Files
clang-p2996/compiler-rt/lib/fuzzer/FuzzerTracePC.cpp
Matt Morehouse 7e042bb1d1 [libFuzzer] Port to Windows
Summary:
Port libFuzzer to windows-msvc.
This patch allows libFuzzer targets to be built and run on Windows, using -fsanitize=fuzzer and/or fsanitize=fuzzer-no-link. It allows these forms of coverage instrumentation to work on Windows as well.
It does not fix all issues, such as those with -fsanitize-coverage=stack-depth, which is not usable on Windows as of this patch.
It also does not fix any libFuzzer integration tests. Nearly all of them fail to compile, fixing them will come in a later patch, so libFuzzer tests are disabled on Windows until them.

Patch By: metzman

Reviewers: morehouse, rnk

Reviewed By: morehouse, rnk

Subscribers: #sanitizers, delcypher, morehouse, kcc, eraman

Differential Revision: https://reviews.llvm.org/D51022

llvm-svn: 341082
2018-08-30 15:54:44 +00:00

699 lines
24 KiB
C++

//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Trace PCs.
// This module implements __sanitizer_cov_trace_pc_guard[_init],
// the callback required for -fsanitize-coverage=trace-pc-guard instrumentation.
//
//===----------------------------------------------------------------------===//
#include "FuzzerTracePC.h"
#include "FuzzerCorpus.h"
#include "FuzzerDefs.h"
#include "FuzzerDictionary.h"
#include "FuzzerExtFunctions.h"
#include "FuzzerIO.h"
#include "FuzzerUtil.h"
#include "FuzzerValueBitMap.h"
#include <set>
// The coverage counters and PCs.
// These are declared as global variables named "__sancov_*" to simplify
// experiments with inlined instrumentation.
alignas(64) ATTRIBUTE_INTERFACE
uint8_t __sancov_trace_pc_guard_8bit_counters[fuzzer::TracePC::kNumPCs];
ATTRIBUTE_INTERFACE
uintptr_t __sancov_trace_pc_pcs[fuzzer::TracePC::kNumPCs];
// Used by -fsanitize-coverage=stack-depth to track stack depth
ATTRIBUTES_INTERFACE_TLS_INITIAL_EXEC uintptr_t __sancov_lowest_stack;
namespace fuzzer {
TracePC TPC;
uint8_t *TracePC::Counters() const {
return __sancov_trace_pc_guard_8bit_counters;
}
uintptr_t *TracePC::PCs() const {
return __sancov_trace_pc_pcs;
}
size_t TracePC::GetTotalPCCoverage() {
if (ObservedPCs.size())
return ObservedPCs.size();
size_t Res = 0;
for (size_t i = 1, N = GetNumPCs(); i < N; i++)
if (PCs()[i])
Res++;
return Res;
}
template<class CallBack>
void TracePC::IterateInline8bitCounters(CallBack CB) const {
if (NumInline8bitCounters && NumInline8bitCounters == NumPCsInPCTables) {
size_t CounterIdx = 0;
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) {
uint8_t *Beg = ModuleCounters[i].Start;
size_t Size = ModuleCounters[i].Stop - Beg;
assert(Size == (size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start));
for (size_t j = 0; j < Size; j++, CounterIdx++)
CB(i, j, CounterIdx);
}
}
}
// Initializes unstable counters by copying Inline8bitCounters to unstable
// counters.
void TracePC::InitializeUnstableCounters() {
IterateInline8bitCounters([&](int i, int j, int UnstableIdx) {
UnstableCounters[UnstableIdx].Counter = ModuleCounters[i].Start[j];
});
}
// Compares the current counters with counters from previous runs
// and records differences as unstable edges.
bool TracePC::UpdateUnstableCounters(int UnstableMode) {
bool Updated = false;
IterateInline8bitCounters([&](int i, int j, int UnstableIdx) {
if (ModuleCounters[i].Start[j] != UnstableCounters[UnstableIdx].Counter) {
Updated = true;
UnstableCounters[UnstableIdx].IsUnstable = true;
if (UnstableMode == ZeroUnstable)
UnstableCounters[UnstableIdx].Counter = 0;
else if (UnstableMode == MinUnstable)
UnstableCounters[UnstableIdx].Counter = std::min(
ModuleCounters[i].Start[j], UnstableCounters[UnstableIdx].Counter);
}
});
return Updated;
}
// Updates and applies unstable counters to ModuleCounters in single iteration
void TracePC::UpdateAndApplyUnstableCounters(int UnstableMode) {
IterateInline8bitCounters([&](int i, int j, int UnstableIdx) {
if (ModuleCounters[i].Start[j] != UnstableCounters[UnstableIdx].Counter) {
UnstableCounters[UnstableIdx].IsUnstable = true;
if (UnstableMode == ZeroUnstable)
ModuleCounters[i].Start[j] = 0;
else if (UnstableMode == MinUnstable)
ModuleCounters[i].Start[j] = std::min(
ModuleCounters[i].Start[j], UnstableCounters[UnstableIdx].Counter);
}
});
}
void TracePC::HandleInline8bitCountersInit(uint8_t *Start, uint8_t *Stop) {
if (Start == Stop) return;
if (NumModulesWithInline8bitCounters &&
ModuleCounters[NumModulesWithInline8bitCounters-1].Start == Start) return;
assert(NumModulesWithInline8bitCounters <
sizeof(ModuleCounters) / sizeof(ModuleCounters[0]));
ModuleCounters[NumModulesWithInline8bitCounters++] = {Start, Stop};
NumInline8bitCounters += Stop - Start;
}
void TracePC::HandlePCsInit(const uintptr_t *Start, const uintptr_t *Stop) {
const PCTableEntry *B = reinterpret_cast<const PCTableEntry *>(Start);
const PCTableEntry *E = reinterpret_cast<const PCTableEntry *>(Stop);
if (NumPCTables && ModulePCTable[NumPCTables - 1].Start == B) return;
assert(NumPCTables < sizeof(ModulePCTable) / sizeof(ModulePCTable[0]));
ModulePCTable[NumPCTables++] = {B, E};
NumPCsInPCTables += E - B;
}
void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) {
if (Start == Stop || *Start) return;
assert(NumModules < sizeof(Modules) / sizeof(Modules[0]));
for (uint32_t *P = Start; P < Stop; P++) {
NumGuards++;
if (NumGuards == kNumPCs) {
RawPrint(
"WARNING: The binary has too many instrumented PCs.\n"
" You may want to reduce the size of the binary\n"
" for more efficient fuzzing and precise coverage data\n");
}
*P = NumGuards % kNumPCs;
}
Modules[NumModules].Start = Start;
Modules[NumModules].Stop = Stop;
NumModules++;
}
void TracePC::PrintModuleInfo() {
if (NumGuards) {
Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards);
for (size_t i = 0; i < NumModules; i++)
Printf("%zd [%p, %p), ", Modules[i].Stop - Modules[i].Start,
Modules[i].Start, Modules[i].Stop);
Printf("\n");
}
if (NumModulesWithInline8bitCounters) {
Printf("INFO: Loaded %zd modules (%zd inline 8-bit counters): ",
NumModulesWithInline8bitCounters, NumInline8bitCounters);
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++)
Printf("%zd [%p, %p), ", ModuleCounters[i].Stop - ModuleCounters[i].Start,
ModuleCounters[i].Start, ModuleCounters[i].Stop);
Printf("\n");
}
if (NumPCTables) {
Printf("INFO: Loaded %zd PC tables (%zd PCs): ", NumPCTables,
NumPCsInPCTables);
for (size_t i = 0; i < NumPCTables; i++) {
Printf("%zd [%p,%p), ", ModulePCTable[i].Stop - ModulePCTable[i].Start,
ModulePCTable[i].Start, ModulePCTable[i].Stop);
}
Printf("\n");
if ((NumGuards && NumGuards != NumPCsInPCTables) ||
(NumInline8bitCounters && NumInline8bitCounters != NumPCsInPCTables)) {
Printf("ERROR: The size of coverage PC tables does not match the\n"
"number of instrumented PCs. This might be a compiler bug,\n"
"please contact the libFuzzer developers.\n"
"Also check https://bugs.llvm.org/show_bug.cgi?id=34636\n"
"for possible workarounds (tl;dr: don't use the old GNU ld)\n");
_Exit(1);
}
}
if (size_t NumExtraCounters = ExtraCountersEnd() - ExtraCountersBegin())
Printf("INFO: %zd Extra Counters\n", NumExtraCounters);
}
ATTRIBUTE_NO_SANITIZE_ALL
void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) {
const uintptr_t kBits = 12;
const uintptr_t kMask = (1 << kBits) - 1;
uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits);
ValueProfileMap.AddValueModPrime(Idx);
}
void TracePC::UpdateObservedPCs() {
Vector<uintptr_t> CoveredFuncs;
auto ObservePC = [&](uintptr_t PC) {
if (ObservedPCs.insert(PC).second && DoPrintNewPCs) {
PrintPC("\tNEW_PC: %p %F %L", "\tNEW_PC: %p", PC + 1);
Printf("\n");
}
};
auto Observe = [&](const PCTableEntry &TE) {
if (TE.PCFlags & 1)
if (++ObservedFuncs[TE.PC] == 1 && NumPrintNewFuncs)
CoveredFuncs.push_back(TE.PC);
ObservePC(TE.PC);
};
if (NumPCsInPCTables) {
if (NumInline8bitCounters == NumPCsInPCTables) {
IterateInline8bitCounters([&](int i, int j, int CounterIdx) {
if (ModuleCounters[i].Start[j])
Observe(ModulePCTable[i].Start[j]);
});
} else if (NumGuards == NumPCsInPCTables) {
size_t GuardIdx = 1;
for (size_t i = 0; i < NumModules; i++) {
uint32_t *Beg = Modules[i].Start;
size_t Size = Modules[i].Stop - Beg;
assert(Size ==
(size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start));
for (size_t j = 0; j < Size; j++, GuardIdx++)
if (Counters()[GuardIdx])
Observe(ModulePCTable[i].Start[j]);
}
}
}
for (size_t i = 0, N = Min(CoveredFuncs.size(), NumPrintNewFuncs); i < N;
i++) {
Printf("\tNEW_FUNC[%zd/%zd]: ", i + 1, CoveredFuncs.size());
PrintPC("%p %F %L", "%p", CoveredFuncs[i] + 1);
Printf("\n");
}
}
inline ALWAYS_INLINE uintptr_t GetPreviousInstructionPc(uintptr_t PC) {
// TODO: this implementation is x86 only.
// see sanitizer_common GetPreviousInstructionPc for full implementation.
return PC - 1;
}
inline ALWAYS_INLINE uintptr_t GetNextInstructionPc(uintptr_t PC) {
// TODO: this implementation is x86 only.
// see sanitizer_common GetPreviousInstructionPc for full implementation.
return PC + 1;
}
static std::string GetModuleName(uintptr_t PC) {
char ModulePathRaw[4096] = ""; // What's PATH_MAX in portable C++?
void *OffsetRaw = nullptr;
if (!EF->__sanitizer_get_module_and_offset_for_pc(
reinterpret_cast<void *>(PC), ModulePathRaw,
sizeof(ModulePathRaw), &OffsetRaw))
return "";
return ModulePathRaw;
}
template<class CallBack>
void TracePC::IterateCoveredFunctions(CallBack CB) {
for (size_t i = 0; i < NumPCTables; i++) {
auto &M = ModulePCTable[i];
assert(M.Start < M.Stop);
auto ModuleName = GetModuleName(M.Start->PC);
for (auto NextFE = M.Start; NextFE < M.Stop; ) {
auto FE = NextFE;
assert((FE->PCFlags & 1) && "Not a function entry point");
do {
NextFE++;
} while (NextFE < M.Stop && !(NextFE->PCFlags & 1));
if (ObservedFuncs.count(FE->PC))
CB(FE, NextFE, ObservedFuncs[FE->PC]);
}
}
}
void TracePC::SetFocusFunction(const std::string &FuncName) {
// This function should be called once.
assert(FocusFunction.first > NumModulesWithInline8bitCounters);
if (FuncName.empty())
return;
for (size_t M = 0; M < NumModulesWithInline8bitCounters; M++) {
auto &PCTE = ModulePCTable[M];
size_t N = PCTE.Stop - PCTE.Start;
for (size_t I = 0; I < N; I++) {
if (!(PCTE.Start[I].PCFlags & 1)) continue; // not a function entry.
auto Name = DescribePC("%F", GetNextInstructionPc(PCTE.Start[I].PC));
if (Name[0] == 'i' && Name[1] == 'n' && Name[2] == ' ')
Name = Name.substr(3, std::string::npos);
if (FuncName != Name) continue;
Printf("INFO: Focus function is set to '%s'\n", Name.c_str());
FocusFunction = {M, I};
return;
}
}
}
bool TracePC::ObservedFocusFunction() {
size_t I = FocusFunction.first;
size_t J = FocusFunction.second;
if (I >= NumModulesWithInline8bitCounters)
return false;
auto &MC = ModuleCounters[I];
size_t Size = MC.Stop - MC.Start;
if (J >= Size)
return false;
return MC.Start[J] != 0;
}
void TracePC::PrintCoverage() {
if (!EF->__sanitizer_symbolize_pc ||
!EF->__sanitizer_get_module_and_offset_for_pc) {
Printf("INFO: __sanitizer_symbolize_pc or "
"__sanitizer_get_module_and_offset_for_pc is not available,"
" not printing coverage\n");
return;
}
Printf("COVERAGE:\n");
auto CoveredFunctionCallback = [&](const PCTableEntry *First,
const PCTableEntry *Last,
uintptr_t Counter) {
assert(First < Last);
auto VisualizePC = GetNextInstructionPc(First->PC);
std::string FileStr = DescribePC("%s", VisualizePC);
if (!IsInterestingCoverageFile(FileStr))
return;
std::string FunctionStr = DescribePC("%F", VisualizePC);
if (FunctionStr.find("in ") == 0)
FunctionStr = FunctionStr.substr(3);
std::string LineStr = DescribePC("%l", VisualizePC);
size_t Line = std::stoul(LineStr);
size_t NumEdges = Last - First;
Vector<uintptr_t> UncoveredPCs;
for (auto TE = First; TE < Last; TE++)
if (!ObservedPCs.count(TE->PC))
UncoveredPCs.push_back(TE->PC);
Printf("COVERED_FUNC: hits: %zd", Counter);
Printf(" edges: %zd/%zd", NumEdges - UncoveredPCs.size(), NumEdges);
Printf(" %s %s:%zd\n", FunctionStr.c_str(), FileStr.c_str(), Line);
for (auto PC: UncoveredPCs)
Printf(" UNCOVERED_PC: %s\n",
DescribePC("%s:%l", GetNextInstructionPc(PC)).c_str());
};
IterateCoveredFunctions(CoveredFunctionCallback);
}
void TracePC::DumpCoverage() {
if (EF->__sanitizer_dump_coverage) {
Vector<uintptr_t> PCsCopy(GetNumPCs());
for (size_t i = 0; i < GetNumPCs(); i++)
PCsCopy[i] = PCs()[i] ? GetPreviousInstructionPc(PCs()[i]) : 0;
EF->__sanitizer_dump_coverage(PCsCopy.data(), PCsCopy.size());
}
}
void TracePC::PrintUnstableStats() {
size_t count = 0;
Printf("UNSTABLE_FUNCTIONS:\n");
IterateInline8bitCounters([&](int i, int j, int UnstableIdx) {
const PCTableEntry &TE = ModulePCTable[i].Start[j];
if (UnstableCounters[UnstableIdx].IsUnstable) {
count++;
if (ObservedFuncs.count(TE.PC)) {
auto VisualizePC = GetNextInstructionPc(TE.PC);
std::string FunctionStr = DescribePC("%F", VisualizePC);
if (FunctionStr.find("in ") == 0)
FunctionStr = FunctionStr.substr(3);
Printf("%s\n", FunctionStr.c_str());
}
}
});
Printf("stat::stability_rate: %.2f\n",
100 - static_cast<float>(count * 100) / NumInline8bitCounters);
}
// Value profile.
// We keep track of various values that affect control flow.
// These values are inserted into a bit-set-based hash map.
// Every new bit in the map is treated as a new coverage.
//
// For memcmp/strcmp/etc the interesting value is the length of the common
// prefix of the parameters.
// For cmp instructions the interesting value is a XOR of the parameters.
// The interesting value is mixed up with the PC and is then added to the map.
ATTRIBUTE_NO_SANITIZE_ALL
void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2,
size_t n, bool StopAtZero) {
if (!n) return;
size_t Len = std::min(n, Word::GetMaxSize());
const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1);
const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2);
uint8_t B1[Word::kMaxSize];
uint8_t B2[Word::kMaxSize];
// Copy the data into locals in this non-msan-instrumented function
// to avoid msan complaining further.
size_t Hash = 0; // Compute some simple hash of both strings.
for (size_t i = 0; i < Len; i++) {
B1[i] = A1[i];
B2[i] = A2[i];
size_t T = B1[i];
Hash ^= (T << 8) | B2[i];
}
size_t I = 0;
for (; I < Len; I++)
if (B1[I] != B2[I] || (StopAtZero && B1[I] == 0))
break;
size_t PC = reinterpret_cast<size_t>(caller_pc);
size_t Idx = (PC & 4095) | (I << 12);
ValueProfileMap.AddValue(Idx);
TORCW.Insert(Idx ^ Hash, Word(B1, Len), Word(B2, Len));
}
template <class T>
ATTRIBUTE_TARGET_POPCNT ALWAYS_INLINE
ATTRIBUTE_NO_SANITIZE_ALL
void TracePC::HandleCmp(uintptr_t PC, T Arg1, T Arg2) {
uint64_t ArgXor = Arg1 ^ Arg2;
if (sizeof(T) == 4)
TORC4.Insert(ArgXor, Arg1, Arg2);
else if (sizeof(T) == 8)
TORC8.Insert(ArgXor, Arg1, Arg2);
uint64_t HammingDistance = __builtin_popcountll(ArgXor); // [0,64]
uint64_t AbsoluteDistance =
(Arg1 == Arg2 ? 0 : __builtin_clzll(Arg1 - Arg2) + 1);
ValueProfileMap.AddValue(PC * 128 + HammingDistance);
ValueProfileMap.AddValue(PC * 128 + 64 + AbsoluteDistance);
}
static size_t InternalStrnlen(const char *S, size_t MaxLen) {
size_t Len = 0;
for (; Len < MaxLen && S[Len]; Len++) {}
return Len;
}
// Finds min of (strlen(S1), strlen(S2)).
// Needed bacause one of these strings may actually be non-zero terminated.
static size_t InternalStrnlen2(const char *S1, const char *S2) {
size_t Len = 0;
for (; S1[Len] && S2[Len]; Len++) {}
return Len;
}
void TracePC::ClearInlineCounters() {
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) {
uint8_t *Beg = ModuleCounters[i].Start;
size_t Size = ModuleCounters[i].Stop - Beg;
memset(Beg, 0, Size);
}
}
ATTRIBUTE_NO_SANITIZE_ALL
void TracePC::RecordInitialStack() {
int stack;
__sancov_lowest_stack = InitialStack = reinterpret_cast<uintptr_t>(&stack);
}
uintptr_t TracePC::GetMaxStackOffset() const {
return InitialStack - __sancov_lowest_stack; // Stack grows down
}
} // namespace fuzzer
extern "C" {
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
uint32_t Idx = *Guard;
__sancov_trace_pc_pcs[Idx] = PC;
__sancov_trace_pc_guard_8bit_counters[Idx]++;
}
// Best-effort support for -fsanitize-coverage=trace-pc, which is available
// in both Clang and GCC.
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
void __sanitizer_cov_trace_pc() {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
uintptr_t Idx = PC & (((uintptr_t)1 << fuzzer::TracePC::kTracePcBits) - 1);
__sancov_trace_pc_pcs[Idx] = PC;
__sancov_trace_pc_guard_8bit_counters[Idx]++;
}
ATTRIBUTE_INTERFACE
void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) {
fuzzer::TPC.HandleInit(Start, Stop);
}
ATTRIBUTE_INTERFACE
void __sanitizer_cov_8bit_counters_init(uint8_t *Start, uint8_t *Stop) {
fuzzer::TPC.HandleInline8bitCountersInit(Start, Stop);
}
ATTRIBUTE_INTERFACE
void __sanitizer_cov_pcs_init(const uintptr_t *pcs_beg,
const uintptr_t *pcs_end) {
fuzzer::TPC.HandlePCsInit(pcs_beg, pcs_end);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCallerCallee(PC, Callee);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
// Now the __sanitizer_cov_trace_const_cmp[1248] callbacks just mimic
// the behaviour of __sanitizer_cov_trace_cmp[1248] ones. This, however,
// should be changed later to make full use of instrumentation.
void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) {
uint64_t N = Cases[0];
uint64_t ValSizeInBits = Cases[1];
uint64_t *Vals = Cases + 2;
// Skip the most common and the most boring case.
if (Vals[N - 1] < 256 && Val < 256)
return;
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
size_t i;
uint64_t Token = 0;
for (i = 0; i < N; i++) {
Token = Val ^ Vals[i];
if (Val < Vals[i])
break;
}
if (ValSizeInBits == 16)
fuzzer::TPC.HandleCmp(PC + i, static_cast<uint16_t>(Token), (uint16_t)(0));
else if (ValSizeInBits == 32)
fuzzer::TPC.HandleCmp(PC + i, static_cast<uint32_t>(Token), (uint32_t)(0));
else
fuzzer::TPC.HandleCmp(PC + i, Token, (uint64_t)(0));
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_div4(uint32_t Val) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Val, (uint32_t)0);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_div8(uint64_t Val) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Val, (uint64_t)0);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_gep(uintptr_t Idx) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Idx, (uintptr_t)0);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1,
const void *s2, size_t n, int result) {
if (!fuzzer::RunningUserCallback) return;
if (result == 0) return; // No reason to mutate.
if (n <= 1) return; // Not interesting.
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/false);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1,
const char *s2, size_t n, int result) {
if (!fuzzer::RunningUserCallback) return;
if (result == 0) return; // No reason to mutate.
size_t Len1 = fuzzer::InternalStrnlen(s1, n);
size_t Len2 = fuzzer::InternalStrnlen(s2, n);
n = std::min(n, Len1);
n = std::min(n, Len2);
if (n <= 1) return; // Not interesting.
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/true);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1,
const char *s2, int result) {
if (!fuzzer::RunningUserCallback) return;
if (result == 0) return; // No reason to mutate.
size_t N = fuzzer::InternalStrnlen2(s1, s2);
if (N <= 1) return; // Not interesting.
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, N, /*StopAtZero*/true);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strncasecmp(void *called_pc, const char *s1,
const char *s2, size_t n, int result) {
if (!fuzzer::RunningUserCallback) return;
return __sanitizer_weak_hook_strncmp(called_pc, s1, s2, n, result);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strcasecmp(void *called_pc, const char *s1,
const char *s2, int result) {
if (!fuzzer::RunningUserCallback) return;
return __sanitizer_weak_hook_strcmp(called_pc, s1, s2, result);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strstr(void *called_pc, const char *s1,
const char *s2, char *result) {
if (!fuzzer::RunningUserCallback) return;
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), strlen(s2));
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strcasestr(void *called_pc, const char *s1,
const char *s2, char *result) {
if (!fuzzer::RunningUserCallback) return;
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), strlen(s2));
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_memmem(void *called_pc, const void *s1, size_t len1,
const void *s2, size_t len2, void *result) {
if (!fuzzer::RunningUserCallback) return;
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), len2);
}
} // extern "C"