Files
clang-p2996/mlir/lib/Dialect/SCF/TransformOps/SCFTransformOps.cpp
Alex Zinenko 98acd74683 [mlir] simpler transform dialect silenceable failures
Simplify the handling of silenceable failures in the transform dialect.
Previously, the logic of `TransformEachOpTrait` required that
`applyToEach` returned a list of null pointers when a silenceable
failure was emitted. This was not done consistently and also crept into
ops without this trait although they did not require it. Handle this
case earlier in the interpreter and homogeneously associated preivously
unset transform dialect values (both handles and parameters) with empty
lists of the matching kind. Ignore the results of `applyToEach` for the
targets for which it produced a silenceable failure. As a result, one
never needs to set results to lists containing nulls. Furthermore, the
objects associated with transform dialect values must never be null.

Depends On D140980

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D141305
2023-01-19 10:19:40 +00:00

278 lines
11 KiB
C++

//===- SCFTransformOps.cpp - Implementation of SCF transformation ops -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/TransformOps/SCFTransformOps.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/IR/TransformInterfaces.h"
#include "mlir/Dialect/Transform/IR/TransformUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// GetParentForOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::GetParentForOp::apply(transform::TransformResults &results,
transform::TransformState &state) {
SetVector<Operation *> parents;
for (Operation *target : state.getPayloadOps(getTarget())) {
Operation *loop, *current = target;
for (unsigned i = 0, e = getNumLoops(); i < e; ++i) {
loop = getAffine()
? current->getParentOfType<AffineForOp>().getOperation()
: current->getParentOfType<scf::ForOp>().getOperation();
if (!loop) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "could not find an '"
<< (getAffine() ? AffineForOp::getOperationName()
: scf::ForOp::getOperationName())
<< "' parent";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
current = loop;
}
parents.insert(loop);
}
results.set(getResult().cast<OpResult>(), parents.getArrayRef());
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// LoopOutlineOp
//===----------------------------------------------------------------------===//
/// Wraps the given operation `op` into an `scf.execute_region` operation. Uses
/// the provided rewriter for all operations to remain compatible with the
/// rewriting infra, as opposed to just splicing the op in place.
static scf::ExecuteRegionOp wrapInExecuteRegion(RewriterBase &b,
Operation *op) {
if (op->getNumRegions() != 1)
return nullptr;
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
scf::ExecuteRegionOp executeRegionOp =
b.create<scf::ExecuteRegionOp>(op->getLoc(), op->getResultTypes());
{
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(&executeRegionOp.getRegion().emplaceBlock());
Operation *clonedOp = b.cloneWithoutRegions(*op);
Region &clonedRegion = clonedOp->getRegions().front();
assert(clonedRegion.empty() && "expected empty region");
b.inlineRegionBefore(op->getRegions().front(), clonedRegion,
clonedRegion.end());
b.create<scf::YieldOp>(op->getLoc(), clonedOp->getResults());
}
b.replaceOp(op, executeRegionOp.getResults());
return executeRegionOp;
}
DiagnosedSilenceableFailure
transform::LoopOutlineOp::apply(transform::TransformResults &results,
transform::TransformState &state) {
SmallVector<Operation *> transformed;
DenseMap<Operation *, SymbolTable> symbolTables;
for (Operation *target : state.getPayloadOps(getTarget())) {
Location location = target->getLoc();
Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(target);
TrivialPatternRewriter rewriter(getContext());
scf::ExecuteRegionOp exec = wrapInExecuteRegion(rewriter, target);
if (!exec) {
DiagnosedSilenceableFailure diag = emitSilenceableError()
<< "failed to outline";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
func::CallOp call;
FailureOr<func::FuncOp> outlined = outlineSingleBlockRegion(
rewriter, location, exec.getRegion(), getFuncName(), &call);
if (failed(outlined))
return emitDefaultDefiniteFailure(target);
if (symbolTableOp) {
SymbolTable &symbolTable =
symbolTables.try_emplace(symbolTableOp, symbolTableOp)
.first->getSecond();
symbolTable.insert(*outlined);
call.setCalleeAttr(FlatSymbolRefAttr::get(*outlined));
}
transformed.push_back(*outlined);
}
results.set(getTransformed().cast<OpResult>(), transformed);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// LoopPeelOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::LoopPeelOp::applyToOne(scf::ForOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
scf::ForOp result;
IRRewriter rewriter(target->getContext());
// This helper returns failure when peeling does not occur (i.e. when the IR
// is not modified). This is not a failure for the op as the postcondition:
// "the loop trip count is divisible by the step"
// is valid.
LogicalResult status =
scf::peelAndCanonicalizeForLoop(rewriter, target, result);
// TODO: Return both the peeled loop and the remainder loop.
results.push_back(failed(status) ? target : result);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// LoopPipelineOp
//===----------------------------------------------------------------------===//
/// Callback for PipeliningOption. Populates `schedule` with the mapping from an
/// operation to its logical time position given the iteration interval and the
/// read latency. The latter is only relevant for vector transfers.
static void
loopScheduling(scf::ForOp forOp,
std::vector<std::pair<Operation *, unsigned>> &schedule,
unsigned iterationInterval, unsigned readLatency) {
auto getLatency = [&](Operation *op) -> unsigned {
if (isa<vector::TransferReadOp>(op))
return readLatency;
return 1;
};
DenseMap<Operation *, unsigned> opCycles;
std::map<unsigned, std::vector<Operation *>> wrappedSchedule;
for (Operation &op : forOp.getBody()->getOperations()) {
if (isa<scf::YieldOp>(op))
continue;
unsigned earlyCycle = 0;
for (Value operand : op.getOperands()) {
Operation *def = operand.getDefiningOp();
if (!def)
continue;
earlyCycle = std::max(earlyCycle, opCycles[def] + getLatency(def));
}
opCycles[&op] = earlyCycle;
wrappedSchedule[earlyCycle % iterationInterval].push_back(&op);
}
for (const auto &it : wrappedSchedule) {
for (Operation *op : it.second) {
unsigned cycle = opCycles[op];
schedule.emplace_back(op, cycle / iterationInterval);
}
}
}
DiagnosedSilenceableFailure
transform::LoopPipelineOp::applyToOne(scf::ForOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
scf::PipeliningOption options;
options.getScheduleFn =
[this](scf::ForOp forOp,
std::vector<std::pair<Operation *, unsigned>> &schedule) mutable {
loopScheduling(forOp, schedule, getIterationInterval(),
getReadLatency());
};
scf::ForLoopPipeliningPattern pattern(options, target->getContext());
TrivialPatternRewriter rewriter(getContext());
rewriter.setInsertionPoint(target);
FailureOr<scf::ForOp> patternResult =
pattern.returningMatchAndRewrite(target, rewriter);
if (succeeded(patternResult)) {
results.push_back(*patternResult);
return DiagnosedSilenceableFailure::success();
}
return emitDefaultSilenceableFailure(target);
}
//===----------------------------------------------------------------------===//
// LoopUnrollOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::LoopUnrollOp::applyToOne(Operation *op,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
LogicalResult result(failure());
if (scf::ForOp scfFor = dyn_cast<scf::ForOp>(op))
result = loopUnrollByFactor(scfFor, getFactor());
else if (AffineForOp affineFor = dyn_cast<AffineForOp>(op))
result = loopUnrollByFactor(affineFor, getFactor());
if (failed(result)) {
DiagnosedSilenceableFailure diag = emitSilenceableError()
<< "failed to unroll";
return diag;
}
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// LoopCoalesceOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::LoopCoalesceOp::applyToOne(Operation *op,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
LogicalResult result(failure());
if (scf::ForOp scfForOp = dyn_cast<scf::ForOp>(op))
result = coalescePerfectlyNestedLoops(scfForOp);
else if (AffineForOp affineForOp = dyn_cast<AffineForOp>(op))
result = coalescePerfectlyNestedLoops(affineForOp);
results.push_back(op);
if (failed(result)) {
DiagnosedSilenceableFailure diag = emitSilenceableError()
<< "failed to coalesce";
return diag;
}
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// Transform op registration
//===----------------------------------------------------------------------===//
namespace {
class SCFTransformDialectExtension
: public transform::TransformDialectExtension<
SCFTransformDialectExtension> {
public:
using Base::Base;
void init() {
declareGeneratedDialect<AffineDialect>();
declareGeneratedDialect<func::FuncDialect>();
registerTransformOps<
#define GET_OP_LIST
#include "mlir/Dialect/SCF/TransformOps/SCFTransformOps.cpp.inc"
>();
}
};
} // namespace
#define GET_OP_CLASSES
#include "mlir/Dialect/SCF/TransformOps/SCFTransformOps.cpp.inc"
void mlir::scf::registerTransformDialectExtension(DialectRegistry &registry) {
registry.addExtensions<SCFTransformDialectExtension>();
}