Files
clang-p2996/lldb/tools/debugserver/source/MacOSX/MachThread.cpp
Greg Clayton c4e411ffc0 Thread safety changes in debugserver and also in the process GDB remote plugin.
I added support for asking if the GDB remote server supports thread suffixes
for packets that should be thread specific (register read/write packets) because
the way the GDB remote protocol does it right now is to have a notion of a
current thread for register and memory reads/writes (set via the "$Hg%x" packet)
and a current thread for running ("$Hc%x"). Now we ask the remote GDB server
if it supports adding the thread ID to the register packets and we enable
that feature in LLDB if supported. This stops us from having to send a bunch
of packets that update the current thread ID to some value which is prone to
error, or extra packets.

llvm-svn: 123762
2011-01-18 19:36:39 +00:00

766 lines
23 KiB
C++

//===-- MachThread.cpp ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/19/07.
//
//===----------------------------------------------------------------------===//
#include "MachThread.h"
#include "MachProcess.h"
#include "DNBLog.h"
#include "DNB.h"
static uint32_t
GetSequenceID()
{
static uint32_t g_nextID = 0;
return ++g_nextID;
}
MachThread::MachThread (MachProcess *process, thread_t thread) :
m_process (process),
m_tid (thread),
m_seq_id (GetSequenceID()),
m_state (eStateUnloaded),
m_state_mutex (PTHREAD_MUTEX_RECURSIVE),
m_breakID (INVALID_NUB_BREAK_ID),
m_suspendCount (0),
m_arch_ap (DNBArchProtocol::Create (this)),
m_reg_sets (m_arch_ap->GetRegisterSetInfo (&n_num_reg_sets))
{
// Get the thread state so we know if a thread is in a state where we can't
// muck with it and also so we get the suspend count correct in case it was
// already suspended
GetBasicInfo();
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::MachThread ( process = %p, tid = 0x%4.4x, seq_id = %u )", &m_process, m_tid, m_seq_id);
}
MachThread::~MachThread()
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::~MachThread() for tid = 0x%4.4x (%u)", m_tid, m_seq_id);
}
uint32_t
MachThread::Suspend()
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
if (ThreadIDIsValid(m_tid))
{
DNBError err(::thread_suspend (m_tid), DNBError::MachKernel);
if (err.Success())
m_suspendCount++;
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_suspend (%4.4x)", m_tid);
}
return SuspendCount();
}
uint32_t
MachThread::Resume()
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
if (ThreadIDIsValid(m_tid))
{
RestoreSuspendCount();
}
return SuspendCount();
}
bool
MachThread::RestoreSuspendCount()
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
DNBError err;
if (ThreadIDIsValid(m_tid) == false)
return false;
if (m_suspendCount > 0)
{
while (m_suspendCount > 0)
{
err = ::thread_resume (m_tid);
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_resume (%4.4x)", m_tid);
if (err.Success())
--m_suspendCount;
else
{
if (GetBasicInfo())
m_suspendCount = m_basicInfo.suspend_count;
else
m_suspendCount = 0;
return false; // ???
}
}
}
// We don't currently really support resuming a thread that was externally
// suspended. If/when we do, we will need to make the code below work and
// m_suspendCount will need to become signed instead of unsigned.
// else if (m_suspendCount < 0)
// {
// while (m_suspendCount < 0)
// {
// err = ::thread_suspend (m_tid);
// if (err.Success())
// ++m_suspendCount;
// if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
// err.LogThreaded("::thread_suspend (%4.4x)", m_tid);
// }
// }
return true;
}
const char *
MachThread::GetBasicInfoAsString () const
{
static char g_basic_info_string[1024];
struct thread_basic_info basicInfo;
if (GetBasicInfo(m_tid, &basicInfo))
{
// char run_state_str[32];
// size_t run_state_str_size = sizeof(run_state_str);
// switch (basicInfo.run_state)
// {
// case TH_STATE_RUNNING: strncpy(run_state_str, "running", run_state_str_size); break;
// case TH_STATE_STOPPED: strncpy(run_state_str, "stopped", run_state_str_size); break;
// case TH_STATE_WAITING: strncpy(run_state_str, "waiting", run_state_str_size); break;
// case TH_STATE_UNINTERRUPTIBLE: strncpy(run_state_str, "uninterruptible", run_state_str_size); break;
// case TH_STATE_HALTED: strncpy(run_state_str, "halted", run_state_str_size); break;
// default: snprintf(run_state_str, run_state_str_size, "%d", basicInfo.run_state); break; // ???
// }
float user = (float)basicInfo.user_time.seconds + (float)basicInfo.user_time.microseconds / 1000000.0f;
float system = (float)basicInfo.user_time.seconds + (float)basicInfo.user_time.microseconds / 1000000.0f;
snprintf(g_basic_info_string, sizeof(g_basic_info_string), "Thread 0x%4.4x: user=%f system=%f cpu=%d sleep_time=%d",
InferiorThreadID(),
user,
system,
basicInfo.cpu_usage,
basicInfo.sleep_time);
return g_basic_info_string;
}
return NULL;
}
thread_t
MachThread::InferiorThreadID() const
{
mach_msg_type_number_t i;
mach_port_name_array_t names;
mach_port_type_array_t types;
mach_msg_type_number_t ncount, tcount;
thread_t inferior_tid = INVALID_NUB_THREAD;
task_t my_task = ::mach_task_self();
task_t task = m_process->Task().TaskPort();
kern_return_t kret = ::mach_port_names (task, &names, &ncount, &types, &tcount);
if (kret == KERN_SUCCESS)
{
for (i = 0; i < ncount; i++)
{
mach_port_t my_name;
mach_msg_type_name_t my_type;
kret = ::mach_port_extract_right (task, names[i], MACH_MSG_TYPE_COPY_SEND, &my_name, &my_type);
if (kret == KERN_SUCCESS)
{
::mach_port_deallocate (my_task, my_name);
if (my_name == m_tid)
{
inferior_tid = names[i];
break;
}
}
}
// Free up the names and types
::vm_deallocate (my_task, (vm_address_t) names, ncount * sizeof (mach_port_name_t));
::vm_deallocate (my_task, (vm_address_t) types, tcount * sizeof (mach_port_type_t));
}
return inferior_tid;
}
bool
MachThread::IsUserReady()
{
if (m_basicInfo.run_state == 0)
GetBasicInfo ();
switch (m_basicInfo.run_state)
{
default:
case TH_STATE_UNINTERRUPTIBLE:
break;
case TH_STATE_RUNNING:
case TH_STATE_STOPPED:
case TH_STATE_WAITING:
case TH_STATE_HALTED:
return true;
}
return false;
}
struct thread_basic_info *
MachThread::GetBasicInfo ()
{
if (MachThread::GetBasicInfo(m_tid, &m_basicInfo))
return &m_basicInfo;
return NULL;
}
bool
MachThread::GetBasicInfo(thread_t thread, struct thread_basic_info *basicInfoPtr)
{
if (ThreadIDIsValid(thread))
{
unsigned int info_count = THREAD_BASIC_INFO_COUNT;
kern_return_t err = ::thread_info (thread, THREAD_BASIC_INFO, (thread_info_t) basicInfoPtr, &info_count);
if (err == KERN_SUCCESS)
return true;
}
::memset (basicInfoPtr, 0, sizeof (struct thread_basic_info));
return false;
}
bool
MachThread::ThreadIDIsValid(thread_t thread)
{
return thread != THREAD_NULL;
}
bool
MachThread::GetRegisterState(int flavor, bool force)
{
return m_arch_ap->GetRegisterState(flavor, force) == KERN_SUCCESS;
}
bool
MachThread::SetRegisterState(int flavor)
{
return m_arch_ap->SetRegisterState(flavor) == KERN_SUCCESS;
}
uint64_t
MachThread::GetPC(uint64_t failValue)
{
// Get program counter
return m_arch_ap->GetPC(failValue);
}
bool
MachThread::SetPC(uint64_t value)
{
// Set program counter
return m_arch_ap->SetPC(value);
}
uint64_t
MachThread::GetSP(uint64_t failValue)
{
// Get stack pointer
return m_arch_ap->GetSP(failValue);
}
nub_process_t
MachThread::ProcessID() const
{
if (m_process)
return m_process->ProcessID();
return INVALID_NUB_PROCESS;
}
void
MachThread::Dump(uint32_t index)
{
const char * thread_run_state = NULL;
switch (m_basicInfo.run_state)
{
case TH_STATE_RUNNING: thread_run_state = "running"; break; // 1 thread is running normally
case TH_STATE_STOPPED: thread_run_state = "stopped"; break; // 2 thread is stopped
case TH_STATE_WAITING: thread_run_state = "waiting"; break; // 3 thread is waiting normally
case TH_STATE_UNINTERRUPTIBLE: thread_run_state = "uninter"; break; // 4 thread is in an uninterruptible wait
case TH_STATE_HALTED: thread_run_state = "halted "; break; // 5 thread is halted at a
default: thread_run_state = "???"; break;
}
DNBLogThreaded("thread[%u] %4.4x (%u): pc: 0x%8.8llx sp: 0x%8.8llx breakID: %d user: %d.%06.6d system: %d.%06.6d cpu: %d policy: %d run_state: %d (%s) flags: %d suspend_count: %d (current %d) sleep_time: %d",
index,
m_tid,
m_seq_id,
GetPC(INVALID_NUB_ADDRESS),
GetSP(INVALID_NUB_ADDRESS),
m_breakID,
m_basicInfo.user_time.seconds, m_basicInfo.user_time.microseconds,
m_basicInfo.system_time.seconds, m_basicInfo.system_time.microseconds,
m_basicInfo.cpu_usage,
m_basicInfo.policy,
m_basicInfo.run_state,
thread_run_state,
m_basicInfo.flags,
m_basicInfo.suspend_count, m_suspendCount,
m_basicInfo.sleep_time);
//DumpRegisterState(0);
}
void
MachThread::ThreadWillResume(const DNBThreadResumeAction *thread_action)
{
if (thread_action->addr != INVALID_NUB_ADDRESS)
SetPC (thread_action->addr);
SetState (thread_action->state);
switch (thread_action->state)
{
case eStateStopped:
case eStateSuspended:
Suspend();
break;
case eStateRunning:
case eStateStepping:
Resume();
break;
}
m_arch_ap->ThreadWillResume();
m_stop_exception.Clear();
}
nub_break_t
MachThread::CurrentBreakpoint()
{
return m_process->Breakpoints().FindIDByAddress(GetPC());
}
bool
MachThread::ShouldStop(bool &step_more)
{
// See if this thread is at a breakpoint?
nub_break_t breakID = CurrentBreakpoint();
if (NUB_BREAK_ID_IS_VALID(breakID))
{
// This thread is sitting at a breakpoint, ask the breakpoint
// if we should be stopping here.
if (Process()->Breakpoints().ShouldStop(ProcessID(), ThreadID(), breakID))
return true;
else
{
// The breakpoint said we shouldn't stop, but we may have gotten
// a signal or the user may have requested to stop in some other
// way. Stop if we have a valid exception (this thread won't if
// another thread was the reason this process stopped) and that
// exception, is NOT a breakpoint exception (a common case would
// be a SIGINT signal).
if (GetStopException().IsValid() && !GetStopException().IsBreakpoint())
return true;
}
}
else
{
if (m_arch_ap->StepNotComplete())
{
step_more = true;
return false;
}
// The thread state is used to let us know what the thread was
// trying to do. MachThread::ThreadWillResume() will set the
// thread state to various values depending if the thread was
// the current thread and if it was to be single stepped, or
// resumed.
if (GetState() == eStateRunning)
{
// If our state is running, then we should continue as we are in
// the process of stepping over a breakpoint.
return false;
}
else
{
// Stop if we have any kind of valid exception for this
// thread.
if (GetStopException().IsValid())
return true;
}
}
return false;
}
bool
MachThread::IsStepping()
{
#if ENABLE_AUTO_STEPPING_OVER_BP
// Return true if this thread is currently being stepped.
// MachThread::ThreadWillResume currently determines this by looking if we
// have been asked to single step, or if we are at a breakpoint instruction
// and have been asked to resume. In the latter case we need to disable the
// breakpoint we are at, single step, re-enable and continue.
nub_state_t state = GetState();
return ((state == eStateStepping) ||
(state == eStateRunning && NUB_BREAK_ID_IS_VALID(CurrentBreakpoint())));
#else
return GetState() == eStateStepping;
#endif
}
bool
MachThread::ThreadDidStop()
{
// This thread has existed prior to resuming under debug nub control,
// and has just been stopped. Do any cleanup that needs to be done
// after running.
// The thread state and breakpoint will still have the same values
// as they had prior to resuming the thread, so it makes it easy to check
// if we were trying to step a thread, or we tried to resume while being
// at a breakpoint.
// When this method gets called, the process state is still in the
// state it was in while running so we can act accordingly.
m_arch_ap->ThreadDidStop();
// We may have suspended this thread so the primary thread could step
// without worrying about race conditions, so lets restore our suspend
// count.
RestoreSuspendCount();
// Update the basic information for a thread
MachThread::GetBasicInfo(m_tid, &m_basicInfo);
#if ENABLE_AUTO_STEPPING_OVER_BP
// See if we were at a breakpoint when we last resumed that we disabled,
// re-enable it.
nub_break_t breakID = CurrentBreakpoint();
if (NUB_BREAK_ID_IS_VALID(breakID))
{
m_process->EnableBreakpoint(breakID);
if (m_basicInfo.suspend_count > 0)
{
SetState(eStateSuspended);
}
else
{
// If we last were at a breakpoint and we single stepped, our state
// will be "running" to indicate we need to continue after stepping
// over the breakpoint instruction. If we step over a breakpoint
// instruction, we need to stop.
if (GetState() == eStateRunning)
{
// Leave state set to running so we will continue automatically
// from this breakpoint
}
else
{
SetState(eStateStopped);
}
}
}
else
{
if (m_basicInfo.suspend_count > 0)
{
SetState(eStateSuspended);
}
else
{
SetState(eStateStopped);
}
}
#else
if (m_basicInfo.suspend_count > 0)
SetState(eStateSuspended);
else
SetState(eStateStopped);
#endif
return true;
}
bool
MachThread::NotifyException(MachException::Data& exc)
{
if (m_stop_exception.IsValid())
{
// We may have more than one exception for a thread, but we need to
// only remember the one that we will say is the reason we stopped.
// We may have been single stepping and also gotten a signal exception,
// so just remember the most pertinent one.
if (m_stop_exception.IsBreakpoint())
m_stop_exception = exc;
}
else
{
m_stop_exception = exc;
}
bool handled = m_arch_ap->NotifyException(exc);
if (!handled)
{
handled = true;
// switch (exc.exc_type)
// {
// case EXC_BAD_ACCESS:
// break;
// case EXC_BAD_INSTRUCTION:
// break;
// case EXC_ARITHMETIC:
// break;
// case EXC_EMULATION:
// break;
// case EXC_SOFTWARE:
// break;
// case EXC_BREAKPOINT:
// break;
// case EXC_SYSCALL:
// break;
// case EXC_MACH_SYSCALL:
// break;
// case EXC_RPC_ALERT:
// break;
// }
}
return handled;
}
nub_state_t
MachThread::GetState()
{
// If any other threads access this we will need a mutex for it
PTHREAD_MUTEX_LOCKER (locker, m_state_mutex);
return m_state;
}
void
MachThread::SetState(nub_state_t state)
{
PTHREAD_MUTEX_LOCKER (locker, m_state_mutex);
m_state = state;
DNBLogThreadedIf(LOG_THREAD, "MachThread::SetState ( %s ) for tid = 0x%4.4x", DNBStateAsString(state), m_tid);
}
uint32_t
MachThread::GetNumRegistersInSet(int regSet) const
{
if (regSet < n_num_reg_sets)
return m_reg_sets[regSet].num_registers;
return 0;
}
const char *
MachThread::GetRegisterSetName(int regSet) const
{
if (regSet < n_num_reg_sets)
return m_reg_sets[regSet].name;
return NULL;
}
const DNBRegisterInfo *
MachThread::GetRegisterInfo(int regSet, int regIndex) const
{
if (regSet < n_num_reg_sets)
if (regIndex < m_reg_sets[regSet].num_registers)
return &m_reg_sets[regSet].registers[regIndex];
return NULL;
}
void
MachThread::DumpRegisterState(int regSet)
{
if (regSet == REGISTER_SET_ALL)
{
for (regSet = 1; regSet < n_num_reg_sets; regSet++)
DumpRegisterState(regSet);
}
else
{
if (m_arch_ap->RegisterSetStateIsValid(regSet))
{
const size_t numRegisters = GetNumRegistersInSet(regSet);
size_t regIndex = 0;
DNBRegisterValueClass reg;
for (regIndex = 0; regIndex < numRegisters; ++regIndex)
{
if (m_arch_ap->GetRegisterValue(regSet, regIndex, &reg))
{
reg.Dump(NULL, NULL);
}
}
}
else
{
DNBLog("%s: registers are not currently valid.", GetRegisterSetName(regSet));
}
}
}
const DNBRegisterSetInfo *
MachThread::GetRegisterSetInfo(nub_size_t *num_reg_sets ) const
{
*num_reg_sets = n_num_reg_sets;
return &m_reg_sets[0];
}
bool
MachThread::GetRegisterValue ( uint32_t set, uint32_t reg, DNBRegisterValue *value )
{
return m_arch_ap->GetRegisterValue(set, reg, value);
}
bool
MachThread::SetRegisterValue ( uint32_t set, uint32_t reg, const DNBRegisterValue *value )
{
return m_arch_ap->SetRegisterValue(set, reg, value);
}
nub_size_t
MachThread::GetRegisterContext (void *buf, nub_size_t buf_len)
{
return m_arch_ap->GetRegisterContext(buf, buf_len);
}
nub_size_t
MachThread::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
return m_arch_ap->SetRegisterContext(buf, buf_len);
}
uint32_t
MachThread::EnableHardwareBreakpoint (const DNBBreakpoint *bp)
{
if (bp != NULL && bp->IsBreakpoint())
return m_arch_ap->EnableHardwareBreakpoint(bp->Address(), bp->ByteSize());
return INVALID_NUB_HW_INDEX;
}
uint32_t
MachThread::EnableHardwareWatchpoint (const DNBBreakpoint *wp)
{
if (wp != NULL && wp->IsWatchpoint())
return m_arch_ap->EnableHardwareWatchpoint(wp->Address(), wp->ByteSize(), wp->WatchpointRead(), wp->WatchpointWrite());
return INVALID_NUB_HW_INDEX;
}
bool
MachThread::DisableHardwareBreakpoint (const DNBBreakpoint *bp)
{
if (bp != NULL && bp->IsHardware())
return m_arch_ap->DisableHardwareBreakpoint(bp->GetHardwareIndex());
return false;
}
bool
MachThread::DisableHardwareWatchpoint (const DNBBreakpoint *wp)
{
if (wp != NULL && wp->IsHardware())
return m_arch_ap->DisableHardwareWatchpoint(wp->GetHardwareIndex());
return false;
}
bool
MachThread::GetIdentifierInfo ()
{
#ifdef THREAD_IDENTIFIER_INFO_COUNT
if (m_ident_info.thread_id == 0)
{
mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT;
return ::thread_info (ThreadID(), THREAD_IDENTIFIER_INFO, (thread_info_t) &m_ident_info, &count) == KERN_SUCCESS;
}
#endif
return false;
}
const char *
MachThread::GetName ()
{
if (GetIdentifierInfo ())
{
int len = ::proc_pidinfo (m_process->ProcessID(), PROC_PIDTHREADINFO, m_ident_info.thread_handle, &m_proc_threadinfo, sizeof (m_proc_threadinfo));
if (len && m_proc_threadinfo.pth_name[0])
return m_proc_threadinfo.pth_name;
}
return NULL;
}
//
//const char *
//MachThread::GetDispatchQueueName()
//{
// if (GetIdentifierInfo ())
// {
// if (m_ident_info.dispatch_qaddr == 0)
// return NULL;
//
// uint8_t memory_buffer[8];
// DNBDataRef data(memory_buffer, sizeof(memory_buffer), false);
// ModuleSP module_sp(GetProcess()->GetTarget().GetImages().FindFirstModuleForFileSpec (FileSpec("libSystem.B.dylib")));
// if (module_sp.get() == NULL)
// return NULL;
//
// lldb::addr_t dispatch_queue_offsets_addr = LLDB_INVALID_ADDRESS;
// const Symbol *dispatch_queue_offsets_symbol = module_sp->FindFirstSymbolWithNameAndType (ConstString("dispatch_queue_offsets"), eSymbolTypeData);
// if (dispatch_queue_offsets_symbol)
// dispatch_queue_offsets_addr = dispatch_queue_offsets_symbol->GetValue().GetLoadAddress(GetProcess());
//
// if (dispatch_queue_offsets_addr == LLDB_INVALID_ADDRESS)
// return NULL;
//
// // Excerpt from src/queue_private.h
// struct dispatch_queue_offsets_s
// {
// uint16_t dqo_version;
// uint16_t dqo_label;
// uint16_t dqo_label_size;
// } dispatch_queue_offsets;
//
//
// if (GetProcess()->ReadMemory (dispatch_queue_offsets_addr, memory_buffer, sizeof(dispatch_queue_offsets)) == sizeof(dispatch_queue_offsets))
// {
// uint32_t data_offset = 0;
// if (data.GetU16(&data_offset, &dispatch_queue_offsets.dqo_version, sizeof(dispatch_queue_offsets)/sizeof(uint16_t)))
// {
// if (GetProcess()->ReadMemory (m_ident_info.dispatch_qaddr, &memory_buffer, data.GetAddressByteSize()) == data.GetAddressByteSize())
// {
// data_offset = 0;
// lldb::addr_t queue_addr = data.GetAddress(&data_offset);
// lldb::addr_t label_addr = queue_addr + dispatch_queue_offsets.dqo_label;
// const size_t chunk_size = 32;
// uint32_t label_pos = 0;
// m_dispatch_queue_name.resize(chunk_size, '\0');
// while (1)
// {
// size_t bytes_read = GetProcess()->ReadMemory (label_addr + label_pos, &m_dispatch_queue_name[label_pos], chunk_size);
//
// if (bytes_read <= 0)
// break;
//
// if (m_dispatch_queue_name.find('\0', label_pos) != std::string::npos)
// break;
// label_pos += bytes_read;
// }
// m_dispatch_queue_name.erase(m_dispatch_queue_name.find('\0'));
// }
// }
// }
// }
//
// if (m_dispatch_queue_name.empty())
// return NULL;
// return m_dispatch_queue_name.c_str();
//}