Files
clang-p2996/compiler-rt/lib/xray/xray_segmented_array.h
Dean Michael Berris edf0f6a79b [XRay] XRAY_NEVER_INSTRUMENT more functions, consolidate allocators
Summary:
In this change we apply `XRAY_NEVER_INSTRUMENT` to more functions in the
profiling implementation to ensure that these never get instrumented if
the compiler used to build the library is capable of doing XRay
instrumentation.

We also consolidate all the allocators into a single header
(xray_allocator.h) which sidestep the use of the internal allocator
implementation in sanitizer_common.

This addresses more cases mentioned in llvm.org/PR38577.

Reviewers: mboerger, eizan

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D51776

llvm-svn: 341647
2018-09-07 10:16:14 +00:00

393 lines
12 KiB
C++

//===-- xray_segmented_array.h ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the implementation of a segmented array, with fixed-size segments
// backing the segments.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_SEGMENTED_ARRAY_H
#define XRAY_SEGMENTED_ARRAY_H
#include "sanitizer_common/sanitizer_allocator.h"
#include "xray_allocator.h"
#include "xray_utils.h"
#include <cassert>
#include <type_traits>
#include <utility>
namespace __xray {
/// The Array type provides an interface similar to std::vector<...> but does
/// not shrink in size. Once constructed, elements can be appended but cannot be
/// removed. The implementation is heavily dependent on the contract provided by
/// the Allocator type, in that all memory will be released when the Allocator
/// is destroyed. When an Array is destroyed, it will destroy elements in the
/// backing store but will not free the memory.
template <class T> class Array {
struct SegmentBase {
SegmentBase *Prev;
SegmentBase *Next;
};
// We want each segment of the array to be cache-line aligned, and elements of
// the array be offset from the beginning of the segment.
struct Segment : SegmentBase {
char Data[1];
};
public:
// Each segment of the array will be laid out with the following assumptions:
//
// - Each segment will be on a cache-line address boundary (kCacheLineSize
// aligned).
//
// - The elements will be accessed through an aligned pointer, dependent on
// the alignment of T.
//
// - Each element is at least two-pointers worth from the beginning of the
// Segment, aligned properly, and the rest of the elements are accessed
// through appropriate alignment.
//
// We then compute the size of the segment to follow this logic:
//
// - Compute the number of elements that can fit within
// kCacheLineSize-multiple segments, minus the size of two pointers.
//
// - Request cacheline-multiple sized elements from the allocator.
static constexpr size_t AlignedElementStorageSize =
sizeof(typename std::aligned_storage<sizeof(T), alignof(T)>::type);
static constexpr size_t SegmentSize =
nearest_boundary(sizeof(Segment) + next_pow2(sizeof(T)), kCacheLineSize);
using AllocatorType = Allocator<SegmentSize>;
static constexpr size_t ElementsPerSegment =
(SegmentSize - sizeof(Segment)) / next_pow2(sizeof(T));
static_assert(ElementsPerSegment > 0,
"Must have at least 1 element per segment.");
static SegmentBase SentinelSegment;
private:
AllocatorType *Alloc;
SegmentBase *Head = &SentinelSegment;
SegmentBase *Tail = &SentinelSegment;
size_t Size = 0;
// Here we keep track of segments in the freelist, to allow us to re-use
// segments when elements are trimmed off the end.
SegmentBase *Freelist = &SentinelSegment;
Segment *NewSegment() XRAY_NEVER_INSTRUMENT {
// We need to handle the case in which enough elements have been trimmed to
// allow us to re-use segments we've allocated before. For this we look into
// the Freelist, to see whether we need to actually allocate new blocks or
// just re-use blocks we've already seen before.
if (Freelist != &SentinelSegment) {
auto *FreeSegment = Freelist;
Freelist = FreeSegment->Next;
FreeSegment->Next = &SentinelSegment;
Freelist->Prev = &SentinelSegment;
return static_cast<Segment *>(FreeSegment);
}
auto SegmentBlock = Alloc->Allocate();
if (SegmentBlock.Data == nullptr)
return nullptr;
// Placement-new the Segment element at the beginning of the SegmentBlock.
auto S = reinterpret_cast<Segment *>(SegmentBlock.Data);
new (S) SegmentBase{&SentinelSegment, &SentinelSegment};
return S;
}
Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT {
DCHECK_EQ(Head, &SentinelSegment);
DCHECK_EQ(Tail, &SentinelSegment);
auto Segment = NewSegment();
if (Segment == nullptr)
return nullptr;
DCHECK_EQ(Segment->Next, &SentinelSegment);
DCHECK_EQ(Segment->Prev, &SentinelSegment);
Head = Tail = static_cast<SegmentBase *>(Segment);
return Segment;
}
Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT {
auto S = NewSegment();
if (S == nullptr)
return nullptr;
DCHECK_NE(Tail, &SentinelSegment);
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(S->Prev, &SentinelSegment);
DCHECK_EQ(S->Next, &SentinelSegment);
Tail->Next = S;
S->Prev = Tail;
Tail = S;
return static_cast<Segment *>(Tail);
}
// This Iterator models a BidirectionalIterator.
template <class U> class Iterator {
SegmentBase *S = &SentinelSegment;
size_t Offset = 0;
size_t Size = 0;
public:
Iterator(SegmentBase *IS, size_t Off, size_t S) XRAY_NEVER_INSTRUMENT
: S(IS),
Offset(Off),
Size(S) {}
Iterator(const Iterator &) NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
Iterator() NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
Iterator(Iterator &&) NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
Iterator &operator=(const Iterator &) XRAY_NEVER_INSTRUMENT = default;
Iterator &operator=(Iterator &&) XRAY_NEVER_INSTRUMENT = default;
~Iterator() XRAY_NEVER_INSTRUMENT = default;
Iterator &operator++() XRAY_NEVER_INSTRUMENT {
if (++Offset % ElementsPerSegment || Offset == Size)
return *this;
// At this point, we know that Offset % N == 0, so we must advance the
// segment pointer.
DCHECK_EQ(Offset % ElementsPerSegment, 0);
DCHECK_NE(Offset, Size);
DCHECK_NE(S, &SentinelSegment);
DCHECK_NE(S->Next, &SentinelSegment);
S = S->Next;
DCHECK_NE(S, &SentinelSegment);
return *this;
}
Iterator &operator--() XRAY_NEVER_INSTRUMENT {
DCHECK_NE(S, &SentinelSegment);
DCHECK_GT(Offset, 0);
auto PreviousOffset = Offset--;
if (PreviousOffset != Size && PreviousOffset % ElementsPerSegment == 0) {
DCHECK_NE(S->Prev, &SentinelSegment);
S = S->Prev;
}
return *this;
}
Iterator operator++(int) XRAY_NEVER_INSTRUMENT {
Iterator Copy(*this);
++(*this);
return Copy;
}
Iterator operator--(int) XRAY_NEVER_INSTRUMENT {
Iterator Copy(*this);
--(*this);
return Copy;
}
template <class V, class W>
friend bool operator==(const Iterator<V> &L,
const Iterator<W> &R) XRAY_NEVER_INSTRUMENT {
return L.S == R.S && L.Offset == R.Offset;
}
template <class V, class W>
friend bool operator!=(const Iterator<V> &L,
const Iterator<W> &R) XRAY_NEVER_INSTRUMENT {
return !(L == R);
}
U &operator*() const XRAY_NEVER_INSTRUMENT {
DCHECK_NE(S, &SentinelSegment);
auto RelOff = Offset % ElementsPerSegment;
// We need to compute the character-aligned pointer, offset from the
// segment's Data location to get the element in the position of Offset.
auto Base = static_cast<Segment *>(S)->Data;
auto AlignedOffset = Base + (RelOff * AlignedElementStorageSize);
return *reinterpret_cast<U *>(AlignedOffset);
}
U *operator->() const XRAY_NEVER_INSTRUMENT { return &(**this); }
};
public:
explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT : Alloc(&A) {}
Array(const Array &) = delete;
Array(Array &&O) NOEXCEPT : Alloc(O.Alloc),
Head(O.Head),
Tail(O.Tail),
Size(O.Size) {
O.Head = &SentinelSegment;
O.Tail = &SentinelSegment;
O.Size = 0;
}
bool empty() const XRAY_NEVER_INSTRUMENT { return Size == 0; }
AllocatorType &allocator() const XRAY_NEVER_INSTRUMENT {
DCHECK_NE(Alloc, nullptr);
return *Alloc;
}
size_t size() const XRAY_NEVER_INSTRUMENT { return Size; }
T *Append(const T &E) XRAY_NEVER_INSTRUMENT {
if (UNLIKELY(Head == &SentinelSegment))
if (InitHeadAndTail() == nullptr)
return nullptr;
auto Offset = Size % ElementsPerSegment;
if (UNLIKELY(Size != 0 && Offset == 0))
if (AppendNewSegment() == nullptr)
return nullptr;
auto Base = static_cast<Segment *>(Tail)->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
auto Position = reinterpret_cast<T *>(AlignedOffset);
*Position = E;
++Size;
return Position;
}
template <class... Args>
T *AppendEmplace(Args &&... args) XRAY_NEVER_INSTRUMENT {
if (UNLIKELY(Head == &SentinelSegment))
if (InitHeadAndTail() == nullptr)
return nullptr;
auto Offset = Size % ElementsPerSegment;
auto *LatestSegment = Tail;
if (UNLIKELY(Size != 0 && Offset == 0)) {
LatestSegment = AppendNewSegment();
if (LatestSegment == nullptr)
return nullptr;
}
DCHECK_NE(Tail, &SentinelSegment);
auto Base = static_cast<Segment *>(LatestSegment)->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
auto Position = reinterpret_cast<T *>(AlignedOffset);
// In-place construct at Position.
new (Position) T{std::forward<Args>(args)...};
++Size;
return reinterpret_cast<T *>(Position);
}
T &operator[](size_t Offset) const XRAY_NEVER_INSTRUMENT {
DCHECK_LE(Offset, Size);
// We need to traverse the array enough times to find the element at Offset.
auto S = Head;
while (Offset >= ElementsPerSegment) {
S = S->Next;
Offset -= ElementsPerSegment;
DCHECK_NE(S, &SentinelSegment);
}
auto Base = static_cast<Segment *>(S)->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
auto Position = reinterpret_cast<T *>(AlignedOffset);
return *reinterpret_cast<T *>(Position);
}
T &front() const XRAY_NEVER_INSTRUMENT {
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Size, 0u);
return *begin();
}
T &back() const XRAY_NEVER_INSTRUMENT {
DCHECK_NE(Tail, &SentinelSegment);
DCHECK_NE(Size, 0u);
auto It = end();
--It;
return *It;
}
template <class Predicate>
T *find_element(Predicate P) const XRAY_NEVER_INSTRUMENT {
if (empty())
return nullptr;
auto E = end();
for (auto I = begin(); I != E; ++I)
if (P(*I))
return &(*I);
return nullptr;
}
/// Remove N Elements from the end. This leaves the blocks behind, and not
/// require allocation of new blocks for new elements added after trimming.
void trim(size_t Elements) XRAY_NEVER_INSTRUMENT {
if (Elements == 0)
return;
DCHECK_LE(Elements, Size);
DCHECK_GT(Size, 0);
auto OldSize = Size;
Size -= Elements;
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Tail, &SentinelSegment);
for (auto SegmentsToTrim = (nearest_boundary(OldSize, ElementsPerSegment) -
nearest_boundary(Size, ElementsPerSegment)) /
ElementsPerSegment;
SegmentsToTrim > 0; --SegmentsToTrim) {
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Tail, &SentinelSegment);
// Put the tail into the Freelist.
auto *FreeSegment = Tail;
Tail = Tail->Prev;
if (Tail == &SentinelSegment)
Head = Tail;
else
Tail->Next = &SentinelSegment;
DCHECK_EQ(Tail->Next, &SentinelSegment);
FreeSegment->Next = Freelist;
FreeSegment->Prev = &SentinelSegment;
if (Freelist != &SentinelSegment)
Freelist->Prev = FreeSegment;
Freelist = FreeSegment;
}
}
// Provide iterators.
Iterator<T> begin() const XRAY_NEVER_INSTRUMENT {
return Iterator<T>(Head, 0, Size);
}
Iterator<T> end() const XRAY_NEVER_INSTRUMENT {
return Iterator<T>(Tail, Size, Size);
}
Iterator<const T> cbegin() const XRAY_NEVER_INSTRUMENT {
return Iterator<const T>(Head, 0, Size);
}
Iterator<const T> cend() const XRAY_NEVER_INSTRUMENT {
return Iterator<const T>(Tail, Size, Size);
}
};
// We need to have this storage definition out-of-line so that the compiler can
// ensure that storage for the SentinelSegment is defined and has a single
// address.
template <class T>
typename Array<T>::SegmentBase Array<T>::SentinelSegment{
&Array<T>::SentinelSegment, &Array<T>::SentinelSegment};
} // namespace __xray
#endif // XRAY_SEGMENTED_ARRAY_H