406 lines
16 KiB
C++
406 lines
16 KiB
C++
//===- Tiling.cpp - Implementation of tiling using TilingInterface -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the tiling using TilingInterface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/SCF/Utils/Utils.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Interfaces/TilingInterface.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "tile-using-interface"
|
|
|
|
using namespace mlir;
|
|
|
|
scf::SCFTilingOptions &
|
|
scf::SCFTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
|
|
assert(!tileSizeComputationFunction && "tile sizes already set");
|
|
SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
|
|
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
|
|
OpBuilder::InsertionGuard guard(b);
|
|
b.setInsertionPointToStart(
|
|
&op->getParentOfType<func::FuncOp>().getBody().front());
|
|
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
|
|
Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
|
|
return v;
|
|
}));
|
|
};
|
|
return *this;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TileUsingSCFForOp pattern implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Generate an empty loop nest that represents the tiled loop nest shell.
|
|
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
|
|
/// - `tileSizeVals` is the tile sizes to use. Zero represent untiled loops.
|
|
/// - In `offsets` and `sizes` return the multi-dimensional offset and size of
|
|
/// the
|
|
/// tile processed within the inner most loop.
|
|
static SmallVector<scf::ForOp>
|
|
generateTileLoopNest(OpBuilder &builder, Location loc,
|
|
ArrayRef<Range> loopRanges, ArrayRef<Value> tileSizeVals,
|
|
SmallVector<OpFoldResult> &offsets,
|
|
SmallVector<OpFoldResult> &sizes) {
|
|
assert(!loopRanges.empty() && "expected at least one loop range");
|
|
assert(loopRanges.size() == tileSizeVals.size() &&
|
|
"expected as many tile sizes as loop ranges");
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
SmallVector<scf::ForOp> loops;
|
|
offsets.resize(loopRanges.size());
|
|
sizes.resize(loopRanges.size());
|
|
|
|
// The tile size to use (to avoid out of bounds access) is minimum of
|
|
// `tileSize` and `ub - iv`, where `iv` is the induction variable
|
|
// of the tiled loop.
|
|
AffineExpr s0, s1, d0;
|
|
bindDims(builder.getContext(), d0);
|
|
bindSymbols(builder.getContext(), s0, s1);
|
|
AffineMap minMap = AffineMap::get(1, 2, {s0, s1 - d0}, builder.getContext());
|
|
|
|
for (auto loopRange : llvm::enumerate(loopRanges)) {
|
|
// No loops if tile size is zero. Set offset and size to the loop
|
|
// offset and size.
|
|
if (matchPattern(tileSizeVals[loopRange.index()], m_Zero())) {
|
|
offsets[loopRange.index()] = loopRange.value().offset;
|
|
sizes[loopRange.index()] = loopRange.value().size;
|
|
continue;
|
|
}
|
|
|
|
auto loop = builder.create<scf::ForOp>(
|
|
loc, loopRange.value().offset, loopRange.value().size,
|
|
tileSizeVals[loopRange.index()], ValueRange{},
|
|
[&](OpBuilder &bodyBuilder, Location bodyLoc, Value iv,
|
|
ValueRange /*iterArgs*/) {
|
|
Value boundedTileSize = builder.create<AffineMinOp>(
|
|
bodyLoc, minMap,
|
|
ValueRange{iv, tileSizeVals[loopRange.index()],
|
|
loopRange.value().size});
|
|
sizes[loopRange.index()] = boundedTileSize;
|
|
builder.create<scf::YieldOp>(loc);
|
|
});
|
|
offsets[loopRange.index()] = loop.getInductionVar();
|
|
loops.push_back(loop);
|
|
builder.setInsertionPoint(loop.getBody()->getTerminator());
|
|
}
|
|
return loops;
|
|
}
|
|
|
|
scf::TileUsingSCFForOp::TileUsingSCFForOp(MLIRContext *context,
|
|
scf::SCFTilingOptions options,
|
|
PatternBenefit benefit)
|
|
: OpInterfaceRewritePattern<TilingInterface>(context, benefit),
|
|
options(std::move(options)) {}
|
|
|
|
scf::TileUsingSCFForOp::TileUsingSCFForOp(StringRef opName,
|
|
MLIRContext *context,
|
|
scf::SCFTilingOptions options,
|
|
PatternBenefit benefit)
|
|
: OpInterfaceRewritePattern<TilingInterface>(context, benefit),
|
|
options(std::move(options)) {}
|
|
|
|
FailureOr<scf::SCFTilingResult>
|
|
scf::TileUsingSCFForOp::returningMatchAndRewrite(
|
|
TilingInterface op, PatternRewriter &rewriter) const {
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointAfter(op);
|
|
|
|
if (!options.tileSizeComputationFunction) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "missing tile size computation function");
|
|
}
|
|
|
|
// 1. Get the range of the loops that are represented by the operation.
|
|
SmallVector<Range> iterationDomain = op.getIterationDomain(rewriter);
|
|
size_t numLoops = iterationDomain.size();
|
|
if (numLoops == 0) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unable to tile op with no iteration domain");
|
|
}
|
|
|
|
// 2. Materialize the tile sizes. Enforce the convention that "tiling by zero"
|
|
// skips tiling a particular dimension. This convention is significantly
|
|
// simpler to handle instead of adjusting affine maps to account for missing
|
|
// dimensions.
|
|
SmallVector<Value, 4> tileSizeVector =
|
|
options.tileSizeComputationFunction(rewriter, op);
|
|
if (tileSizeVector.size() < iterationDomain.size()) {
|
|
auto zero = rewriter.create<arith::ConstantIndexOp>(op.getLoc(), 0);
|
|
tileSizeVector.append(numLoops - tileSizeVector.size(), zero);
|
|
}
|
|
|
|
scf::SCFTilingResult tilingResult;
|
|
SmallVector<OpFoldResult> offsets, sizes;
|
|
{
|
|
// 3. Materialize an empty loop nest that iterates over the tiles. These
|
|
// loops for now do not return any values even if the original operation has
|
|
// results.
|
|
tilingResult.loops = generateTileLoopNest(
|
|
rewriter, op.getLoc(), iterationDomain, tileSizeVector, offsets, sizes);
|
|
|
|
LLVM_DEBUG({
|
|
if (!tilingResult.loops.empty()) {
|
|
llvm::errs() << "LoopNest shell :\n";
|
|
tilingResult.loops.front().dump();
|
|
llvm::errs() << "\n";
|
|
}
|
|
});
|
|
|
|
// 4. Generate the tiled implementation within the inner most loop.
|
|
if (!tilingResult.loops.empty())
|
|
rewriter.setInsertionPoint(
|
|
tilingResult.loops.back().getBody()->getTerminator());
|
|
SmallVector<Operation *> tiledImplementation = op.getTiledImplementation(
|
|
rewriter, op.getDestinationOperands(rewriter), offsets, sizes, true);
|
|
if (tiledImplementation.size() != 1) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "expected tiled implementation to return a single op");
|
|
}
|
|
tilingResult.tiledOp = tiledImplementation[0];
|
|
|
|
LLVM_DEBUG({
|
|
if (!tilingResult.loops.empty()) {
|
|
llvm::errs() << "After tiled implementation :\n";
|
|
tilingResult.loops.front().dump();
|
|
llvm::errs() << "\n";
|
|
}
|
|
});
|
|
}
|
|
|
|
if (op->getNumResults() == 0) {
|
|
rewriter.eraseOp(op);
|
|
return tilingResult;
|
|
}
|
|
|
|
// 5. If the original operations has results, modify the loop nest to yield
|
|
// the replacement values.
|
|
SmallVector<Value> replacements;
|
|
if (tilingResult.loops.empty()) {
|
|
// 5a. If there were no loops, the tiled implementation results are the
|
|
// replacements.
|
|
rewriter.replaceOp(op, tilingResult.tiledOp->getResults());
|
|
return tilingResult;
|
|
}
|
|
|
|
// 5b. `scf.for` with tensor semantics requires the loop nest to yield the
|
|
// replacement values using destructive updates. Use the `TilingInterface`
|
|
// to get the position of the result tiles and use that to generate the
|
|
// destructive update pattern, i.e.,
|
|
//
|
|
// ```mlir
|
|
// scf.for %iv0 = ... {
|
|
// %0 = tiled_op
|
|
// }
|
|
// ```
|
|
//
|
|
// is transformed to
|
|
//
|
|
// ```mlir
|
|
// %result = scf.for %iv0 = ... iter_args(%arg = %init) -> .. {
|
|
// %0 = tiled_op
|
|
// %1 = tensor.insert_slice %0 into %arg[..] [..] [..]
|
|
// scf.yield %1
|
|
// }
|
|
// ```
|
|
NewYieldValueFn yieldValueFn =
|
|
[&](OpBuilder &b, Location loc,
|
|
ArrayRef<BlockArgument> newBBArgs) -> SmallVector<Value> {
|
|
SmallVector<Value> yieldedValues;
|
|
Attribute one = b.getIndexAttr(1);
|
|
for (auto resultNum : llvm::seq<unsigned>(0, op->getNumResults())) {
|
|
SmallVector<OpFoldResult> resultTileOffsets, resultTileSizes;
|
|
if (failed(op.getResultTilePosition(b, resultNum, offsets, sizes,
|
|
resultTileOffsets,
|
|
resultTileSizes))) {
|
|
op.emitOpError("unable to get position of result ")
|
|
<< resultNum << " of the tiled implementation";
|
|
return {};
|
|
}
|
|
SmallVector<OpFoldResult> resultTileStrides(resultTileOffsets.size(),
|
|
one);
|
|
Value yieldedValue = b.create<tensor::InsertSliceOp>(
|
|
op->getLoc(), tilingResult.tiledOp->getResult(resultNum),
|
|
newBBArgs[resultNum], resultTileOffsets, resultTileSizes,
|
|
resultTileStrides);
|
|
yieldedValues.push_back(yieldedValue);
|
|
}
|
|
return yieldedValues;
|
|
};
|
|
SmallVector<scf::ForOp> newLoops = replaceLoopNestWithNewYields(
|
|
rewriter, tilingResult.loops, op.getDestinationOperands(rewriter),
|
|
yieldValueFn);
|
|
for (const auto &loop : llvm::enumerate(tilingResult.loops)) {
|
|
rewriter.eraseOp(loop.value());
|
|
tilingResult.loops[loop.index()] = newLoops[loop.index()];
|
|
}
|
|
rewriter.replaceOp(op, tilingResult.loops.front().getResults());
|
|
return tilingResult;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TileConsumerAndFuseProducersUsingSCFForOp pattern implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
scf::TileConsumerAndFuseProducersUsingSCFForOp::
|
|
TileConsumerAndFuseProducersUsingSCFForOp(MLIRContext *context,
|
|
scf::SCFTilingOptions options,
|
|
PatternBenefit benefit)
|
|
: OpInterfaceRewritePattern<TilingInterface>(context, benefit),
|
|
tilingPattern(context, std::move(options)) {}
|
|
|
|
scf::TileConsumerAndFuseProducersUsingSCFForOp::
|
|
TileConsumerAndFuseProducersUsingSCFForOp(StringRef opName,
|
|
MLIRContext *context,
|
|
scf::SCFTilingOptions options,
|
|
PatternBenefit benefit)
|
|
: OpInterfaceRewritePattern<TilingInterface>(context, benefit),
|
|
tilingPattern(context, std::move(options)) {}
|
|
|
|
/// Return the `Value` that is defined by an operation that implements
|
|
/// the `TilingInterface`. Looks through `iter_args` of scf.for nest
|
|
/// if required.
|
|
static Optional<OpResult> getFusableProducer(Value v) {
|
|
while (auto blockArg = v.dyn_cast<BlockArgument>()) {
|
|
auto loopOp = dyn_cast<scf::ForOp>(blockArg.getOwner()->getParentOp());
|
|
if (!loopOp)
|
|
return llvm::None;
|
|
v = loopOp.getOpOperandForRegionIterArg(blockArg).get();
|
|
}
|
|
if (!isa_and_nonnull<TilingInterface>(v.getDefiningOp()))
|
|
return llvm::None;
|
|
return v.cast<OpResult>();
|
|
}
|
|
|
|
FailureOr<scf::SCFTileAndFuseResult>
|
|
scf::TileConsumerAndFuseProducersUsingSCFForOp::returningMatchAndRewrite(
|
|
TilingInterface op, PatternRewriter &rewriter) const {
|
|
// This transformation is only valid for ops that return values (i.e. not
|
|
// valid to use with operations that have memref operands).
|
|
if (!op->getNumResults()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "invalid pattern for op with no results");
|
|
}
|
|
|
|
// 1. First tile the consumer.
|
|
SCFTileAndFuseResult tileAndFuseResult;
|
|
{
|
|
FailureOr<SCFTilingResult> tilingResult =
|
|
tilingPattern.returningMatchAndRewrite(op, rewriter);
|
|
if (failed(tilingResult)) {
|
|
return failure();
|
|
}
|
|
tileAndFuseResult.tiledAndFusedOps.push_back(tilingResult->tiledOp);
|
|
tileAndFuseResult.loops = std::move(tilingResult->loops);
|
|
}
|
|
|
|
// 2. Typically, the operands of the tiled operation are slices of the
|
|
// operands of the untiled operation. These are expressed in IR using
|
|
// `tensor.extract_slice` operations with source being the operands of the
|
|
// untiled operation. Create a worklist of these `tensor.extract_slice`
|
|
// operations. If the producers of the source of the `tensor.extract_slice`
|
|
// can be tiled such that the tiled value is generated in-place, that
|
|
// effectively tiles + fuses the operations.
|
|
auto addCandidateSlices = [](Operation *fusedOp,
|
|
std::deque<tensor::ExtractSliceOp> &candidates) {
|
|
for (Value operand : fusedOp->getOperands())
|
|
if (auto sliceOp = operand.getDefiningOp<tensor::ExtractSliceOp>())
|
|
candidates.push_back(sliceOp);
|
|
};
|
|
|
|
std::deque<tensor::ExtractSliceOp> candidates;
|
|
addCandidateSlices(tileAndFuseResult.tiledAndFusedOps.back(), candidates);
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
while (!candidates.empty()) {
|
|
// 2a. Traverse the slices in BFS fashion.
|
|
tensor::ExtractSliceOp candidateSliceOp = candidates.front();
|
|
candidates.pop_front();
|
|
|
|
// 2b. Get the producer of the source (potentially walking through
|
|
// `iter_args` of nested `scf.for`)
|
|
Optional<OpResult> fusableProducer =
|
|
getFusableProducer(candidateSliceOp.getSource());
|
|
if (!fusableProducer)
|
|
continue;
|
|
|
|
// 2c. Generate the tiled implementation of the producer of the source
|
|
rewriter.setInsertionPoint(candidateSliceOp);
|
|
FailureOr<Value> fusedProducerValue =
|
|
tensor::replaceExtractSliceWithTiledProducer(rewriter, candidateSliceOp,
|
|
fusableProducer.value());
|
|
if (failed(fusedProducerValue))
|
|
continue;
|
|
rewriter.replaceOp(candidateSliceOp, fusedProducerValue.value());
|
|
|
|
// 2d. The operands of the fused producer might themselved be slices of
|
|
// values produced by operations that implement the `TilingInterface`.
|
|
// Add these operations to the worklist.
|
|
Operation *fusedProducer = fusedProducerValue->getDefiningOp();
|
|
tileAndFuseResult.tiledAndFusedOps.push_back(fusedProducer);
|
|
addCandidateSlices(fusedProducer, candidates);
|
|
|
|
// 2e. If the operation being fused creates a value that is used as `outs`
|
|
// in the tiled operation, the result of the unfused operation will be
|
|
// used in the `iter_args` of the tiled loop generated. When the
|
|
// operation is fused, this use in `iter_args` needs to be modified to
|
|
// use the destination of the fused operation. For example, starting
|
|
// with
|
|
//
|
|
// ```mlir
|
|
// %0 = linalg.init_tensor ...
|
|
// %1 = linalg.fill ... outs(%0:...)...
|
|
// %2 = linalg.matmul ... outs(%1:...)....
|
|
// ```
|
|
//
|
|
// First the `linalg.matmul` gets tiled
|
|
//
|
|
// ```mlir
|
|
// %0 = linalg.init_tensor
|
|
// %1 = linalg.fill
|
|
// %2 = scf.for .... iter_args(%arg0 = %1)...
|
|
// ...
|
|
// ... = linalg.matmul ...
|
|
//
|
|
// ```
|
|
//
|
|
// When the `linalg.fill` gets fused, the `iter_args` needs to be
|
|
// modified
|
|
//
|
|
// ```mlir
|
|
// %0 = linalg.init_tensor
|
|
// %1 = scf.for ... iter_args(%arg0 = %0)...
|
|
// ...
|
|
// %2 = linalg.fill ...
|
|
// %3 = linalg.matmul ... outs(%2: ...)...
|
|
// ```
|
|
TilingInterface unfusedProducerOp =
|
|
cast<TilingInterface>(fusableProducer->getOwner());
|
|
scf::ForOp outerMostTiledLoop = tileAndFuseResult.loops.front();
|
|
SmallVector<Value> unfusedProducerOpDestValues =
|
|
unfusedProducerOp.getDestinationOperands(rewriter);
|
|
for (OpOperand &uses : unfusedProducerOp->getUses()) {
|
|
if (uses.getOwner() == outerMostTiledLoop.getOperation()) {
|
|
unsigned resultNumber = uses.get().cast<OpResult>().getResultNumber();
|
|
unsigned operandNumber = uses.getOperandNumber();
|
|
outerMostTiledLoop->setOperand(
|
|
operandNumber, unfusedProducerOpDestValues[resultNumber]);
|
|
}
|
|
}
|
|
}
|
|
return tileAndFuseResult;
|
|
}
|