Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/CodegenEnv.cpp
Peiming Liu a7bf2e558f [mlir][sparse] refactoring isAdmissibleTensorExp into codegen
This patch moves some utils into CodegenEnv class, it should make the code easier to follow and it eliminates several indirect value assignment that use `ptr**`.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D142040
2023-01-27 19:37:23 +00:00

242 lines
8.4 KiB
C++

//===- CodegenEnv.cpp - Code generation environment class ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "CodegenEnv.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// Code generation environment helper functions
//===----------------------------------------------------------------------===//
/// Returns true if tensor materializes uninitialized into the computation.
static bool isMaterializing(Value val) {
return val.getDefiningOp<tensor::EmptyOp>() ||
val.getDefiningOp<bufferization::AllocTensorOp>();
}
//===----------------------------------------------------------------------===//
// Code generation environment constructor and general methods
//===----------------------------------------------------------------------===//
CodegenEnv::CodegenEnv(linalg::GenericOp linop, SparsificationOptions opts,
unsigned numTensors, unsigned numLoops,
unsigned numFilterLoops)
: linalgOp(linop), sparseOptions(opts),
latticeMerger(numTensors, numLoops, numFilterLoops), loopEmitter(),
topSort(), sparseOut(nullptr), outerParNest(-1u), insChain(), expValues(),
expFilled(), expAdded(), expCount(), redVal(), redExp(-1u),
redCustom(-1u) {}
LogicalResult CodegenEnv::initTensorExp() {
// Builds the tensor expression for the Linalg operation in SSA form.
std::optional<unsigned> optExp = latticeMerger.buildTensorExpFromLinalg(op());
if (!optExp || !isAdmissibleTensorExp(*optExp))
return failure();
tensorExp = *optExp;
return success();
}
void CodegenEnv::startEmit() {
assert(insChain == nullptr && "must only start emitting once");
if (sparseOut) {
insChain = sparseOut->get();
latticeMerger.setHasSparseOut(true);
}
// Initialize loop emitter.
SmallVector<Value> tensors;
for (OpOperand &t : linalgOp->getOpOperands())
tensors.push_back(t.get());
loopEmitter.initialize(tensors,
StringAttr::get(linalgOp.getContext(),
linalg::GenericOp::getOperationName()),
/*hasOutput=*/true,
/*isSparseOut=*/sparseOut != nullptr, topSort);
}
std::optional<Operation *> CodegenEnv::genLoopBoundary(
function_ref<std::optional<Operation *>(MutableArrayRef<Value> parameters)>
callback) {
SmallVector<Value> params;
if (isReduc())
params.push_back(redVal);
if (isExpand())
params.push_back(expCount);
if (insChain != nullptr)
params.push_back(insChain);
auto r = callback(params); // may update parameters
unsigned i = 0;
if (isReduc())
updateReduc(params[i++]);
if (isExpand())
updateExpandCount(params[i++]);
if (insChain != nullptr)
updateInsertionChain(params[i]);
return r;
}
//===----------------------------------------------------------------------===//
// Code generation environment verify functions.
//===----------------------------------------------------------------------===//
bool CodegenEnv::isAdmissibleTensorExp(unsigned exp) {
// We reject any expression that makes a reduction from `-outTensor`, as those
// expressions create a dependency between the current iteration (i) and the
// previous iteration (i-1). It would require iterating over the whole
// coordinate space, which prevent exploiting sparsity for faster code.
for (utils::IteratorType it : linalgOp.getIteratorTypesArray()) {
if (it == utils::IteratorType::reduction) {
if (latticeMerger.hasNegateOnOut(exp))
return false;
break;
}
}
OpOperand *lhs = linalgOp.getDpsInitOperand(0);
unsigned tensor = lhs->getOperandNumber();
auto enc = getSparseTensorEncoding(lhs->get().getType());
// An non-annotated output tensor is assumed dense, and becomes a random
// access n-dim memref. Admissible since insertions cannot occur.
if (!enc || enc.isAllDense())
return true;
// A tensor expression with a sparse output tensor that changes its values
// but not its nonzero structure, an operation called "simply dynamic" in
// [Bik96,Ch9], is also admissible without special env.
if (latticeMerger.isSingleCondition(tensor, exp))
return true;
// Accept "truly dynamic" if the output tensor materializes uninitialized
// into the computation and insertions occur in lexicographic index order.
sparseOut = lhs;
return isMaterializing(lhs->get());
}
bool CodegenEnv::isAdmissibleTopoOrder() {
if (!hasSparseOutput())
return true;
OpOperand *lhs = linalgOp.getDpsInitOperand(0);
// Accept "truly dynamic" if the output tensor materializes uninitialized
// into the computation and insertions occur in lexicographic index order.
unsigned nest = 0;
auto iteratorTypes = linalgOp.getIteratorTypesArray();
for (unsigned i = 0, e = latticeMerger.getNumLoops(); i < e; i++) {
if (!latticeMerger.isFilterLoop(topSortAt(i))) {
// We only count non-filter loops as filter loops should be considered
// as a special type of parallel loops.
if (linalg::isReductionIterator(iteratorTypes[topSortAt(i)]))
break; // terminate at first reduction
nest++;
}
}
// Determine admissible dynamic insertion situations:
// (1) fully injective, since there are no reductions,
// (2) admissible 1-d expansion in innermost dimension.
if (nest >= linalgOp.getRank(lhs) - 1) {
outerParNest = nest;
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Code generation environment topological sort methods
//===----------------------------------------------------------------------===//
ArrayRef<unsigned> CodegenEnv::getTopSortSlice(size_t n, size_t m) const {
return ArrayRef<unsigned>(topSort).slice(n, m);
}
ArrayRef<unsigned> CodegenEnv::getLoopCurStack() const {
return getTopSortSlice(0, loopEmitter.getCurrentDepth());
}
Value CodegenEnv::getLoopIdxValue(size_t loopIdx) const {
for (unsigned lv = 0, lve = topSort.size(); lv < lve; lv++)
if (topSort[lv] == loopIdx)
return loopEmitter.getLoopIV(lv);
llvm_unreachable("invalid loop index");
}
//===----------------------------------------------------------------------===//
// Code generation environment sparse tensor output and expansion methods
//===----------------------------------------------------------------------===//
void CodegenEnv::updateInsertionChain(Value chain) {
assert(sparseOut != nullptr && insChain != nullptr);
insChain = chain;
}
bool CodegenEnv::atExpandLevel(OpOperand *o, unsigned rank, unsigned lv) const {
return sparseOut == o && outerParNest == rank - 1 && outerParNest == lv;
}
void CodegenEnv::startExpand(Value values, Value filled, Value added,
Value count) {
assert(sparseOut != nullptr && expValues == nullptr);
expValues = values;
expFilled = filled;
expAdded = added;
expCount = count;
}
void CodegenEnv::updateExpandCount(Value count) {
assert(sparseOut != nullptr && expValues != nullptr);
expCount = count;
}
void CodegenEnv::endExpand() {
assert(sparseOut != nullptr && expValues != nullptr);
expValues = expFilled = expAdded = expCount = Value();
}
//===----------------------------------------------------------------------===//
// Code generation environment reduction methods
//===----------------------------------------------------------------------===//
void CodegenEnv::startReduc(unsigned exp, Value val) {
assert(redExp == -1u && exp != -1u);
redExp = exp;
updateReduc(val);
}
void CodegenEnv::updateReduc(Value val) {
assert(redExp != -1u);
redVal = exp(redExp).val = val;
}
Value CodegenEnv::endReduc() {
Value val = redVal;
updateReduc(Value());
redExp = -1u;
return val;
}
void CodegenEnv::startCustomReduc(unsigned exp) {
assert(redCustom == -1u && exp != -1u);
redCustom = exp;
}
Value CodegenEnv::getCustomRedId() {
assert(redCustom != -1u);
return dyn_cast<sparse_tensor::ReduceOp>(exp(redCustom).op).getIdentity();
}
void CodegenEnv::endCustomReduc() {
assert(redCustom != -1u);
redCustom = -1u;
}