Files
clang-p2996/mlir/test/python/python_test_ops.td
Mehdi Amini 5e118f933b Introduce MLIR Op Properties
This new features enabled to dedicate custom storage inline within operations.
This storage can be used as an alternative to attributes to store data that is
specific to an operation. Attribute can also be stored inside the properties
storage if desired, but any kind of data can be present as well. This offers
a way to store and mutate data without uniquing in the Context like Attribute.
See the OpPropertiesTest.cpp for an example where a struct with a
std::vector<> is attached to an operation and mutated in-place:

struct TestProperties {
  int a = -1;
  float b = -1.;
  std::vector<int64_t> array = {-33};
};

More complex scheme (including reference-counting) are also possible.

The only constraint to enable storing a C++ object as "properties" on an
operation is to implement three functions:

- convert from the candidate object to an Attribute
- convert from the Attribute to the candidate object
- hash the object

Optional the parsing and printing can also be customized with 2 extra
functions.

A new options is introduced to ODS to allow dialects to specify:

  let usePropertiesForAttributes = 1;

When set to true, the inherent attributes for all the ops in this dialect
will be using properties instead of being stored alongside discardable
attributes.
The TestDialect showcases this feature.

Another change is that we introduce new APIs on the Operation class
to access separately the inherent attributes from the discardable ones.
We envision deprecating and removing the `getAttr()`, `getAttrsDictionary()`,
and other similar method which don't make the distinction explicit, leading
to an entirely separate namespace for discardable attributes.

Recommit d572cd1b06 after fixing python bindings build.

Differential Revision: https://reviews.llvm.org/D141742
2023-05-01 23:16:34 -07:00

117 lines
3.9 KiB
TableGen

//===-- python_test_ops.td - Python test Op definitions ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef PYTHON_TEST_OPS
#define PYTHON_TEST_OPS
include "mlir/IR/AttrTypeBase.td"
include "mlir/Bindings/Python/Attributes.td"
include "mlir/IR/OpBase.td"
include "mlir/Interfaces/InferTypeOpInterface.td"
def Python_Test_Dialect : Dialect {
let name = "python_test";
let cppNamespace = "python_test";
let useDefaultTypePrinterParser = 1;
let useDefaultAttributePrinterParser = 1;
}
class TestType<string name, string typeMnemonic>
: TypeDef<Python_Test_Dialect, name> {
let mnemonic = typeMnemonic;
}
class TestAttr<string name, string attrMnemonic>
: AttrDef<Python_Test_Dialect, name> {
let mnemonic = attrMnemonic;
}
class TestOp<string mnemonic, list<Trait> traits = []>
: Op<Python_Test_Dialect, mnemonic, traits>;
//===----------------------------------------------------------------------===//
// Type definitions.
//===----------------------------------------------------------------------===//
def TestType : TestType<"TestType", "test_type">;
//===----------------------------------------------------------------------===//
// Attribute definitions.
//===----------------------------------------------------------------------===//
def TestAttr : TestAttr<"TestAttr", "test_attr">;
//===----------------------------------------------------------------------===//
// Operation definitions.
//===----------------------------------------------------------------------===//
def AttributedOp : TestOp<"attributed_op"> {
let arguments = (ins I32Attr:$mandatory_i32,
OptionalAttr<I32Attr>:$optional_i32,
UnitAttr:$unit);
}
def PropertyOp : TestOp<"property_op"> {
let arguments = (ins I32Attr:$property,
I32:$idx);
}
def DummyOp : TestOp<"dummy_op"> {
}
def InferResultsOp : TestOp<"infer_results_op", [InferTypeOpInterface]> {
let arguments = (ins);
let results = (outs AnyInteger:$single, AnyInteger:$doubled);
let extraClassDeclaration = [{
static ::mlir::LogicalResult inferReturnTypes(
::mlir::MLIRContext *context, ::std::optional<::mlir::Location> location,
::mlir::ValueRange operands, ::mlir::DictionaryAttr attributes,
::mlir::OpaqueProperties,
::mlir::RegionRange regions,
::llvm::SmallVectorImpl<::mlir::Type> &inferredReturnTypes) {
::mlir::Builder b(context);
inferredReturnTypes.push_back(b.getI32Type());
inferredReturnTypes.push_back(b.getI64Type());
return ::mlir::success();
}
}];
}
// If all result types are buildable, the InferTypeOpInterface is implied and is
// autogenerated by C++ ODS.
def InferResultsImpliedOp : TestOp<"infer_results_implied_op"> {
let results = (outs I32:$integer, F64:$flt, Index:$index);
}
def SameOperandAndResultTypeOp : TestOp<"same_operand_and_result_type_op",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs AnyType:$one, AnyType:$two);
}
def FirstAttrDeriveTypeAttrOp : TestOp<"first_attr_derive_type_attr_op",
[FirstAttrDerivedResultType]> {
let arguments = (ins AnyType:$input, TypeAttr:$type);
let results = (outs AnyType:$one, AnyType:$two);
}
def FirstAttrDeriveAttrOp : TestOp<"first_attr_derive_attr_op",
[FirstAttrDerivedResultType]> {
let arguments = (ins AnyAttr:$iattr);
let results = (outs AnyType:$one, AnyType:$two, AnyType:$three);
}
def OptionalOperandOp : TestOp<"optional_operand_op"> {
let arguments = (ins Optional<AnyType>:$input);
let results = (outs I32:$result);
}
#endif // PYTHON_TEST_OPS