This change removes the partial bufferization passes from the sparse compilation pipeline and replaces them with One-Shot Bufferize. One-Shot Analysis (and TensorCopyInsertion) is used to resolve all out-of-place bufferizations, dense and sparse. Dense ops are then bufferized with BufferizableOpInterface. Sparse ops are still bufferized in the Sparsification pass. Details: * Dense allocations are automatically deallocated, unless they are yielded from a block. (In that case the alloc would leak.) All test cases are modified accordingly. E.g., some funcs now have an "out" tensor argument that is returned from the function. (That way, the allocation happens at the call site.) * Sparse allocations are *not* automatically deallocated. They must be "released" manually. (No change, this will be addressed in a future change.) * Sparse tensor copies are not supported yet. (Future change) * Sparsification no longer has to consider inplacability. If necessary, allocations and/or copies are inserted during TensorCopyInsertion. All tensors are inplaceable by the time Sparsification is running. Instead of marking a tensor as "not inplaceable", it can be marked as "not writable", which will trigger an allocation and/or copy during TensorCopyInsertion. Differential Revision: https://reviews.llvm.org/D129356
213 lines
8.3 KiB
C++
213 lines
8.3 KiB
C++
//===- SparseTensorPasses.cpp - Pass for autogen sparse tensor code -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Complex/IR/Complex.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes declaration.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GEN_PASS_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
struct SparsificationPass : public SparsificationBase<SparsificationPass> {
|
|
|
|
SparsificationPass() = default;
|
|
SparsificationPass(const SparsificationPass &pass) = default;
|
|
SparsificationPass(const SparsificationOptions &options) {
|
|
parallelization = static_cast<int32_t>(options.parallelizationStrategy);
|
|
vectorization = static_cast<int32_t>(options.vectorizationStrategy);
|
|
vectorLength = options.vectorLength;
|
|
enableSIMDIndex32 = options.enableSIMDIndex32;
|
|
enableVLAVectorization = options.enableVLAVectorization;
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
auto *ctx = &getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
// Translate strategy flags to strategy options.
|
|
SparsificationOptions options(
|
|
sparseParallelizationStrategy(parallelization),
|
|
sparseVectorizationStrategy(vectorization), vectorLength,
|
|
enableSIMDIndex32, enableVLAVectorization);
|
|
// Apply rewriting.
|
|
populateSparsificationPatterns(patterns, options);
|
|
vector::populateVectorToVectorCanonicalizationPatterns(patterns);
|
|
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
|
|
}
|
|
};
|
|
|
|
class SparseTensorTypeConverter : public TypeConverter {
|
|
public:
|
|
SparseTensorTypeConverter() {
|
|
addConversion([](Type type) { return type; });
|
|
addConversion(convertSparseTensorTypes);
|
|
}
|
|
// Maps each sparse tensor type to an opaque pointer.
|
|
static Optional<Type> convertSparseTensorTypes(Type type) {
|
|
if (getSparseTensorEncoding(type) != nullptr)
|
|
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
|
|
return llvm::None;
|
|
}
|
|
};
|
|
|
|
struct SparseTensorConversionPass
|
|
: public SparseTensorConversionBase<SparseTensorConversionPass> {
|
|
|
|
SparseTensorConversionPass() = default;
|
|
SparseTensorConversionPass(const SparseTensorConversionPass &pass) = default;
|
|
SparseTensorConversionPass(const SparseTensorConversionOptions &options) {
|
|
sparseToSparse = static_cast<int32_t>(options.sparseToSparseStrategy);
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
auto *ctx = &getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
SparseTensorTypeConverter converter;
|
|
ConversionTarget target(*ctx);
|
|
// Everything in the sparse dialect must go!
|
|
target.addIllegalDialect<SparseTensorDialect>();
|
|
// All dynamic rules below accept new function, call, return, and various
|
|
// tensor and bufferization operations as legal output of the rewriting
|
|
// provided that all sparse tensor types have been fully rewritten.
|
|
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
|
|
return converter.isSignatureLegal(op.getFunctionType());
|
|
});
|
|
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
|
|
return converter.isSignatureLegal(op.getCalleeType());
|
|
});
|
|
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
|
|
return converter.isLegal(op.getOperandTypes());
|
|
});
|
|
target.addDynamicallyLegalOp<tensor::DimOp>([&](tensor::DimOp op) {
|
|
return converter.isLegal(op.getOperandTypes());
|
|
});
|
|
target.addDynamicallyLegalOp<tensor::CastOp>([&](tensor::CastOp op) {
|
|
return converter.isLegal(op.getSource().getType()) &&
|
|
converter.isLegal(op.getDest().getType());
|
|
});
|
|
target.addDynamicallyLegalOp<tensor::ExpandShapeOp>(
|
|
[&](tensor::ExpandShapeOp op) {
|
|
return converter.isLegal(op.getSrc().getType()) &&
|
|
converter.isLegal(op.getResult().getType());
|
|
});
|
|
target.addDynamicallyLegalOp<tensor::CollapseShapeOp>(
|
|
[&](tensor::CollapseShapeOp op) {
|
|
return converter.isLegal(op.getSrc().getType()) &&
|
|
converter.isLegal(op.getResult().getType());
|
|
});
|
|
target.addDynamicallyLegalOp<bufferization::AllocTensorOp>(
|
|
[&](bufferization::AllocTensorOp op) {
|
|
return converter.isLegal(op.getType());
|
|
});
|
|
// The following operations and dialects may be introduced by the
|
|
// rewriting rules, and are therefore marked as legal.
|
|
target.addLegalOp<bufferization::ToMemrefOp, bufferization::ToTensorOp,
|
|
complex::ConstantOp, complex::NotEqualOp, linalg::FillOp,
|
|
linalg::YieldOp, tensor::ExtractOp>();
|
|
target.addLegalDialect<
|
|
arith::ArithmeticDialect, bufferization::BufferizationDialect,
|
|
LLVM::LLVMDialect, memref::MemRefDialect, scf::SCFDialect>();
|
|
target.addDynamicallyLegalOp<bufferization::AllocTensorOp>(
|
|
[&](bufferization::AllocTensorOp op) {
|
|
// Dense tensors are legal, sparse tensors are not.
|
|
return !static_cast<bool>(op.getType().getEncoding());
|
|
});
|
|
// Translate strategy flags to strategy options.
|
|
SparseTensorConversionOptions options(
|
|
sparseToSparseConversionStrategy(sparseToSparse));
|
|
// Populate with rules and apply rewriting rules.
|
|
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
|
|
converter);
|
|
populateCallOpTypeConversionPattern(patterns, converter);
|
|
populateSparseTensorConversionPatterns(converter, patterns, options);
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
SparseParallelizationStrategy
|
|
mlir::sparseParallelizationStrategy(int32_t flag) {
|
|
switch (flag) {
|
|
default:
|
|
return SparseParallelizationStrategy::kNone;
|
|
case 1:
|
|
return SparseParallelizationStrategy::kDenseOuterLoop;
|
|
case 2:
|
|
return SparseParallelizationStrategy::kAnyStorageOuterLoop;
|
|
case 3:
|
|
return SparseParallelizationStrategy::kDenseAnyLoop;
|
|
case 4:
|
|
return SparseParallelizationStrategy::kAnyStorageAnyLoop;
|
|
}
|
|
}
|
|
|
|
SparseVectorizationStrategy mlir::sparseVectorizationStrategy(int32_t flag) {
|
|
switch (flag) {
|
|
default:
|
|
return SparseVectorizationStrategy::kNone;
|
|
case 1:
|
|
return SparseVectorizationStrategy::kDenseInnerLoop;
|
|
case 2:
|
|
return SparseVectorizationStrategy::kAnyStorageInnerLoop;
|
|
}
|
|
}
|
|
|
|
SparseToSparseConversionStrategy
|
|
mlir::sparseToSparseConversionStrategy(int32_t flag) {
|
|
switch (flag) {
|
|
default:
|
|
return SparseToSparseConversionStrategy::kAuto;
|
|
case 1:
|
|
return SparseToSparseConversionStrategy::kViaCOO;
|
|
case 2:
|
|
return SparseToSparseConversionStrategy::kDirect;
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createSparsificationPass() {
|
|
return std::make_unique<SparsificationPass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass>
|
|
mlir::createSparsificationPass(const SparsificationOptions &options) {
|
|
return std::make_unique<SparsificationPass>(options);
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() {
|
|
return std::make_unique<SparseTensorConversionPass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass(
|
|
const SparseTensorConversionOptions &options) {
|
|
return std::make_unique<SparseTensorConversionPass>(options);
|
|
}
|