
|
|
}
|
|
|
|
// Increase the score for each jump
|
|
double Score = 0;
|
|
for (auto It : EdgeCounts) {
|
|
auto Pred = It.first.first;
|
|
auto Succ = It.first.second;
|
|
uint64_t Count = It.second;
|
|
Score += extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count);
|
|
}
|
|
return Score;
|
|
}
|
|
|
|
double llvm::calcExtTspScore(
|
|
const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
|
|
auto Order = std::vector<uint64_t>(NodeSizes.size());
|
|
for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
|
|
Order[Idx] = Idx;
|
|
}
|
|
return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
|
|
}
|